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Abstract

Effective and timely monitoring of croplands is
critical for managing food supply. While remote
sensing data from earth-observing satellites can
be used to monitor croplands over large regions,
this task is challenging for small-scale croplands
as they cannot be captured precisely using coarse-
resolution data. On the other hand, the remote
sensing data in higher resolution are collected less
frequently and contain missing or disturbed data.
Hence, traditional sequential models cannot be di-
rectly applied on high-resolution data to extract
temporal patterns, which are essential to identify
crops. In this work, we propose a generative
model to combine multi-scale remote sensing data
to detect croplands at high resolution. During the
learning process, we leverage the temporal pat-
terns learned from coarse-resolution data to gener-
ate missing high-resolution data. Additionally, the
proposed model can track classification confidence
in real time and potentially lead to an early detec-
tion. The evaluation in an intensively cultivated re-
gion demonstrates the effectiveness of the proposed
method in cropland detection.

1 Introduction

Given the global population growth, an automated cropland
monitoring system can offer timely agricultural information
which is essential for managing the growing needs of food
supply and food security. For example, grain production per
acre in United States has doubled from 1975 to 2015 to meet
the demand from growing population. These productivity
gains are attributable to improved crop varieties and increased
planting area. Both of these factors can be captured by an ef-
fective monitoring system. Moreover, monitoring croplands
has a lot of implications for their environmental sustainability,
e.g., the energy consumption for irrigation and the resulting
contaminants.

Effective monitoring requires the ability to identify crops
over large spatial regions and over long time periods. In re-
cent years, the increasing availability of remote sensing data
and advancements in machine learning have created an un-
realized potential for analyzing land covers over space and

time. Since most land covers have distinct seasonal tempo-
ral patterns, sequential models such as Recurrent Neural Net-
works (RNN) have been widely used to capture these patterns
in land cover detection [Jia et al., 2017a; Lyu et al., 2016].

While these sequential models have shown success in
leveraging temporal knowledge in classification, they are
mostly designed for coarse-resolution remote sensing data,
e.g. MODIS (250m, daily). However, the spatial resolution of
such data is quite low which makes them unsuitable for moni-
toring small-scale farms that are quite common in many parts
of the world. High-resolution data such as Sentinel (10m, ev-
ery 10 days in 2016) and Landsat (30m, every 16 days) can
be used to monitor small farms, but they are captured less
frequently compared to coarse-resolution data. This creates a
major issue, especially because remote sensing data is often
missing or of poor quality due to clouds and aerosols. For
example, Sentinel data are supposed to be available every 10
days (∼ 36 dates in a year), but are available for much less
than 25 dates for many locations around the world. If such
low quality data is directly used for classification, they are
likely to produce bad results. For coarse-resolution data such
as from MODIS, a common way to handle this issue is to
create composites that aggregate data from multiple dates by
selecting the data with the least noise. For example, MODIS
8-day composites are used quite frequently [Guindin-Garcia
et al., 2012]. Since high-resolution data are available much
less frequently, creating composites such as the ones used for
MODIS will result in very infrequent data, making it difficult
to capture dynamics of the phenomenon at desired time scale.

In this work, we present a novel framework, Multi-scale
Analysis of Remote Sensing data with Missing or poor
quality data (MARSM), that combines remote sensing data
of different spatial scales, i.e. coarse-resolution and high-
resolution, to jointly detect/classify croplands. In particular,
we utilize MODIS dataset as a coarse-resolution dataset, and
Sentinel dataset as a high-resolution dataset. We choose Sen-
tinel over Landsat for its more frequent availability (every 10
days) and better spectrum coverage. We develop a genera-
tive sequential model based on variational recurrent neural
networks (VRNN) [Chung et al., 2015] on multi-scale data.
This model leverages the temporal patterns from MODIS data
to guide the learning process for Sentinel data.

The crop growing process often shows much variability
since the crops in different places can have different grow-
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ing patterns (caused by weather conditions, amount of fer-
tilizer, slope of the land, farmer behaviors). When han-
dling such data with high variability, deterministic sequen-
tial models, such as the standard RNN, are known to suf-
fer from the blurry prediction issue [Habibie et al., 2017;
Mathieu et al., 2015] by averaging all the possible growing
trajectories. In contrast, VRNN ia able to model the variabil-
ity in crop growing trajectories by introducing latent variables
in the internal probabilistic transition structure. For example,
consider two corn locations A and B where the corn grows
faster in A due to the applied fertilizers. The standard de-
terministic model will learn a growing pattern of corn to be
the average of A and B. In contrast, the VRNN model can
automatically sample different latent variables to reflect the
difference between A and B and then precisely capture the
pattern of each location individually.

Next, we apply the generative process to produce missing
Sentinel data. The generation of missing data enables the
modeling of a complete crop growing process, which con-
sequently contributes to a better classification. Given the
variability in crop growing process, we enforce the generated
Sentinel data to conform to true temporal transitions using the
guidance of MODIS data and an adversarial regularizer.

Existing detection methods classify land covers only after
collecting data from an entire year. However, it is of great
interest to governments and companies to obtain the agricul-
tural information at an early stage. We develop a progressive
classification method using the outputs from the generative
model to track classification confidence in real time. This
method can help identify the most discriminative periods for
each crop type and thus detect crops at an early stage.

To show the effectiveness in classifying crops and captur-
ing the true growth patterns of each crop type, we evaluate
the proposed framework in a crop-intensive region in south-
western Minnