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Let � be a real-valued Lévy process that satisfies Cramér’s condition, and X a self-similar Markov

process associated with � via Lamperti’s transformation. In this case, X has 0 as a trap and satisfies

the assumptions set out by Vuolle-Apiala. We deduce from the latter that there exists a unique

excursion measure n, compatible with the semigroup of X and such that n(X 0þ . 0) ¼ 0. Here, we

give a precise description of n via its associated entrance law. To this end, we construct a self-similar

process X \, which can be viewed as X conditioned never to hit 0, and then we construct n similarly

to the way in which the Brownian excursion measure is constructed via the law of a Bessel(3) process.

An alternative description of n is given by specifying the law of the excursion process conditioned to

have a given length. We establish some duality relations from which we determine the image under

time reversal of n.
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1. Introduction

Let X ¼ (X t, t > 0) be a strong Markov process with values in [0, 1[ and, for x > 0,

denote by Px its law starting from x. Assume that X possesses the following scaling

property: there exists some Æ . 0 such that

the law of (cX tc�1=Æ , t > 0) under Px is Pcx, (1)

for any x > 0 and c . 0. Such processes were introduced by Lamperti (1972) under the name

of semi-stable processes; nowadays they are called Æ-self-similar Markov processes. We refer

to Embrechts and Maejima (2002) for a recent account of self-similar processes.

Lamperti established that for each fixed Æ . 0, there exists a one-to-one correspondence

between Æ-self-similar Markov processes on [0, 1[ and real-valued Lévy processes which

we now sketch. Let (D, D) be the space of cadlag paths ø : [0, 1[ ! ] �1, 1[ endowed

with the � -algebra generated by the coordinate maps and the natural filtration (D9t, t > 0),

satisfying the usual conditions of right continuity and completeness. Let �PP be a probability

measure on D9 such that under �PP the coordinate process ��� is a Lévy process. Throughout

out this paper we will refer to this process as the unkilled Lévy process. Let P be the law

of the Lévy process � which is obtained by killing ��� at a rate k > 0, that is, ��� is killed at

an independent exponential time e with parameter k. We denote by � the lifetime of �, and
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(D t, t > 0) its filtration. If k ¼ 0 we assume furthermore that � drifts to �1, i.e.

lims!1�s ¼ �1, P–almost surely. Set, for t > 0,

�(t) ¼ inf s . 0,

ð s

0

expf�r=Ægdr . t

� �
,

with the usual convention that inff˘g ¼ 1. For an arbitrary x . 0, let Px be the distribution

on Dþ ¼ fø : [0, 1[ ! [0, 1[; cadlagg, of the time-transformed process

Xt ¼ x exp(��( tx�1=Æ)), t > 0,

where the above quantity is assumed to be 0 when �(tx�1=Æ) ¼ 1. We define P0 as the law

of the process identical to 0. Classical results on time transformation yield that under

(Px, x > 0) the process X is Markovian with respect to the filtration (G t ¼ D�( t), t > 0).

Furthermore, X has scaling property (1). Thus, X is a self-similar Markov process on [0, 1[

having 0 as a trap or absorbing point. Conversely, any self-similar Markov process that has 0

as a trap can be constructed in this way (Lamperti 1972).

Let T0 be the first hitting time of 0 for X , that is,

T0 ¼ infft . 0 : Xt� ¼ 0 or Xt ¼ 0g:

It should be clear that the distribution of T0 under Px is the same as that of x1=Æ I under

P, with I the so-called Lévy exponential functional associated with � and Æ, that is,

I ¼
ð�

0

expf�s=Ægds: (2)

If k . 0, or if k ¼ 0 and � drifts to �1, we have that I , 1, P-a.s. As a consequence, we

have that if k . 0 then

Px(X T0� . 0, T0 , 1) ¼ 1, for all x . 0,

whereas if k ¼ 0 and � drifts to �1,

Px(X T0� ¼ 0, T0 , 1) ¼ 1, for all x . 0:

Denote by Pt and Vq respectively the semigroup and resolvent for the process X killed at

time T0, say (X , T0),

Pt f (x) ¼ Ex( f (X t), t , T0), x . 0,

Vq f (x) ¼
ð1

0

e�qt Pt f (x)dt, x . 0,

for non-negative or bounded measurable functions f . It is customary to refer to (X , T0) as

the minimal process.

Given that the preceding construction enables us to describe the behaviour of the self-

similar Markov process X until the first time it hits 0, Lamperti (1972) raised the following

question: what are the self-similar Markov processes ~XX on [0, 1[ which behave like

(X , T0) up to the time ~TT0? Lamperti solved this problem in the case where the minimal

process is a Brownian motion killed at 0. Then Vuolle-Apiala (1994) tackled this problem
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using excursion theory for Markov processes and assuming that the following hypotheses

hold: there exists k . 0 such that

(H1a) the limit

lim
x!0

Ex(1 � e�T0 )

xk

exists and is strictly positive, and

(H1b) the limit

lim
x!0

Vq f (x)

xk

exists for all f 2 CK ]0, 1[ and is strictly positive for some such functions,

with CK ]0, 1[ ¼ f f : R ! R, continuous and with compact support on ]0, 1[g. The main

result of Vuolle-Apiala (1994) is the existence of a unique entrance law (ns, s . 0) such that

lim
s!0

ns Bc ¼ 0,

for every neighourhood B of 0 and ð1
0

e�sns1ds ¼ 1:

This entrance law is determined by its q-potential via the formulað1
0

e�qsns f ds ¼ lim
x!0

Vq f (x)

Ex(1 � e�T0 )
, q . 0, (3)

for f 2 CK ]0, 1[. Then, using the results of Blumenthal (1983), Vuolle-Apiala proved that

associated with the entrance law (ns, s . 0) there exists a unique recurrent Markov process
~XX having scaling property (1) which is an extension of the minimal process (X , T0), hence,
~XX killed at time ~TT0 is equivalent to (X , T0) and 0 is a recurrent regular state for ~XX , that is,

~PPx(T0 , 1) ¼ 1, 8x . 0, ~PP0(T0 ¼ 0) ¼ 1,

with ~PP the law on Dþ of ~XX . Furthermore, the results of Blumenthal (1983) ensure that there

exists a unique excursion measure, say n, on (Dþ, G1) compatible with the semigroup Pt

such that its associated entrance law is (ns, s . 0); the property lims!0ns Bc ¼ 0, for any B-

neighourhood of 0, is equivalent to n(X 0þ . 0) ¼ 0, that is, the process leaves 0 continuously

under n. Then the excursion measure n is the unique excursion measure having the properties

n(X 0þ . 0) ¼ 0 and n(1 � e�T0 ) ¼ 1. See Section 2.1 for the definitions.

The first aim of this paper is to provide a more explicit description of the excursion

measure n and its associated entrance law (ns, s . 0). To this end, we shall mimic a well-

known construction of the Brownian excursion measure via the Bessel(3) process that we

next sketch for ease of reference. Let P (R) be a probability measure on (Dþ, G1) under

which the coordinate process is a Brownian motion killed at 0 (a Bessel(3) process). The

probability measure R appears as the law of the Brownian motion conditioned never to hit

0. More precisely, for u . 0, x . 0,
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lim
t!1

Px(AjT0 . t) ¼ Rx(A),

for any A 2 Gu, (e.g. McKean 1963). Moreover, the function h(x) ¼ x�1, x . 0, is excessive

for the semigroup of the Bessel(3) process and its h-transform is the semigroup of the

Brownian motion killed at 0. Let n be the h-transform of R0 via the function h(x) ¼ x�1, that

is, n is the unique measure on (Dþ, G1) with support in fT0 . 0g such that under n the

coordinate process is Markovian with semigroup that of Brownian motion killed at 0, and for

every G t-stopping time T and any positive GT -measurable functional FT ,

n(FT , T , T0) ¼ R0

FT

X T

� �
:

Then the measure n is a multiple of Itô’s excursion measure for Brownian motion (Imhof

1984, Section 4).

In order to carry out this programme we will make the following hypotheses on the Lévy

process �:

(H2a) � is not arithmetic, that is, the state space is not a subgroup of kZ for any real

number k.

(H2b) There exists Ł . 0 such that E(eŁ�1 , 1 , �) ¼ 1.

(H2c) E(�þ1 eŁ�1 , 1 , �) , 1, with aþ ¼ a _ 0.

Condition (H2c) can be stated in terms of the Lévy measure — of � as

(H2c9)
Ð
fx.1g xeŁx—(dx) , 1

(cf. Sato 1999, theorem 25.3). Such hypotheses are satisfied by a wide class of Lévy

processes, in particular by those associated, via Lamperti’s transformation, with self-similar

diffusions and stable processes. We will refer to these hypotheses as (H2).

Condition (H2b) is called Cramér’s condition for the Lévy process � and, in the case

k ¼ 0, forces � to drift to �1 or equivalently E(�1) , 0. Thus if the (H2) hypotheses hold

we will refer to the case where k ¼ 0 and � drifts to �1 as the case k ¼ 0. Cramér’s

condition enables us to construct a law P\ on D, such that under P\ the coordinate process

�\ is a Lévy process that drifts to 1 and P\jD t
¼ eŁ� tPjD t

. Then we will show that the self-

similar Markov process X \ associated with the Lévy process �\ plays the rôle of a Bessel(3)

process in our construction of the excursion measure n.

The rest of this paper is organized as follows. In Section 2.1 we recall Itô’s programme

as established by Blumenthal (1983). The excursion measure n that interests us is the

unique (up to a multiplicative constant) excursion measure having the property

n(X0þ . 0) ¼ 0. Nevertheless, this is not the only excursion measure compatible with the

semigroup of the minimal process, which is why in Section 2.2 we review some properties

that should be satisfied by any excursion measure corresponding to a self-similar extension

of the minimal process. There we also obtain necessary and sufficient conditions for the

existence of an excursion measure n j such that n j(X 0þ ¼ 0) ¼ 0, which are valid for any

self-similar Markov process having 0 as a trap. In Section 2.3 we construct a self-similar

Markov process X \ which is related to (X , T0) in an analogous way to that in which the

Bessel(3) process is related to Brownian motion killed at 0. We also prove that conditions

(H1) are satisfied under hypotheses (H2), give a more explicit expression for the limit in

equation (3) and show that hypotheses (H1) imply the conditions (H2b) and (H2c). Next, in

474 V. Rivero



Section 3 we give our main description of the excursion measure n and give an answer to

the question raised by Lamperti that can be sketched as follows: given a Lévy process �
satisfying (H2), then an Æ-self-similar Markov process X associated with � admits a

recurrent extension that leaves 0 continuously a.s. if and only if 0 , ÆŁ , 1. The purpose

of Section 4 is to give an alternative description of the measure n by determining the law of

the excursion process conditioned by its length (for Brownian motion this corresponds to

the description of the Itô excursion measure via the law of a Bessel(3) bridge). In Section 5

we study some duality relations for the minimal process and in particular we determine the

image under time reversal of n. Finally, in Appendix A we establish that the extensions of

any two minimal processes which are in weak duality, are still in weak duality as might be

expected.

Sometimes it will be necessary to distinguish between the case k . 0 and k ¼ 0 in order

to obtain our results. However, given that the methods are quite similar in both cases we

have chosen to only present the complete proofs when k ¼ 0. We will indicate the places

where changes are necessary to obtain the results in the case k . 0.

Note, finally, that the development of this work uses Doob’s theory of h-transforms (see

Sharpe 1988) without further reference.

2. Preliminaries and first results

This section contains several parts. In Section 2.1, we recall Itô’s programme and the results

in Blumenthal (1983). The purpose of Section 2.2 is to study the excursion measures

compatible with the semigroup of the minimal process (X , T0). Finally, in Section 2.3 we

establish the existence of a self-similar Markov process X \ which bears the same relation to

the minimal process (X , T0) as the Bessel(3) process does to Brownian motion killed at 0.

The results in Sections 2.1 and 2.2 do not require (H2).

2.1. Some general facts on recurrent extensions of Markov processes

A measure n on (Dþ, G1) having infinite mass is called a pseudo-excursion measure

compatible with the semigroup Pt if the following conditions are satisfied:

(i) n is carried by

fø 2 Dþ j 0 , T0 , 1 and Xt ¼ 0, 8t > 0g;

(ii) for every bounded G1-measurable H and each t . 0 and ¸ 2 G t,

n(H � Łt, ¸ \ ft , T0g) ¼ n(EX t
(H), ¸ \ ft , T0g),

where Łt denotes the shift operator.

If, moreover,

(iii) n(1 � e�T0 ) , 1,
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we will say that n is an excursion measure. A normalized excursion measure n is an

excursion measure n such that n(1 � e�T0 ) ¼ 1. The role played by condition (iii) will be

explained below.

The entrance law associated with a pseudo-excursion measure n is defined by

ns(dy) :¼ n(X s 2 dy, s , T0), s . 0:

A partial converse holds: given an entrance law (ns, s . 0) such thatð1
0

(1 � e�s)dns1 , 1,

there exists a unique excursion measure n such that its associated entrance law is (ns, s . 0),

(see Blumenthal 1983).

It is well known in the theory of Markov processes that one way to construct recurrent

extensions of a Markov process is Itô’s programme or pathwise approach that can be

described as follows. Assume that there exists an excursion measure n compatible with the

semigroup of the minimal process Pt. Realize a Poisson point process ˜ ¼ (˜s, s . 0) on

Dþ with characteristic measure n. Thus each atom ˜s is a path and T0(˜s) denotes its

lifetime:

T0(˜s) ¼ infft . 0 : ˜s(t) ¼ 0g:

Set

� t ¼
X
s< t

T0(˜s), t > 0:

Since n(1 � e�T0 ) , 1, � t , 1 a.s. for every t . 0. It follows that the process

� ¼ (� t, t > 0) is an increasing cadlag process with stationary and independent increments,

that is, a subordinator. Its law is characterized by its Laplace exponent �, defined by

E(e�º� 1 ) ¼ e��(º), º . 0,

and �(º) can be expressed thanks to the Lévy–Khinchine formula as

�(º) ¼
ð

]0,1[

(1 � e�ºs)�(ds),

with � a measure such that
Ð

]0,1[
(s ^ 1)�(ds) , 1, called the Lévy measure of � (see Bertoin

1996, Chapter 3, for background). An application of the exponential formula for Poisson

point processes gives

E(e�º� 1 ) ¼ e�n(1�e�ºT0 ), º . 0,

that is, �(º) ¼ n(1 � e�ºT0 ) and the tail of the Lévy measure is given by

�[s, 1[ ¼ n(s , T0) ¼ ns1, s . 0:

Observe that if we assume �(1) ¼ n(1 � e�T0 ) ¼ 1 then � is uniquely determined. Since n

has infinite mass, � t is strictly increasing in t. Let Lt be the local time at 0, that is, the

continuous inverse of � :
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Lt ¼ inffr . 0 : � r . tg ¼ inffr . 0 : � r > tg:

Define a process ( ~XX t, t > 0) as follows. For t > 0, let Lt ¼ s; then � s� < t < � s. Set

~XX t ¼
˜s(t � � s�), if � s� , � s

0, if � s� ¼ � s or s ¼ 0:

(
(4)

That the process so constructed is a Markov process has been established in full generality by

Salisbury (1986a; 1986b) and under some regularity hypotheses on the semigroup of the

minimal process by Blumenthal (1983). See also Rogers (1983) for its analytical counterpart.

In our setting, the hypotheses of Blumenthal (1983) are satisfied, as is shown by the following

lemma.

Lemma 1. Let C0]0, 1[, be the space of continuous functions on ]0, 1[ vanishing at 0 and

1.

(i) If f 2 C0]0, 1[, then Pt f 2 C0]0, 1[ and Pt f ! f uniformly as t ! 0.

(ii) Ex(e�qT0 ) is continuous in x for each q . 0 and

lim
x!0

Ex(e�T0 ) ¼ 1 and lim
x!1

Ex(e�T0 ) ¼ 0:

This lemma is an easy consequence of Lamperti’s transformation. Alternatively, a proof can

be found in Vuolle-Apiala (1994, pp. 549–550).

Therefore we have from Blumenthal (1983) that ~XX is a Markov process with Feller

semigroup and its resolvent fUq, q . 0g satisfies

Uq f (x) ¼ Vq f (x) þ Ex(e�qT0 )Uq f (0), x . 0,

for f 2 Cb(Rþ) ¼ f f : Rþ ! R, continuous and bounded}. That is, ~XX is an extension of the

minimal process. Furthermore, if fX 9t, t > 0g is a Markov process extending the minimal one

with Itô’s excursion measure n and local time at 0, say fL9t, t > 0g, such that

E9

ð1
0

e�sdL9s

� �
¼ 1,

where E9 is the law of X 9. Then the process ~XX and X 9 are equivalent and Itô’s excursion

measure for ~XX is n.

Thus, the results in Blumenthal (1983) establish a one-to-one correspondence between

excursion measures and recurrent extensions of Markov processes. Given an excursion

measure n, we will say that the associated extension of the minimal process leaves 0

continuously a.s. if n(X0þ . 0) ¼ 0 or, equivalently, in terms of its entrance law,

lims!0 ns(Bc) ¼ 0 for every neighourhood B of 0, (Blumenthal 1983); if n is such that

n(X0þ ¼ 0) ¼ 0, we will say that the extension leaves 0 by jumps a.s. The latter condition

on n is equivalent to the existence of a jumping-in measure �, that is, � is a � –finite

measure on ]0, 1[ such that the entrance law associated with n can be expressed as
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ns f ¼ n( f (X s), s , T0) ¼
ð

]0,1[

�(dx)Ps f (x), s . 0,

for every f 2 Cb(Rþ) (Meyer 1971).

Finally, observe that if n is a pseudo-excursion measure that does not satisfy condition

(iii), we can still realize a Poisson point process of excursions on (Dþ, G1) with

characteristic measure n but we cannot form a process extending the minimal one by

sticking together the excursions because the sum of lengths
P

s< tT0(˜s) is infinite P-a.s.

for every t . 0.

2.2. Some properties of excursion measures for self-similar Markov

process

Next, we deduce necessary and sufficient conditions that must be satisfied by an excursion

measure in order that the associated recurrent extension of the minimal process be self-

similar. For c 2 R, let Hc be the dilatation Hc f (x) ¼ f (cx).

Lemma 2. Let n be an excursion measure and ~XX the associated recurrent extension of the

minimal process. The following are equivalent:

(i) The process ~XX has the scaling property.

(ii) There exists ª 2 ]0, 1[ such that, for any c . 0,

n

ðT0

0

e�qs f (X s)ds

� �
¼ c(1�ª)=Æn

ðT0

0

e�(qc1=Æ s) Hc f (X s)ds

� �
,

for f 2 Cb(Rþ).

(iii) There exists ª 2 ]0, 1[ such that, for any c . 0,

ns f ¼ c�ª=Æns=c1=Æ Hc f , for all s . 0,

for f 2 Cb(Rþ).

Remark. If conditions (i)–(iii) in the preceding lemma hold, the subordinator � which is the

inverse local time of ~XX is a stable subordinator of parameter ª, with ª determined by

condition (ii) or (iii).

Proof. (ii) () (iii) is straightforward.

(i) ) (ii). Suppose that there exists an excursion measure n such that the associated

recurrent extension ~XX has scaling property (1). Let M be the random set of zeros of the

process ~XX , that is, M ¼ ft > 0j ~XX (t) ¼ 0g. By construction M is the closed range of the

subordinator � ¼ (� t, t > 0), that is, M is a regenerative set. The recurrence of ~XX implies

that M is unbounded a.s. By the scaling property for ~XX , we have that

M¼d cM, for each c . 0,
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that is, M is self-similar. Thus the subordinator should have the scaling property and since

the only Lévy processes that have the scaling property are the stable processes it follows that

� is a stable subordinator of parameter ª for some ª 2 ]0, 1[ or, in terms of its Laplace

exponent, �(º) ¼ n(1 � e�ºT0 ) ¼ ºª, º . 0. Recall that the scaling property for the extension

can be stated in terms of its resolvent by saying that, for any c . 0,

Uq f (x) ¼ c1=ÆUqc1=Æ Hc f (x=c), for all x > 0, (5)

for f 2 Cb(Rþ). Using the compensation formula for Poisson point processes, we obtain that

Uq f (0) ¼
n(
Ð T0

0
e�qs f (X s)ds)

n(1 � e�qT0 )
, (6)

From equation (5) we have that the measure n should be such that

n(
Ð T0

0
e�qs f (X s)ds)

n(1 � e�qT0 )
¼ c1=Æ n(

Ð T0

0
e�qc1=Æ s Hc f (X s)ds)

n(1 � e�qc1=ÆT0 )
,

and therefore we conclude that

n

ðT0

0

e�qs f (X s)ds

� �
¼ c(1�ª)=Æn

ðT0

0

e�(qc1=Æ s) Hc f (X s)ds

� �
:

(ii) ) (i). The scaling property of ~XX is obtained by means of (5). In fact, the only thing

that needs to be checked is that equation (5) holds for x ¼ 0, since we have the identity

Uq f (x) ¼ Vq f (x) þ Ex(e�qT0 )Uq f (0), x . 0,

and the scaling property of the minimal process stated in terms of its resolvent Vq, that is,

Vq f (x) ¼ c1=ÆVqc1=Æ Hc f (x=c), x . 0, c . 0, q . 0:

Indeed, by construction it follows that formula (6) holds and hypothesis (ii) implies that

n(1 � e�qT0 ) ¼ qª, q . 0; the conclusion is immediate. h

In the following lemma we give a description of the sojourn measure of ~XX and a

necessary condition for the existence of a excursion measure n such that one of the

conditions in Lemma 2 holds.

Lemma 3. Let n be a normalized excursion measure and ~XX the associated extension of the

minimal process (X , T0). Assume that one of the conditions (i)–(iii) in Lemma 2 holds. Then

n

ðT0

0

1fX s2d ygds

� �
¼ CÆ,ª y(1�Æ�ª)=Æ dy, y . 0,

with ª determined by (ii) of Lemma 2 and CÆ,ª 2 ]0, 1[ a constant. As a consequence,

E(I�(1�ª)) , 1 and CÆ,ª ¼ (ÆE(I�(1�ª))ˆ(1 � ª))�1, where I denotes the exponential

functional (2).
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Proof. Recall that the sojourn measure

n

ðT0

0

1fX s2d ygds

� �
¼

ð1
0

ns(dy)ds

is a � -finite measure on ]0, 1[ and is the unique excessive measure for the semigroup of the

process ~XX (Dellacherie et al. 1992, XIX.46). Next, using result (iii) in Lemma 2 and Fubini’s

theorem, we obtain the following representation of the sojourn measure, for f > 0

measurable: ð1
0

ns f ds ¼
ð1

0

s�ªn1(HsÆ f )ds

¼
ð

n1(dz)

ð1
0

s�ª f (sÆz)ds

¼ CÆ,ª

ð1
0

u(1�Æ�ª)=Æ f (u)du,

with 0 , CÆ,ª ¼ Æ�1
Ð

n1(dz)z�(1�ª)=Æ , 1. This proves the first part of the lemma.

We now prove that E(I�(1�ª)) , 1. On the one hand, the function j(x) ¼ Ex(e�T0 ) is

integrable with respect to the sojourn measure. To see this, use the Markov property under

n to obtain

n

ðT0

0

j(X s)ds

� �
¼

ð1
0

n(j(X s), s , T0)ds

¼
ð1

0

n(e�T0 � Łs, s , T0)ds

¼
ð1

0

n(e�(T0�s), s , T0)ds

¼ n(1 � e�T0 ) ¼ 1:

On the other hand, using the representation of the sojourn measure, Fubini’s theorem and the

scaling property, we have that

CÆ,ª

ð1
0

E y(e�T0 )y(1�Æ�ª)=Ædy ¼ CÆ,ª

ð1
0

E(e� y1=Æ I )y(1�Æ�ª)=Ædy

¼ CÆ,ªÆE(I�(1�ª))ˆ(1 � ª):

Therefore, E(I�(1�ª)) , 1 and CÆ,ª ¼ (ÆE(I�(1�ª))ˆ(1 � ª))�1. h

We next study the extensions ~XX that leave 0 a.s. by jumps. Using only scaling property

(1) it can be verified that the only possible jumping-in measures such that the associated

excursion measure satisfies (ii) in Lemma 2 are of the type

�(dx) ¼ bÆ,�x�(1þ�)dx, x . 0, 0 , Æ� , 1,
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with a constant bÆ,� . 0, depending on Æ and �, (Vuolle-Apiala 1994). This having been said,

we can state an elementary but satisfactory result on the existence of extensions of the

minimal process that leave 0 by jumps a.s.

Proposition 1. Let � 2 ]0, 1=Æ[. The following are equivalent:

(i) E(IÆ�) , 1.

(ii) The pseudo-excursion measure n j ¼ P�, based on the jumping-in measure

�(dx) ¼ x�(1þ�)dx, x . 0, is an excursion measure.

(iii) The minimal process (X , T0) admits an extension ~XX , that is a self-similar recurrent

Markov process, and leaves 0 by jumps a.s. according to the jumping-in measure

�(dx) ¼ bÆ,�x�(1þ�)dx, with bÆ,� ¼ �=E(IÆ�)ˆ(1 � Æ�).

If one of these conditions holds then ª in (ii) in Lemma 2 is equal to Æ�.

Condition (i) in Proposition 1 is easily verified under weak technical assumptions. That is

to say, if we assume (H2), the aforementioned condition is verified for every

� 2 ]0, (1=Æ) ^ Ł[; this will be deduced from Lemma 4 below. On the other hand, the

condition is verified in other settings, as can be seen in the following example.

Example 1 Generalized self-similar sawtooth processes. Let Æ . 0, k ¼ 0, ~�� be a

subordinator such that E(~��1) , 1, and X the Æ-self-similar process associated with the

Lévy process � ¼ �~�� . Then � is a Lévy process with infinite lifetime that drifts to �1, X

has a finite lifetime T0 and X decreases from its starting point until the time T0, when it is

absorbed at 0. Furthermore, it was proved by Carmona et al. (1997) that the Lévy exponential

functional I ¼
Ð1

0
expf�~�� s=Ægds has finite integral moments of all orders. It follows that

condition (i) in Proposition 1 is satisfied by every � 2 ]0, 1=Æ[. Thus for each � 2 ]0, 1=Æ[

the Æ-self-similar extension ~XX that leaves 0 by jumps according to the jumping-in measure in

(iii) of Proposition 1 is a process having sample paths that looks like a saw with ‘rough’

teeth. These are all the possible extensions of X , that is, it is impossible to construct an

excursion measure such that its associated extension of (X , T0) leaves 0 continuously a.s.,

since we know that the process X decreases to 0.

Proof of Proposition 1. Let �(dx) ¼ x�(1þ�)dx, x . 0, and n j be the pseudo-excursion

measure n j ¼ P�. By definition, the entrance law associated with n j is

n j
s f ¼

ð1
0

dx x�(1þ�) Ps f (x), s . 0:

Thus, for n j to be an excursion measure, the only condition it needs to satisfy is

n j(1 � e�T0 ) , 1. This follows from the elementary calculation
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ð1
0

dx x�(1þ�)Ex(1 � e�T0 ) ¼
ð1

0

dx x�(1þ�)E(1 � e�x1=Æ I )

¼ ÆE

ð
dy y�Æ��1(1 � e� yI )

� �

¼ E(IÆ�)
ˆ(1 � Æ�)

�
:

That is, n j(1 � e�T0 ) , 1 if and only if E(IÆ�) , 1, which proves the equivalence between

the assertions in (i) and (ii). If (ii) holds it follows from the results in Blumenthal (1983) and

Lemma 2 that associated with the normalized excursion measure n j9 ¼ bÆ,�P
� there exists a

unique extension of the minimal process (X , T0) which is a self-similar Markov process and

which leaves 0 by jumps according to the jumping-in measure bÆ,�x�(1þ�)dx, x . 0, which

establishes (iii). Conversely, if (iii) holds the Itô excursion measure of ~XX is n j9 ¼ bÆ,�P
� and

the statement in (ii) follows. h

2.3. The process X \ analogous to the Bessel(3) process

Here we shall establish the existence of a self-similar Markov process X \ that can be

viewed as the self-similar Markov process (X , T0) conditioned never to hit 0. In the case

where (X , T0) is a Brownian motion killed at 0, X \ corresponds to the Bessel(3) process.

To this end, we next recall some facts on Lévy processes and density transformations and

deduce some consequences for self-similar Markov processes. We henceforth assume (H2).

The law of a Lévy process � obtained by killing at a rate k is characterized by a function

�: R ! C defined by the relation

E(eiu�1 , 1 , �) ¼ expf��(u)g, u 2 R:

The function � is called the characteristic exponent of the Lévy process � and can be

expressed thanks to the Lévy–Khinchine formula as

�(u) ¼ k � iau þ � 2u2

2
þ
ð
R

(1 � eiux þ iux1fjxj,1g)—(dx),

where — is a measure on Rnf0g such that
Ð

(jxj2 ^ 1)—(dx) , 1. The measure — is called

the Lévy measure, � 2 the Gaussian coefficient and k the killing rate. Conditions (H2b) and

(H2c) imply that the Lévy exponent of � admits an analytic extension to the complex strip

I(z) 2 [�Ł, 0]. Thus we can define a function ł : [0, Ł] ! R by

E(eº�1 , 1 , �) ¼ eł(º) and ł(º) ¼ ��(�iº), 0 < º < Ł:

Holder’s inequality implies that ł is a convex function and that Ł is the unique solution to

the equation ł(º) ¼ 0 for º . 0. This happens if and only if there exists a Ł . 0 such that

k ¼ aŁþ � 2Ł2=2 þ
ð
R

(eŁx � 1 � Łx1fjxj,1g)—(dx):
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Furthermore, the function h(x) ¼ eŁx is invariant for the semigroup of �. Let P\ be the h-

transform of P via the invariant function h(x) ¼ eŁx. That is, the measure P\ is the unique

measure on (D, D) such that, for every finite D t-stopping time T and each A 2 DT ,

P\(A) ¼ P(eŁ�T A \ fT , �g):

Under P\ the process (�\t, t > 0) is a Lévy process with infinite lifetime, characteristic

exponent

�\(u) ¼ �(u � iŁ), u 2 R,

and drifts to 1; more precisely,

0 , m\ :¼ E\(�1) ¼ ł9(Ł�) , 1:

For a proof of these facts and more about this change of measure, see Sato (1999, Section

33).

Let P\
x denote the law on Dþ of the self-similar Markov process starting at x . 0 and

associated with the Lévy process �\ via Lamperti’s transformation. In what follows it will

be implicit that the superscript \ refers to the measure P\ or P\. We now establish a relation

between the probability measures P and P\ analogous to that between the law of a

Brownian motion killed at 0 and the law of a Bessel(3) process (McKean 1963). Informally,

the law P\
x can be interpreted as the law under Px of X conditioned never to hit 0.

Proposition 2. (i) Let x . 0 be arbitrary. Then we have that P\
x is the unique measure such

that, for every G t-stopping time T, we have

P\
x(A) ¼ x�ŁPx(AX Ł

T , T , T0),

for any A 2 GT. In particular, the function h� : [0, 1[ ! [0, 1[ defined by h�(x) ¼ xŁ is

invariant for the semigroup Pt.

(ii) For every x . 0 and t . 0, we have

P\
x(A) ¼ lim

s!1
Px(AjT0 . s),

for any A 2 G t.

The proof of (i) in Proposition 2 is a straightforward consequence of the fact that P\ is

the h-transform of P and that for every G t-stopping time T we have that �(T ) is a D t-

stopping time. To prove (ii) in Proposition 2 we need the following lemma that provides us

with a tail estimate for the law of the Lévy exponential functional I associated with � as

defined in (2).

Lemma 4. Under conditions (H2) we have that

lim
t!1

tÆŁP(I . t) ¼ C,

where
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0 , C ¼ Æ

m\

ð
tÆŁ�1(P(I . t) � P(e�91 I . t))dt , 1,

with �91 ¼
d
�1 and independent of I. If 0 , ÆŁ , 1, then

C ¼ Æ

m\
E(I�(1�ÆŁ)):

Two proofs of this result have been given in a slightly restrictive setting by Mejane

(2002). However, one of these proofs can be extended to our case and in fact it is an easy

consequence of a result on random equations originally due to Kesten (1973) who in turn

uses a difficult result on random matrices. A simpler proof of Kesten’s result was given by

Goldie (1991).

Sketch of proof of Lemma 4. We study first the case k ¼ 0. In this case � ¼ 1 a.s. and

I ¼
Ð1

0
expf�s=Ægds. It is straightforward that the Lévy exponential functional I satisfies in

law the equation

I ¼d
ð1

0

e�s=Æds þ e�1=Æ I9 ¼ Q þ MI 9,

with I9 the Lévy exponential functional associated with �9 ¼ f�9t ¼ �1þ t � �1, t > 0g, a Lévy

process independent of D1 and with the same distribution as �. Thus, according to Kesten

(1973) and Goldie (1991), if the conditions (i)–(iv) below are satisfied then there exists a

strictly positive constant C such that

lim
t!1

tÆŁP(I . t) ¼ C:

The hypotheses of Kesten’s theorem are:

(i) M is not arithmetic.

(ii) E(MÆŁ) ¼ 1.

(iii) E(MÆŁ ln þ(M)) , 1.

(iv) E(QÆŁ) , 1.

Assuming conditions (H2), the only thing that needs to be verified is that (iv) holds. Indeed,

E(QÆŁ) < E(supfeŁ�s : s 2 [0, 1]g)

<
e

e � 1
(1 þ ŁsupfE(�þs eŁ�s ) : s 2 [0, 1]g) , 1:

The second inequality is obtained using the fact that (eŁ� t , t > 0) is a positive martingale and

Doob’s inequality. The first formula for the value of the limit, C ¼ lim t!1 tÆŁP(I . t), is a

consequence of Goldie (1991, Lemma 2.2 and Theorem 4.1). That the latter limit exists

implies that E(I a) , 1, for all 0 , a , ÆŁ. Now, to obtain the expression for C when

0 , ÆŁ , 1, we will use the following formula for the moments of I :
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E(I a) ¼ a

�ł(a=Æ)
E(I a�1), for 0 , a , ÆŁ, (7)

which can be proved with arguments similar to those given by Bertoin and Yor (2002b,

Proposition 2). We will also use the well-known identity

ºa ¼ a

ˆ(1 � a)

ð1
0

(1 � e�ºx)x�(1þa)dx, º . 0, a 2 ]0, 1[:

On the one hand, since 0 , ÆŁ , 1, we have from Bingham et al. (1989, Corollary 8.1.7)

that

lim
s!0

E(1 � e�s I )

sÆŁ
¼ Cˆ(1 � ÆŁ):

On the other hand, by equation (7) we have

E(I�(1�ÆŁ))ÆŁ ¼ lim
a!ÆŁ

E(I a�1)a

¼ ÆŁ

ˆ(1 � ÆŁ)
lim
a"ÆŁ

(�ł(a=Æ))

ð1
0

s�(1þa)E(1 � e�s I )ds

¼ CÆŁ lim
a"ÆŁ

�ł(a=Æ)

ÆŁ� a

¼ CŁł9(Ł�), (8)

which proves the claimed result in the case k ¼ 0. In the case k . 0, the Lévy exponential

functional I has the same law as Ae ¼
Ð e

0
expf���s=Ægds, with ��� the unkilled Lévy process and

e an exponential random variable with parameter k and independent of ���. Using the

memorylessness of the exponential law we can easily verify that Ae satisfies the equation in

law Ae ¼
d

Q þ M A9e9 with Q ¼
Ð 1

0
exp f���sg1fs,egds, M ¼ e

���1=Æ1f1,eg and A9e9 with the same

law as Ae and independent of (Q, M) and e. Next we verify, in the same way as in the case

k ¼ 0, that the random variables (Q, M) satisfy hypotheses (i)–(iv) of Kesten’s theorem.

Finally, to estimate the value of the constant C when 0 , ÆŁ , 1, we use an identity similar

to (7) for Ae,

�EE(Aa
e) ¼ a

�ł(a=Æ)
�EE(Aa�1

e ), 0 , a , ÆŁ,

which is obtained in Carmona et al. (1997, Proposition 3.1(i)). h

The proof of Proposition 2 follows by standard arguments.

Proof of (ii) in Proposition 2. Recall that the law of T0 under Px is that of x1=Æ I under P.

Thus we deduce from Lemma 4 that, for every x . 0,

lim
s!1

sÆŁPx(T0 . s) ¼ xŁC:

Using the Markov property and a dominated convergence argument, we obtain that
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Px(AjT0 . s) ¼ Px(A1f t,T0gPX t
(T0 . s � t)=Px(T0 . s))

!
s!1

x�ŁPx(AX Ł
t 1f t,T0g):

h

By Proposition 2, the semigroup of X under P\
x is given by

P\
s f (x) :¼ E\x( f (X s)) ¼ x�ŁEx( f (X s)X Ł

s 1fs,T0g), for x . 0,

with f a positive or bounded measurable function. Let J be the Lévy exponential functional

associated with the process �\, that is,

J ¼
ð1

0

exp f��\s=Ægds, (9)

which is finite P\-a.s. since �\ drifts to 1. Now, since under P\ the process (�\s, s > 0) is a

non-arithmetic Lévy process with 0 , m\ , 1, the measure P\
x converges in the sense of

finite-dimensional distributions to a probability measure P
\
0þ as x ! 0þ (Bertoin and Yor

2002a, Theorem 1). Moreover, the law of X s under P
\
0þ is an entrance law for the semigroup

P
\
t and is related to the law of the Lévy exponential functional J under P\ by the formula

E
\
0þ ( f (X 1=Æ

s )) ¼ Æ

m\
E\( f (s=J )=J ), s . 0, (10)

for f measurable and positive. Recall also that m\=Æ ¼ E\(1=J ) , 1. See Bertoin and Yor

(2002a) for a proof of these facts.

The next result states that under (H2) conditions (H1) hold, and gives a first description

of the entrance law (ns, s . 0).

Proposition 3. Assume hypotheses (H2).

(i) If 0 , ÆŁ , 1, then hypotheses (H1) hold for k ¼ Ł. Furthermore, the q-potential of

the entrance law (ns, s . 0), admits the representationð1
0

ds e�qsns f ¼ ªÆ,Ł

ð1
0

f (y)E\(expf�qy1=ÆJg)y(1�Æ�ÆŁ)=Æ dy,

where

ªÆ,Ł ¼ ÆE(I�(1�ÆŁ))ˆ(1 � ÆŁ)
� ��1

,

for every f 2 Cb(Rþ).

(ii) If ÆŁ > 1, then either (H1a) or (H1b) fails to hold.

Proof. (i) That (H1a) holds is easily proved. Indeed, since 0 , ÆŁ , 1 we have from

Bingham et al. (1989, Corollary 8.1.7) that the result in Lemma 4 is equivalent to
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lim
x!0

Ex(1 � e�T0 )

xŁ
¼ lim

x!0

E(1 � e�x1=Æ I )

xŁ
¼ ˆ(1 � ÆŁ)

ÆE(I�(1�ÆŁ))

m\
: (11)

To prove (H1b) we recall the identity,

Vq f (x)

xŁ
¼ V \

q( f =h�)(x),

where V \
q is the resolvent of the semigroup P

\
t and h�(x) ¼ xŁ, x . 0. As has already been

pointed out, the results in Bertoin and Yor (2002a) are applicable in our setting to the self-

similar process X \. In particular, their formula (4) states that

lim
x!0

V \
q g(x) ¼ Æ

m\

ð1
0

g(yÆ)E\(e�q yJ )dy,

for every function g 2 Cb(Rþ). Therefore,

lim
x!0

Vq f (x)

xŁ
¼ lim

x!0
V \

q( f =h�)(x)

¼ Æ

m\

ð1
0

f (yÆ)y�ÆŁE\(e�q yJ )dy,

¼ 1

m\

ð1
0

f (y)E\(e�q y1=Æ J )y(1�Æ�ÆŁ)=Ædy (12)

for every f 2 CK ]0, 1[. Thus we have verified hypotheses (H1) and the expression for the q-

resolvent of the entrance law (ns, s . 0) follows from the identity (3) using the calculations

in equations (11) and (12).

(ii) If ÆŁ > 1, Fatou’s lemma and the scaling property imply

lim inf
x!0

Ex(1 � e�T0 )

xŁ
>

ð1
0

e�ss�ÆŁ lim inf
t!1

tÆŁP(I . t)
� �

ds ¼ 1:

But from the proof of (i) we know that the limit

lim
x!0

Vq f (x)

xŁ
, q . 0,

still exists and is not 0 for every non-negative function f 2 CK ]0, 1[ and, indeed, f . 0 in a

set of positive Lebesgue measure. As a consequence, even if there exists k , Ł, such that the

limit limx!0x�kEx(1 � e�T0 ), exists and is positive, the limit limx!0x�kVq f (x) is equal to

zero for every continuous function f with bounded support on ]0, 1[. h

Proposition 3 proves that hypotheses (H2) imply (H1). In the next proposition we

establish a converse.

Proposition 4. Assume that there exists a k . 0 such that hypotheses (H1) hold. Then

(i) 0 , Æk , 1,

(ii) (H2b) and (H2c) are satisfied with Ł ¼ k.
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Proof. To prove (i) we recall that under (H1) Vuolle-Apiala (1994, Theorem 2.1) proved that

the q-resolvent of the entrance law (ns, s . 0) is characterized by equation (3). Next, it is

easily verified using the self-similarity of the minimal process (X , T0) that, for every q . 0,

c . 0,

lim
x!0

Vq f (x)

Ex(1 � e�T0 )
¼ c(1�Æk)=Æ lim

x!0

Vqc1=Æ Hc f (x)

Ex(1 � e�T0 )
:

Then the excursion measure n is such that, for every c . 0,

n

ðT0

0

e�qs f (X s)ds

� �
¼ c(1�Æk)=Æn

ðT0

0

e�qc1=Æ s Hc f (X s)ds

� �
:

The latter fact implies that (ii) in Lemma 2 is satisfied with ª ¼ Æk and 0 , Æk , 1.

Next we prove (ii). We first prove that under (H1) the process (X k
t , t . 0) is a martingale

for Px, which implies Cramér’s condition (H2b). Indeed, since (H1a) holds we have that

lim
x!0

Ex(1 � e�T0 )

xk
¼ B 2]0, 1[,

and, given that 0 , Æk , 1, the existence of this limit is equivalent to the existence of the

limit

lim
s!1

sÆkPx(T0 . s) ¼ xkB=ˆ(1 � Æk):

This fact suffices to prove that, for every x . 0 and t . 0,

lim
s!1

Px(AjT0 . s) ¼ x�kPx(X k
t , A \ ft , T0g),

for any A 2 G t. To see this, just repeat the arguments in the proof of (ii) in Proposition 2. In

particular, we have that, for every x . 0 and t . 0, xk ¼ Ex(X k
t , t , T0). Using the Markov

property we obtain that, for every x . 0, under Px the process X k is a martingale and as a

consequence Cramér’s condition follows. Moreover, the Lévy process � associated with X via

Lamperti’s transformation has a characteristic exponent � that admits an analytic extension

to the complex strip I(z) 2 [�k, 0[ defined by ł(z) ¼ ��(�iz) (see the survey at the

beginning of this subsection). Now to prove that (H2c) is satisfied, we recall that under (H1)

we have that

lim
s!1

sÆkP(I . s) ¼ x�k lim
s!1

sÆkPx(T0 . s) ¼ B=ˆ(1 � Æk),

and that E(I�(1�Æk)) , 1, the latter being a consequence of Lemma 3. Repeating the

arguments in the calculation of the constant in the proof of Lemma 4, we obtain that

E(I�(1�Æk)) ¼ Bł9(Ł�)=ˆ(1 � Æk) , 1,

that is, the exponent ł of � has a left derivative at k which is equivalent to

E(�1ek�1 , 1 , �) , 1:

Using the elementary relation
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0 < (�1 expfk�1g)� ¼ ��1 expfk�1g ¼ ��1 expf�k��1 g < k�1

with a� ¼ (�a) _ 0, we obtain that 0 < E((�1ek�1 )�, 1 , �) , 1=k. Therefore,

E(�1ek�1 , 1 , �) , 1 if and only if E(�þ1 ek�1 , 1 , �) , 1, which concludes the proof. h

Remarks

1. If 0 , ÆŁ , 1 we have the equality

E(I�(1�ÆŁ)) ¼ E\(J�(1�ÆŁ)):

Indeed, straightforward calculations lead toð
e�sns1 ds ¼ ªÆ,Ł

ð1
0

E\(e� y1=Æ J )y(1�Æ�ÆŁ)=Æ dy ¼ E\(J�(1�ÆŁ))

E(I�(1�ÆŁ))
,

and comparing this with the fact that
Ð

e�sns1ds ¼ 1 gives the equality.

2. A consequence of Lemma 4 is that

E(I�Æ) , 1, for every 0 , � , Ł,

and that E(IÆŁ) ¼ 1. Then under (H2) any extension which leaves 0 by jumps a.s.

has a jumping-in measure �(dx) ¼ bÆ,�x�(1þ�)dx, x . 0, with 0 , � , Ł ^ 1=Æ and

bÆ,� as defined in Proposition 1.

3. Existence of recurrent extensions that leaves 0 continuously

We next study the excursion measure such that the related extension leaves 0 continuously.

To this end, we suppose throughout the rest of this section that hypotheses (H2) hold.

Theorem 1. There exists a pseudo-excursion measure n9 such that n9(X 0þ . 0) ¼ 0. Its

associated entrance law (n9s, s . 0) is given by

n9s f ¼ E
\
0þ( f (X s)X�Ł

s ), s . 0:

We have that n9 is an excursion measure if and only if 0 , ÆŁ , 1. Assume that this

condition holds and let

aÆ,Ł ¼ ÆE\(J�(1�ÆŁ))ˆ(1 � ÆŁ)=m\:

Then the measure (aÆ,Ł)�1n9, is the normalized excursion measure n.

Proof. We know from Proposition 2 that the function h(x) ¼ x�Ł is excessive for the

semigroup P
\
t and the corresponding h-transform is Pt. Let n9 be the h-transform of E

\
0þ via

the excessive function h(x) ¼ x�Ł, x . 0. That is, n9 is the unique measure in Dþ carried by

fT0 . 0g, such that under n9 the coordinate process is Markovian with semigroup Pt and for

every G t-stopping time T and any AT 2 GT,

n9(AT , T , T0) ¼ E
\
0þ(AT , X�Ł

T ):
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Therefore, n9 is a pseudo-excursion measure such that n9(X 0þ . 0) ¼ 0 and the entrance law

associated with n9 is defined by

n9s f :¼ n9( f (X s), s , T0) ¼ E
\
0þ ( f (X s)X�Ł

s ), s . 0, (13)

for f : Rþ ! Rþ measurable.

To prove the second assertion we have to specify when n9(1 � e�T0 ) is finite. Using

standard arguments, we obtain that

n9(1 � e�T0 ) ¼
ð1

0

ds e�sn9(T0 . s)

¼
ð1

0

ds e�sE
\
0þ(X�Ł

s )

¼
ÆE\(J�(1�ÆŁ))ˆ(1 � ÆŁ)=m\, if ÆŁ , 1,

1, if ÆŁ > 1;

(

the third equality is obtained from (10). If 0 , ÆŁ , 1, then E\(J�(1�ÆŁ)) , 1 since

E\(J�1) , 1. As a consequence, n9(1 � e�T0 ) , 1 if and only if 0 , ÆŁ , 1. If we assume

that 0 , ÆŁ , 1, it follows that the measure a�1
Æ,Łn9 is a normalized excursion measure

compatible with the semigroup Pt. Furthermore, it is straightforward to check that a�1
Æ,Łn9

satisfies condition (ii) in Lemma 2 for ª ¼ ÆŁ. The normalized excursion measure a�1
Æ,Łn9 is

equal to the measure n since this is the unique normalized excursion measure having the

property n(X0þ . 0) ¼ 0. h

A consequence of the Markov property is that under n9 the excursions leave 0

continuously and either hit 0 continuously or by a jump according to whether k ¼ 0 or

k . 0, that is,

n9(X 0þ . 0, X T0� . 0) ¼ 0 or n9(X 0þ . 0, X T0� ¼ 0) ¼ 0,

respectively.

In the following theorem we give a simple criterion to determine, in terms of the Lévy

process �, whether there exists a self-similar recurrent extension of (X , T0) that leaves 0

continuously. Furthermore, with this result we give a complete solution to the problem

posed by Lamperti since we have already established the existence of self-similar recurrent

extensions of the minimal process that leave 0 by jumps.

Theorem 2. (i) Assume 0 , ÆŁ , 1. The minimal process admits a unique self-similar

recurrent extension ~XX ¼ ( ~XX t, t > 0) that leaves 0 continuously a.s. The resolvent of ~XX is

determined by

Uq f (0) ¼ ªÆ,Ł

qÆŁ

ð1
0

f (y)E\(e�q y1=Æ J )y(1�Æ�ÆŁ)=Æ dy,

with ªÆ,Ł as defined in Proposition 3 and
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Uq f (x) ¼ Vq f (x) þ Ex(e�qT0 )Uq f (0), x . 0,

for f 2 Cb(Rþ). The resolvent Uq is Fellerian.

(ii) If ÆŁ > 1, there does not exist any self-similar recurrent extension that leaves 0

continuously.

Proof. To obtain (i) we use Lemma 1. This enables us to apply the results of Blumenthal

(1983) to ensure that associated with the excursion measure n, described in Theorem 1, there

exists a Markov process ~XX , having a Feller resolvent which is an extension of the minimal

process. The self-similarity of ~XX follows from Lemma 2. All that needs justifying is the

expression for the q-resolvent of the extension. Using the compensation formula for Poisson

point processes, we obtain that

Uq f (0) ¼ n

ðT0

0

e�qs f (X s)ds

� �
=n(1 � e�qT0 ),

for every f 2 Cb(Rþ). From Lemma 2 we deduce that n(1 � e�qT0 ) ¼ qÆŁ. The expression of

Uq f (0) is then obtained from Proposition 3.

The proof of (ii) is a straightforward consequence of Lemma 5 below. h

The next lemma states that if ÆŁ > 1, the only excursion measures compatible with

(X , T0) which satisfy (ii) in Lemma 2 are those associated with a jumping-in measure as in

(ii) in Proposition 1.

Lemma 5. Assume that ÆŁ > 1. If there exists a normalized excursion measure m compatible

with the minimal process such that conditions (ii) and (iii) in Lemma 2 are satisfied, then

m(X 0þ ¼ 0) ¼ 0.

Sketch of proof. We recall from the proof of Proposition 3 that if ÆŁ > 1 then we have that

lim inf
x!0

Ex(1 � e�T0 )

xŁ
¼ 1,

and that

lim
x!0

Vq f (x)

xŁ
, q . 0,

exists in R for every function f 2 CK]0, 1[. Therefore,

lim
x!0

Vq f (x)

Ex(1 � e�T0 )
¼ 0,

for every function f 2 CK]0, 1[. Then we may simply repeat the arguments in Vuolle-

Apiala (1994, Lemma 1.1) to prove that, for q . 0,

m

ðT0

0

e�qs f (X s)ds

� �
¼ b

ð1
0

Vq f (x)x�(1þ�)dx,
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for some � 2 ]0, 1=Æ[ and a constant b 2 ]0, 1[. The result follows. h

Corollary 1. Assume 0 , ÆŁ , 1.

(i) The law of T0 under n is

n(T0 2 ds) ¼ ÆŁ

ˆ(1 � ÆŁ)
s�(1þÆŁ)ds:

(ii) Under n the law of the height of the excursion, say H :¼ sup0< t<T0
X s, is given by

n(H . z) ¼ pÆ,Łz�Ł, z . 0,

with pÆ,Ł ¼ p(ÆŁE\(J�(1�ÆŁ))ˆ(1 � ÆŁ))�1 and p 2 ]0, 1] a constant that depends on

the law of �.

Proof. The result in (i) follows from the fact that the subordinator � which is the inverse

local time of ~XX is a stable subordinator of parameter ÆŁ; cf. Lemma 2.

The main ingredient in the proof of (ii) is that the tail distribution of the random variable

S� ¼ sup0,r,��r is such that

lim
s!1

eŁsP(S� . s) ¼ p=m\Ł,

for a constant p 2 ]0, 1]. This result was obtained by Bertoin and Doney (1994) in the case

k ¼ 0, but in fact their proof extends easily to the case k . 0. We deduce from this a tail

estimate for the behaviour of the supremum of the minimal process (X , T0) as the initial

point tends to 0. More precisely, defining S X
1 :¼ sup0<r,T0

X r,

lim
x!0

x�ŁPx(S X
1 . z) ¼ z�Ł( p=m\Ł), z . 0:

Let H t ¼ sup t<s,T0
X s, t . 0. We have that, for any z . 0,

lim
t!0þ

n(H t . z, t , T0) ¼ n(H . z),

and that for any E, 	 . 0, there exists a t0 . 0 such that

n(Xt 2 (E, 1), t , T0) < 	, 8t , t0:

Therefore,

n(X t 2 ]0, E[, H t . z, t , T0) < n(H t . z, t , T0) < 	þ n(Xt 2 ]0, E[, H t . z, t , T0),

and by the Markov property under n, we obtain that

n(X t 2 ]0, E[, H t . z, t , T0) ¼ (aÆ,Ł)�1E
\
0þ(Xt 2 ]0, E[, X�Ł

t EX t
(S X

1 . z))

� pÆ,Łz�ŁE
\
0þ(X t 2 ]0, E[)

� pÆ,Łz�Ł,

for t small enough. Thus,
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pÆ,Łz�Ł < n(H . z) < 	þ pÆ,Łz�Ł,

and the result follows by letting 	 ! 0. h

If 0 , ÆŁ , 1, it was shown by Vuolle-Apiala that given an excursion measure, the

extension ~XX associated with this excursion measure leaves 0 either continuously or by

jumps. This fact is natural when we observe that the excursions that leave 0 continuously

have different duration than those leaving 0 by jumps. Indeed, the duration of the former

has distribution

n(T0 . t) ¼ t�ÆŁ(ˆ(1 � ÆŁ))�1,

and for the latter

n j(T0 . t) ¼ t�Æ�(ˆ(1 � Æ�))�1, 0 , � , Ł:

In the case where the Lévy process � is a Brownian motion with negative drift, the

criterion in Theorem 2 coincides with the classification from Feller’s diffusion theory for 0

to be a regular or an exit boundary point, as is explained in Example 2 below. By analogy,

we can say that 0 is a regular boundary point for ~XX if 0 , ÆŁ , 1 and an exit boundary

point if 1 < ÆŁ. Even in the case ÆŁ , 0, which is not considered in this paper, it is easy

to see that if � is a Lévy process with infinite lifetime and such that Ł , 0 in Cramér’s

condition then the Lévy process � drifts to 1. The only way to extend a self-similar

Markov process X associated with a Lévy process that drifts to 1 is by making 0 an

entrance boundary point. This possibility is considered by Bertoin and Caballero (2002),

Bertoin and Yor (2002a; 2002b) and Caballero and Chaumont (2004).

4. Excursions conditioned by their durations

It is well known that the excursion measure for the Brownian motion can be described

using the law of the excursion process conditioned to return to 0 at time 1, that is, the law

of a Bessel(3) bridge of length 1 (McKean 1963; Revuz and Yor 1999, Section XII.4). In

this section we follow this idea to describe the law under the excursion measure n defined

in Theorem 1 of the excursion process conditioned to return to zero at a given time. We

then give an alternative description of the excursion measure n.

4.1. The case k ¼ 0

To deal with this case, we will make the additional hypothesis:

(H2d) E(�1) . �1 and the distribution of the Lévy exponential functional I has a

continuous density on [0, 1[, say r, with respect to Lebesgue measure.

The condition that the law of the exponential functional I has a continuous density is satisfied

by a wide variety of Lévy processes (Carmona et al. 1997, Proposition 2.1). We next

introduce another self-similar process. Denote by �̂� ¼ (��s, s . 0) the dual Lévy process,
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and by P̂P and ÊE its probability and expectation. Then define (P̂Px, x . 0) to be the distribution

on Dþ of the Æ-self-similar process associated with the Lévy process with law P̂P. The process

X̂X is usually called the dual Æ-self-similar process; the term ‘dual’ is justified by the relationð1
0

g(x)Vq f (x)x(1�Æ)=Ædx ¼
ð1

0

f (x)V̂Vq g(x)x(1�Æ)=Ædx, (14)

for every f , g : ]0, 1[! Rþ measurable (Bertoin and Yor 2002a, Lemma 2). By (H2d) we

have that 0 , m :¼ jł9(0þ)j ¼ ÊE(�1) , 1. Let P̂P0þ be the limit in the sense of finite-

dimensional marginals of P̂Px as x ! 0, whose existence is ensured by Bertoin and Yor

(2002a, Theorem 1). The latter theorem also establishes that for every t . 0 and for

f : Rþ ! Rþ measurable, we have

ÊE0þ ( f (X t)) ¼
Æ

m
E( f ((t=I)Æ)=I), (15)

where I is defined in (2). Hypothesis (H2d) implies that for any t . 0 the law of Xt under

P̂P0þ has a density with respect to the measure ı(dy) ¼ y(1�Æ)=Ædy, y . 0, given by the

formula

P̂P0þ (X t 2 dy)

ı(dy)
¼ m�1 y�1=Ær(ty�1=Æ) :¼ p̂pt(y), y . 0:

Let (
s(dy) ¼ P̂P0þ (X s 2 dy), s . 0). A consequence of the duality relation (14) is that the

relation 
s P̂Pt�s ¼ 
 t for s , t can be shifted to the semigroup of the minimal process Pt as

p̂pt ¼ Ps p̂pt�s ı-a.s. It was proved in Rivero (2003, Section 4) that these densities can be used

to construct a regular version of the family of probability measures (Px(�jT0 ¼ r), r . 0)

when the underlying Lévy process is a subordinator. Moreover, the same argument applies to

any Lévy process assuming only (H2d). Here the densities ( p̂pt, t > 0) will be used to

construct a bridge for the coordinate process under E
\
0þ ; the techniques here used are

reminiscent of those in Fitzsimmons et al. (1993).

Recall that the semigroup (P
\
t, t > 0) is the h-transformation of the semigroup

(Pt, t > 0) via the invariant function h(x) ¼ xŁ, x . 0. Using the fact that for every

t . s . 0, the equality p̂pt ¼ Ps p̂pt�s ı-a.s. holds, we obtain that, for r . 0 arbitrary, the

function

h\r(s, x) ¼ p̂pr�s(x)x�Ł1fs,rg, x . 0, s . 0,

is excessive for the semigroup (� t � P
\
t, t > 0) of the space-time process. Let ¸r be the h-

transform of the measure E
\
0þ by means of the space–time excessive function h\r(s, x). Then

under ¸r the space process (Xt, t . 0) is an inhomogeneous Markov process with entrance

law

¸
r

s f ¼ E
\
0þ( f (X s) p̂pr�s(X s)X�Ł

s ), 0 , s , r,

for f : Rþ ! Rþ measurable, and inhomogeneous semigroup

K r
t, tþs(x, dy) ¼ P\

s(x, dy)h\r(t þ s, y)

h\r(t, x)
¼ Ps(x, dy) p̂pr�( tþs)(y)

p̂pr� t(x)
, y . 0; t, t þ s , r:
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Observe that the inhomogeneous semigroup K r
t, tþs is that of X conditioned to die at 0 at time

r (Rivero 2003, Lemma 7). Moreover, using the fact that ¸r is an h-transform of the measure

E
\
0þ it is easily verified that the measure ¸r has the property

¸r(F(X s, 0 < s , r)) ¼ r�(1þÆŁ)¸1(F(rÆX s, 0 < s , 1)),

for every positive measurable F. In particular, the total mass of ¸r is determined by

br :¼ ¸r(1) ¼ r�(1þÆŁ)¸1(1),

and it will be shown below that

¸1(1) ¼ Æ2ŁE\(J�(1�ÆŁ))

m\m
, 1: (16)

Therefore, assuming hypotheses (H2a)–(H2d) and ¸1(1) , 1, we can define a probability

measure on G1 by ¸r ¼ b�1
r ¸r. The distribution under ¸r of the lifetime T0 is the Dirac

distribution at r, that is, ¸r(T0 ¼ r) ¼ 1 (Rivero 2003, Lemma 7). We can now state the

main result of this section.

Proposition 5 (Itô’s description of the measure n). Assume hypotheses (H2a)–(H2d) hold

and 0 , ÆŁ , 1. Then ¸1(1) , 1. Let n be the unique normalized excursion measure such

that n(X 0þ . 0) ¼ 0. For F 2 G1,

n(F) ¼ ÆŁ

ˆ(1 � ÆŁ)

ð1
0

¸r(F \ fT0 ¼ rg)
dr

r1þÆŁ
:

The proof of this proposition is similar to that given in Revuz and Yor (1999, Theorem

XII.4.2) for the analogous result for Brownian excursion measure.

Proof. We first show that

n(F) ¼ m

aÆ,Ł

ð1
0

¸r(F \ fT0 ¼ rg)dr, (17)

with aÆ,Ł as defined in Theorem 3. We will deduce from this that

¸1(1) ¼ Æ2ŁE\(J�(1�ÆŁ))

m\m
:

Indeed, by the monotone class theorem it is enough to prove the assertion for sets F of the

form

F ¼
\n

i¼1

fX (ti) 2 Big,

with 0 , t1 , t2 ,. . ., t n and Borel sets Bi � ]0, 1[, i 2 f1, . . ., ng. On the one hand,

according to Theorem 1, we have
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n(F) ¼
ð

B1

n t1
(dx1)

ð
B2

Pt2� t1
(x1, dx2) � � �

ð
Bn

Pt n� t n�1
(xn�1, dxn):

On the other hand, using that F \ fT0 , tng ¼ ˘, we have that the right-hand term in (17)

can be written as

m

aÆ,Ł

ð1
t n

dr

ð
B1

¸
r

t1
(dx1)

ð
B2

K t1, t2
(x1, dx2) � � �

ð
Bn

K t n�1, t n
(xn�1, dxn): (18)

Recall from Theorem 1 that

¸
r

t1
(dx1) ¼ P

\
0þ (X t1

2 dx1) p̂pr� t1
(x1)x�Ł

1 ¼ aÆ,Łn t1
(dx1) p̂pr� t1

(x1):

Using this identity and the expression of the transition probabilities K ti , tiþ1
we obtain that

(18) is equal to

m

ð1
t n

dr

ð
B1

n t1
(dx1)

ð
B2

Pt2� t1
(x1, dx2) � � �

ð
Bn

Pt n� t n�1
(xn�1, dxn) p̂pr� t n

(xn):

Finally, using

m

ð1
s

p̂pr�s(x)dr ¼
ð1

s

r((r � s)x�1=Æ)
dr

x1=Æ
¼ 1,

for all x . 0, we conclude that both expressions in (17) for n(F) coincide. In particular, if

F ¼ 1 � e�T0 we have that

1 ¼ n(1 � e�T0 ) ¼ m

aÆ,Ł

ð1
0

¸r(1)(1 � e�r)dr ¼ ¸1(1)m

aÆ,Ł

ˆ(1 � ÆŁ)

ÆŁ

� �
:

The value of ¸1(1) in (16) is obtained by using the expression for aÆ,Ł and we derive from

(17) that

n(F) ¼ m¸1(1)

aÆ,Ł

ð1
0

¸r(F \ fT0 ¼ rg)
dr

r1þÆŁ
,

and the result follows. h

Remark. A result analogous to that in Proposition 5 can be obtained for the excursion

measure n j obtained via the jumping-in measure �(dx) ¼ bÆ,�x�(1þ�)dx. The method is

similar and we leave the details to the interested reader.

4.2. The case k . 0

In this setting we have noted that the random variable I has the same law as

Ae ¼
Ð e

0
exp f���s=Ægds, with ��� the unkilled Lévy process and e an exponential random

variable of parameter k and independent of ���. Then it is easy to prove that, under our

assumptions, the law of the random variable Ae has a density r with respect to Lebesgue

measure (cf. Carmona et al. 1994, Proposition 2.3). More precisely,
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�PP(Ae 2 dt) ¼ r(t)dt ¼ kE
\
1(X

�1=Æ�Ł
t )dt, t . 0:

Furthermore, the Markov property implies that, for any r . 0, the function

h\r(s, x) :¼ E\x(X�1=Æ�Ł
r�s )1fs,rg, x . 0, s > 0,

is excessive for the space-time Markov process ((t, X
\
t), t > 0). Therefore we can simply

repeat the arguments in the previous subsection to construct the law ¸r of the excursion

process conditioned to have a length r and obtain a description of the excursion measure n

similar to that given in Proposition 5.

It was proved by Chaumont (1997, Theorem 3) that in the case where X is a stable

process with negative jumps killed at its first entrance into ]�1, 0], the law of the

excursion process conditioned to have a given length is absolutely continuous with respect

to the law of the stable meander process. An analogous result still holds in our setting. To

give a precise statement, we next recall the definition of the law of the meander process.

For any r . 0, the probability measure M r defined over Dþ([0, r]) by

M r(�) :¼ n(� � k r, T0 . r)=n(T0 . r),

with k r the killing operator at time r . 0, is called the law of the meander process. This

corresponds to the law of the process ( ~XX g tþs, 0 < s < t � gt) conditioned by t � g t ¼ r for

some t . r and gt the last hitting time of 0 before t, gt ¼ supfs < t: ~XX s ¼ 0g (Getoor

1979).

We can now state the following corollary which is the analogue of (Chaumont 1997,

Theorem 3).

Corollary 2. For any r . 0, t , r and F 2 G t, we have that

¸r(F) ¼ rk

ÆŁ
M r(F, X�1=Æ

r ):

Proof. On the one hand, by the very definition of the law of the meander and Theorem 1, we

have that

M r(F) ¼ rÆŁˆ(1 � ÆŁ)

aÆ,Ł
E
\
0þ(F, X�Ł

r ):

On the other hand, by the construction of ¸r in Proposition 4.1 and the Markov property, we

have that

¸r(F) ¼ (br)
�1E

\
0þ(F, h\r(t, Yt)) ¼ (br)

�1E
\
0þ(F, X�(1=Æ)�Ł

r ):

Finally, in this case the normalizing constant br is given by br ¼ r�1�ÆŁb1 with

b1 :¼ Æ2ŁE\(J�(1�ÆŁ))=m\k. The result follows by identifying the constants. h
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5. Duality

In this section we will construct a self-similar Markov process which is in weak duality

with the process ~XX and whose excursion measure is the image under time reversal of n. To

this end, we first introduce some notation.

Let �\ be a Lévy process with law P\ and b�\�\ its dual, that is, b�\�\ ¼ ��\. Denote by bP\P\

and cE\E\ the probability and expectation for �̂\�\. The process �̂\�\ drifts to �1 since �\ drifts to

1. Let (P̂P\
x, x > 0) be the law on Dþ of the Æ-self-similar process X̂X \ ¼ (X̂X

\
t, t > 0)

associated by Lamperti’s transformation with the Lévy process with law bP\P\. The process X̂X \

has a lifetime T̂T0 ¼ infft . 0: X̂X
\
t ¼ 0g which is finite P̂P\

x-a.s. for all x > 0. Denote by

(P̂P
\
t, t > 0) and (V̂V \

q, q . 0) the semigroup and resolvent of the minimal process for X̂X \:

P̂P
\
t f (x) ¼ P̂P\

x( f (X t), t , T0), t > 0,

and

V̂V \
q f (x) ¼

ð
e�qt P̂P

\
t f (x)dt, q . 0:

By the duality relation (14), the resolvents V \
q and V̂V \

q are in weak duality with respect to the

measure ı(dx) ¼ x(1�Æ)=Ædx, x . 0. Furthermore, it follows that the resolvents Vq and V̂V \
q are

in weak duality with respect to the measure Qn(dx) ¼ x(1�Æ�ÆŁ)=Ædx, x . 0.

In the following lemma we construct a candidate for the process dual to ~XX .

Lemma 6. Assume hypotheses (H2) and suppose that 0 , ÆŁ , 1.

(i) Let k ¼ 0. Assume

(H2e) E(��1 ) , 1, with a� ¼ (�a) _ 0.

Then the minimal process (X̂X \, T̂T0) admits a unique extension ( ~ZZ t, t > 0), which

leaves 0 continuously a.s. Its resolvent is given by

ÛUq f (0) ¼ ª̂ªÆ,Ł

qÆŁ

ð1
0

f (y)E(e�q y1=Æ I )Qn(dy), ÛUq f (x) ¼ V̂V \
q f (x) þ E\x(e�qT0 )ÛUq f (0),

for x . 0, with ª̂ªÆ,Ł ¼ (ÆE(I�(1�ÆŁ))ˆ(1 � ÆŁ)=m)�1.

(ii) Let k . 0. The process (X̂X \, T̂T0) admits a self-similar recurrent extension ZŁ ¼
(ZŁ, t, t > 0) which leaves 0 by a jump according to the jumping-in measure

�Ł(dx) ¼ bÆ,Łx�(1þŁ)dx, x . 0,

with bÆ,Ł ¼ Ł=ˆ(1 � ÆŁ)E\(JÆŁ). The resolvent of ZŁ is given by

Uq f (0) ¼ bÆ,Łq�ÆŁ

ð1
0

y�(1þŁ)V̂V \
q f (y)dy, Uq f (x) ¼ V̂V \

q f (x) þ b
E\xE
\
x(e�qT0 )Uq f (0),

for x . 0.

Proof. (i) According to Theorem 1, all that we have to do is to verify that b�\�\ satisfies

hypotheses (H2a)–(H2c). Indeed, that (H2b) holds follows from
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cE\E\(eŁ�1 ) ¼ E\(e�Ł�1 ) ¼ E(e�Ł�1 eŁ�1 ) ¼ 1,

and it is verified in same way that (H2c) holds,bEE\(�þ1 eŁ�1 ) ¼ E\((��1)þe�Ł�1 ) ¼ E(��1 ) , 1:

The results in Section 3 can be applied to the minimal process (X̂X \, T̂T0) to ensure that there

exists a unique normalized excursion measure n̂n compatible with the semigroup (P̂P
\
t, t > 0).

The entrance law associated with n̂n admits the representation

n̂ns f ¼ (âaÆ,Ł)�1ÊE0þ( f (X s)X�Ł
s ), s . 0,

where âaÆ,Ł ¼ ÆE(I�(1�ÆŁ))ˆ(1 � ÆŁ)=m, for f continuous and bounded. To see this it should

be verified that the measure bP\P\\ obtained by h-transformation of the law bP\P\ by means of the

function h(x) ¼ eŁx is P̂P. To this end, it suffices to prove that both probability measures have

the same one-dimensional marginals. Indeed,bP\P\\( f (�s)) ¼ bP\P\( f (�s)e
Ł�s ) ¼ P\( f (��s)e

�Ł�s ) ¼ P( f (��s)) ¼ P̂P( f (�s)),

for every bounded continuous f . Then the Æ-self-similar Markov process associated with the

Lévy process with law bP\P\\ is equivalent to that associated to the Lévy process with law P̂P.

Note that the law of J under bP\P\\ is the same as that of I under P.

(ii) According to Proposition 1, all that we have to verify in order to prove the claimed

result is that cE\E\(IÆŁ) , 1. Indeed, owing to (H2c) we have that �cE\E\(�1) ¼ m\ 2 ]0, 1[

and by the identity (2.7) that cE\E\(I�1) ¼ m\=Æ , 1 (observe that I under bP\P\ is equal to J

under P\). Therefore, we have that cE\E\(IÆŁ�1) , 1. The claim follows using the identity

cE\E\(IÆ�) ¼ Æ�

�ł\(�)
cE\E\(IÆ��1), for 0 , � < Ł, (19)

with ł\: [0, Ł] ! R defined bycE\E\(eº�1 ) ¼ eł
\(º), 0 < º < Ł:

The identity (19) is analogous to that in (7) and is proved as in Bertoin and Yor (2002b,

Proposition 2). Note that ł\(º) ¼ ł(Ł� º), for every 0 < º < Ł. h

Because of the weak duality relation between the resolvents Vq and V̂V \
q it is natural to

ask if this property is inherited by the resolvents Uq and ÛUq (or Uq). That is the content of

the following result.

We assume throughout this section that the hypothesis (H2) are satisfied and, if

k ¼ 0, that E(��1 ) , 1:

Lemma 7. If k ¼ 0, for any q . 0 the resolvents Uq and ÛUq are in weak duality with respect

to the measure Qn(dx) ¼ x(1�Æ�ÆŁ)=Ædx, x . 0. If k . 0, the same result holds true with Uq

instead of ÛUq.
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Proof. We first treat the case k ¼ 0. Using the expression for the resolvents Uq and ÛUq of ~XX
and ~ZZ respectively, obtained in Theorem 2 and Lemma 6 (i) respectively, it is straightforward

that, for any f , g : Rþ ! Rþ, we haveð1
0

Qn(dy)g(y)Uq f (y) ¼
ð1

0

Qn(dy)g(y)Vq f (y) þ Uq f (0)

ð1
0

Qn(dy)g(y)E y(e�qT0 )

¼
ð1

0

Qn(dy) f (y)V̂V \
q g(y) þ Uq f (0)

ð1
0

Qn(dy)g(y)E(e�q y1=Æ I )

¼
ð1

0

Qn(dy) f (y)V̂V \
q g(y)

þ âaÆ,Łm

aÆ,Łm\
ÛUq g(0)

ð1
0

Qn(dx) f (x)E\(e�qx1=Æ J )

¼
ð1

0

Qn(dy) f (y)ÛUq g(y),

where the last equality follows from the fact that the constants ªÆ,Ł and ª̂ªÆ,Ł are equal. To see

this, recall that E(I�(1�ÆŁ)) ¼ E\(J�(1�ÆŁ)), as remarked after Proposition 3.

The case k . 0 follows the same lines but uses the following identity. For every q . 0

and f : Rþ ! Rþ measurable,

bÆ,Ł

ð1
0

y�(1þŁ)V̂V \
q f (y)dy ¼ CÆ,ÆŁ

ð1
0

Qn(dy) f (y)E y(e�qT0 )dy,

with CÆ,ÆŁ :¼ (ÆE\(J�(1�ÆŁ))ˆ(1 � ÆŁ))�1 ¼ bÆ,Ł=k, and bÆ,Ł as in Lemma 6. The preceding

identity is an easy consequence of the fact that the random variable Ae has density

r(t) ¼ kE
\
1(Y

�(1=Æ)�Ł
t ) for t . 0 and that under P y the random variable T0 has the same law

as y1=ÆAe. h

Some results on time reversal can be derived from the preceding facts. To give a precise

statement we introduce some notation. Let æ denote the operator of time reversal at time

T0, that is

(æX (ø))(t) ¼
X (T0� t)�(ø), if 0 < t , T0 , 1,

0, otherwise,

(
and let æn denote the image under time reversal at time T0 of n. Recall that L is a return

time if

L � Łt ¼ (L � t)þ, a:s: for all t > 0:

The first part of the following result is an extension for self-similar processes of the

celebrated result on time reversal of Williams (1974): a three-dimensional Bessel process

starting from 0 and reversed at its last exit time from x . 0 is identical in law to a Brownian

motion killed at its first hitting time of 0. In the second part we determine æn.
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Proposition 6. (i) If L is a finite return time then under E
\
0þ the reversed process

(X (L� t)�, 0 < t , L) is Markovian and has semigroup (P̂P
\
t, t > 0).

(ii) k ¼ 0, we have that æn ¼ n̂n, with n̂n the Itô excursion measure of ~ZZ.

(iii) If k . 0, we have that

æn(�) ¼ bÆ,Ł

ð1
0

dx x�(1þŁ)P̂P\
x(�):

In particular, n(X T0� 2 dx) ¼ bÆ,Łx�(1þŁ)dx, x . 0, and æn(�jX T0� ¼ x) ¼ P̂P\
x(�).

Proof. (i) The potential of the measure E
\
0þ is determined by

E
\
0þ

ð1
0

dsf (X s)

� �
¼ aÆ,Ł

ð1
0

ds ns( fh�)

¼ aÆ,Ł

ð
f (y)y(1�Æ)=Ædy,

with the notation of Sections 2.3 and 3. Because of the weak duality between the resolvents

V
\
º and V̂V

\
º with respect to the measure y(1�Æ)=Ædy, y . 0, the statement in (i) is a direct

consequence of a result of Nagasawa (1964) on time reversal. A general version of

Nagasawa’s result can be found in Dellacherie et al. (1992, Section XVIII.46).

(ii) Since n(X0þ . 0, X T0� . 0) ¼ 0, the excursion of ~XX from 0 starts and ends at 0,

(Getoor and Sharpe 1982, Section 9). This and the weak duality in Lemma 7 enable us to

use a result due to Mitro (1984, Section 4) to deduce that æn ¼ n̂n.

(iii) We first note that an application of Lemma 3 proves that the entrance laws

(ns(dy), s . 0) and NŁ
s f ¼ bÆ,Ł

ð1
0

dx x�(1þŁ) P̂P\
s f (x), s . 0

� �
,

for the semigroups (Pt, t > 0) and (P̂P\
s, s > 0) respectively, have the same potentialð1

0

ds ns f ¼ CÆ,ÆŁ

ð1
0

f (x)x1=Æ�1�Łdx ¼
ð1

0

dsNŁ
s f ,

with CÆ,ÆŁ ¼ (m\aÆ,Ł)�1. This enables us to use a result on time reversal of Kusnetzov

measures established in Dellacherie et al. 1992 (Section XIX.33) to verify the claimed

result. h

Remark. A consequence of Lemma 6 and Getoor and Sharpe (1981, Theorem 4.8) is that the

process obtained by time-reversing one by one the excursions of ~XX starting at 0 has the same

law as ~ZZ (ZŁ) started at 0. Furthermore, it follows from Proposition 6 that the process ~ZZ (ZŁ)

has the same law as that constructed using Ito’s programme and the Poisson point process

æ˜ ¼ (æ˜s, s > 0) which is the image under æ of the Poisson point process of excursions of
~XX , ˜ ¼ (˜s, s > 0).
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6. Examples

Example 2 Self-similar diffusions. Here we consider the case where the Lévy process is a

Brownian motion with negative drift. Let (� t ¼ �Bt � 
t, t > 0) with (Bt, t > 0) a Brownian

motion and �, 
 . 0. Hypotheses (H2) are satisfied with Ł ¼ 2
=�2 and under P\ the law of

�\ is that of �Bt þ 
t. Then the Æ-self-similar Markov process X associated with � has

continuous paths and has an infinitesimal generator of the form

Lf (x) ¼ (�2=2 � 
)x1�1=Æ f 9(x) þ �2=2x2�1=Æ f 09(x), x . 0:

Then for Æ . 0 we have that 0 , ÆŁ , 1 if and only if 0 , 
 , �2=2Æ. This corresponds to

the case when the point 0 is a regular boundary point for the self-similar diffusion associated

with the infinitesimal generator L just described; in the case 1 < ÆŁ, or equivalently

�2=2Æ < 
, 0 is an exit boundary point. See Lamperti (1972, Theorem 5.1) and Vuolle-

Apiala (1994, Theorem 3.1) for a related discussion. If 0 , 
 , �2=2Æ holds, the process X

admits a unique extension that is continuous and is characterized by Theorem 2. Furthermore,

using the fact that the law of J under E\ is that of 2Æ2=(�2 ZÆŁ), with ZÆŁ a random variable

of law gamma with parameter ÆŁ, (Dufresne 1990), we deduce that the entrance law in

Theorem 1 has a density

ns(dy)

dy
¼ cÆŁs�2(1�ÆŁ)�1 y2(1�ÆŁ)=Æ�1 exp (�y1=Æs�1d�,Æ), y . 0,

with respect to Lebesgue measure, with

cÆŁ ¼ (1 � ÆŁ)Æ

ˆ(1 � ÆŁ)
2

�2

2Æ2

� �ÆŁ

and d�,Æ ¼ 2Æ2

�2
:

Example 3 Reflected stable processes. Let Y be a stable process of parameter a 2 ]0, 2[ and

(Px, x > 0) its law. Assume that jY j is not a subordinator. Define r ¼ P(Y1 . 0) and

X 9t ¼
Yt � inf 0<s< tYs, if t > T]�1,0]

Yt if t , T]�1,0],

(
with T]�1,0] the first hitting time of ] �1, 0] by Y. Then r 2 ]0, 1[ and 0 is a regular

recurrent state for X 9 – we refer to Bertoin (1996, Section VIII) and Chaumont (1997) for

background on stable processes and its excursion theory. We denote by (X , T0) the process

X 9 killed at T]�1,0]; this process is 1=a-self-similar. Let � be the Lévy process associated

with (X , T0) via Lamperti’s transformation – see Caballero and Chaumont (2004) for a

precise description of �. Observe that in the case where Y has negative jumps � is a Lévy

process killed at an exponential time, while in the case where Y has no negative jumps � has

infinite lifetime and drifts to �1. We claim that hypotheses (H2) are satisfied for

Ł ¼ a(1 � r). This can be verified either by doing the calculations using the results in

Caballero and Chaumont (2004) or by the following arguments.

It is known that the function h(x) ¼ xa(1�r), x . 0 is, up to a multiplicative constant, the

only invariant function for the semigroup of the process (X , T0). Then Cramér’s condition
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(H2b) for � is satisfied with Ł ¼ a(1 � r). A consequence of this fact and Mejane (2002,

Proposition 3.1) is that the Lévy exponential functional I ¼
Ð1

0
exp fa�sgds has finite

moments

E(I�=a) , 1 for every 0 , � , a(1 � r):

The excursion measure for X 9 away from 0, say n, is an excursion measure compatible with

the minimal process (X , T0) such that its entrance law satisfies (iii) in Lemma 2 with

ª ¼ 1 � r, and n(X 0þ . 0) ¼ 0 – see Chaumont (1997) and the reference therein. Thus

E(I�r) , 1, by Lemma 3. Therefore, it is easily verified by repeating the arguments in the

proof of Proposition 4 that condition (H2c) is satisfied.

The excursion measure n defined in Theorem 1 is equal to n and the recurrent extension

X̂X in Theorem 2 associated with n is equivalent to X 9. Finally, it can be shown that the

process dual of X̂X constructed in Section 5 has the same law as the process �Y conditioned

to stay positive and reflected at its future infimum. We omit the details.

Example 4 Let � be a non-arithmetic Lévy process with no positive jumps such that � drifts

to �1. We assume that � is neither the negative of a subordinator nor a deterministic drift.

The case of the negative of a subordinator was discussed in Example 1 and the case of a

deterministic drift can be treated in the same way. From the theory of Lévy processes with no

positive jumps we know that E(eº�1 ) , 1, for all º . 0. Then the convex function

ł(º) : Rþ ! R defined by E(eº�1 ) ¼ eł(º) is such that ł(0) ¼ 0, and limº!1ł(º) ¼ 1.

Since � drifts to �1 there exists a unique Ł . 0 such that ł(Ł) ¼ 0. It follows that �
satisfies (H2). Let 0 , Æ , 1=Ł, and let (X , T0) be the Æ-self-similar minimal process

associated with �. Owing to the absence of positive jumps, we have that X T[z,1[
¼ z whenever

T[z,1[ , T0, with T[z,1[ ¼ infft . 0: Xt > zg. The excursion measure n compatible with the

process (X , T0) defined in Theorem 1 has the property that under the probability measure on

Dþ, nj(T[z,1[ , T0), the processes (X t, t < T[z,1[) and (X Tzþ t, t < T0 � T[z,1[), are

independent. The law of the former is E
\
0þ killed at T[z,1[ and of the latter is that of

(X , T0) started at z. Here nj(T[z,1[ , T0) means n(A \ fT[z,1[ , T0g)=n(fT[z,1[ , T0g) for

A 2 G1. This claim is easily verified using the fact that the measure n is a multiple of the h–

transform of E
\
0þ via the excessive function h�(x) ¼ x�Ł, x . 0. Moreover, the law of the

Lévy exponential functional I ¼
Ð1

0
exp f�s=Ægds, associated with � is self-decomposable

and as a consequence the law of I has a continuous density (Rivero 2003, Proposition 4).

Therefore, to apply the results in Sections 4 & 5, the only hypothesis that should be made on

� is that E(�1) . �1.

Appendix: On dual extensions

This section is motivated by Section 5, where we proved that given two minimal processes

X and X̂X which are self-similar and in weak duality, there exist Markov processes ~XX and ~ZZ
extending (X , T0) and (X̂X , T̂T0) respectively, which are still in weak duality. The purpose of

this section is to give a generalization of this fact under the hypotheses of Blumenthal. The

result given here is of independent interest, and to make the section self-contained we next
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introduce some notation. Let (Yt, t > 0) and (ŶYt, t > 0) be Markov processes having 0 as a

trap. Denote by P, E, (P̂P, ÊE) the probability and expectation for Y (ŶY ), and by T0 (T̂T0) the

first hitting time of 0 for Y (ŶY ), that is, T0 ¼ infft . 0 : Yt ¼ 0g. Assume

Px(T0 , 1) ¼ P̂Px(T0 , 1) ¼ 1 for any x . 0. Let Q0
t , W 0

º (Q̂Q0
t , ŴW 0

º) denote the semigroup

and º-resolvent for Y (ŶY ) killed at 0. For º . 0, define the functions jº, ĵjº : Rþ ! [0, 1],

by

jº(x) ¼ Ex(e�ºT0 ), ĵjº(x) ¼ ÊEx(e�ºT0 ), x . 0:

The main assumptions of this section are as follows:

(H3a) Y , ŶY , both satisfy the basic hypotheses in Blumenthal (1983).

(H3b) The resolvents W 0
º and ŴW 0

º are in weak duality with respect to a � -finite measure

Q(dx) on ]0, 1[.

(H3c) We haveð
]0,1[

Q(dx)jº(x) , 1,

ð
]0,1[

Q(dx)ĵjº(x) , 1, for all º . 0:

Theorem 3. Assume hypotheses (H3). Then there exist excursion measures m and m̂m

compatible with the semigroups (Q0
t , t > 0) and (Q̂Q0

t , t > 0), respectively. The Laplace

transforms of the entrance laws (ms, s . 0) and (m̂ms, s . 0) associated with m and m̂m,

respectively, are determined byð1
0

e�ºs ms f ds ¼
ð

]0,1[

Q(dx) f (x)ĵjº(x);

ð1
0

e�ºs m̂ms f ds ¼
ð

]0,1[

Q(dx) f (x)jº(x),

for º . 0, and f continuous and bounded. Furthermore, associated wtih these excursion

measures there exist Markov processes Y� and ŶY� which are extensions for Y and ŶY

respectively and which are still in weak duality with respect to the measure Q(dx).

The proof of this theorem will be given via three lemmas. The first ensures the existence

of the excursion measures.

Lemma 8. The family of finite measures Mº f ¼
Ð

]0,1[
Q(dx) f (x)ĵjº(x), º . 0, is such that the

following hold:

(i) limº!1Mº1 ¼ 0,

(ii) For 
, º . 0, 
 6¼ º,

(
� º)MºW 0

 f ¼ Mº f � M 
 f ,

for f continuous and bounded.

Proof. That Mº ! 0 as º ! 1 follows from the monotone convergence theorem. Using the

weak duality for the resolvents W 0
º and ŴW 0

º, we obtain
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MºW 0

 f ¼

ð
]0,1[

Q(dx)W 0

 f (x)ĵjº(x)

¼
ð

]0,1[

Q(dx) f (x)ŴW 0

ĵjº(x):

The result is then obtained from the elementary identity

ŴW 0

ĵjº(x) ¼ ÊEx(e�ºT0 � e�
T0 )


� º
:

h

From Lemma 8 and Getoor and Sharpe (1973, Theorem 6.9), there exists a unique

entrance law (mt, t . 0), for the semigroup (Qt, t > 0), such that, for each º . 0,

Mº f ¼
ð1

0

e�º t mt f dt,

for f measurable and bounded, and ð1

0

mt1 dt , 1:

According to Blumenthal (1983), for an entrance law (ms, s . 0) there exists a unique

excursion measure m having this entrance law. The same method ensures the existence of

an excursion measure m̂m and an entrance law (m̂mt, t . 0) for the semigroup (Q̂Qt, t > 0).

Using the results in Blumenthal (1983), we obtain that associated with the excursion

measure m (m̂m) there exists a unique Markov process Y� (ŶY� extending Y (ŶY ) and the º-

resolvent of Y� is determined by

Wº f (0) ¼ Mº f

ºMº1
, Wº f (x) ¼ W 0

º f (x) þ jº(x)Wº f (0), x . 0,

for f measurable and bounded; the º-resolvent for ŶY�, say ŴWº, is defined in a similar way. To

establish weak duality with respect to the � -finite measure Q(dx) for the resolvents Wº and

ŴWº we will need the following technical result.

Lemma 9. For every º . 0, we have that ºMº1 ¼ ºM̂Mº1.

Proof. Since ms1 is a decreasing function of s and
Ð 1

0
ms1 ds , 1, we have that


M 
1 ¼ 


ð1
0

e�
 t mt1 dt ¼ lim
s!1

ms1 þ
ð1

0

(1 � e�
 t)ı(dt),

where ı(dt) ¼ �dmt1. Analogously,


M̂M 
1 ¼ 


ð1
0

e�
 t m̂mt1 dt ¼ lim
s!1

m̂ms1 þ
ð1

0

(1 � e�
 t)ı̂ı(dt):

Therefore, to establish the lemma we will prove that, for º . 0,
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ð1
0

(1 � e�ºs)ı(ds) ¼
ð1

0

(1 � e�ºs)ı̂ı(ds), (20)

and

lim
s!1

ms ¼ 0 ¼ lim
s!1

m̂ms:

To this end we will use the following elementary identities: for º, 
 . 0,

(º� 
)Mºj
 ¼ ºMº1 � 
M 
1

and

(º� 
)M̂Mºĵj
 ¼ ºM̂Mº1 � 
M̂M 
1:

Next, since

Mºj
 ¼
ð

]0,1[

Q(dx)ĵjº(x)j
(x) ¼ M̂M 
ĵjº,

we have

ºMº1 � 
M 
1 ¼ ºM̂Mº1 � 
M̂M 
1:

Letting 
 ! 0, we obtain that

ºMº1 � lim
s!1

ms1 ¼ ºM̂Mº1 � lim
s!1

m̂ms1:

This proves the equality (20). To prove that lims!1ms1 ¼ 0, we use the fact that m is the

excursion measure associated to the entrance law (ms, s . 0). Indeed,

m(1 � e�ºT0 ) ¼ ºMº1 ¼ lim
s!1

ms1 þ
ð1

0

(1 � e�º t)ı(dt):

Letting º ! 0, in this equation we obtain, thanks to the monotone convergence theorem, that

lims!1ms1 ¼ 0. In the same way it is proved that lims!1 m̂ms1 ¼ 0. h

Finally, the following lemma establishes weak duality for the resolvents Wº and ŴWº.

Lemma 10. For every º . 0 and every measurable function f , g : [0, 1[! Rþ, we haveð
]0,1[

Q(dy)g(y)Wº f (y) ¼
ð

]0,1[

Q(dy) f (y)ŴWº g(y):

The proof of this lemma is a straightforward consequence of Lemma 9 and the

construction of Wº and ŴWº; see the proof of Lemma 7.
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Remarks.

1. Observe that

lim
º!0

ð1
0

dse�ºs ms f ¼
ð1

0

dsms f ¼
ð

]0,1[

Q(dy) f (y):

By the weak duality relation in Lemma 10 we have that Q(dy) is invariant for the

semigroup of Y� and since 0 is a recurrent state for Y� then Q(dy) is in fact the

unique (up to a multiplicative constant) excessive measure for this semigroup,

(Dellacherie et al. 1992, XIX.46).

2. We have not considered here the possibility of a stickiness parameter in the

construction of the processes Y� and ŶY�; that is, constructing Y� and ŶY� via the

subordinators

� t ¼ dt þ
X
s<t

T0(˜s), �̂� t ¼ d̂d t þ
X
s< t

T̂T0(˜s), t . 0,

for some d, d̂d . 0 – see Section 2.1 or Blumenthal (1992, Section 5) for an account.

In such a case, the º-resolvent for Y� (ŶY�) at 0 is given by

Wº f (0) ¼ df (0) þ Mº f

ºd þ ºMº1
; Wº f (0) ¼ d̂d f (0) þ M̂Mº f

ºd̂d þ ºM̂Mº1
,

for f continuous and bounded and, if d ¼ d̂d then the resolvents Wº and ŴWº are still in

weak duality but this time with respect to the measure Qd(dx) ¼ d	0(dx) þ Q(dx).

3. Assume, moreover, that for every x . 0, P̂Px(T 0 2 dt) is absolutely continuous with

respect to Lebesgue measure, having a density

a(x, t) ¼ P̂Px(T 0 2 dt)

dt
, x, t . 0,

which is jointly Borel measurable. Then, for º . 0,ð1
0

ds e�ºs ms f ¼
ð

]0,1[

Q(dx)ĵjº(x) f (x) ¼
ð1

0

ds e�ºs

ð
]0,1[

Q(dx)a(x, s) f (x),

for f continuous and bounded. The second equality is a consequence of Fubini’s

theorem. By inverting the Laplace transform we obtain that, for s . 0,

ms f ¼
ð

]0,1[

Q(dx)a(x, s) f (x):

A similar result was obtained in (Getoor 1979, Proposition 10.10) in a different

setting.
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Bertoin, J. (1996) Lévy Processes. Cambridge: Cambridge University Press.

Bertoin, J. and Caballero, M.-E. (2002) Entrance from 0+ for increasing semi-stable Markov processes.

Bernoulli, 8, 195–205.

Bertoin, J. and Doney, R.A. (1994) Cramér’s estimate for Lévy processes. Statist. Probab. Lett., 21,
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functionals of Lévy processes. In M. Yor (ed.), Exponential Functionals and Principal Values

Related to Brownian Motion, Bibl. Rev. Mat. Iberoamericana, pp. 73–130. Madrid: Revista
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Rogers, L.C.G. (1983) Itô excursion theory via resolvents. Z. Wahrscheinlichkeitstheorie Verw. Geb.,

63(2), 237–255.

Salisbury, T.S. (1986a) Construction of right processes from excursions. Probab. Theory Related

Fields, 73(3), 351–367.
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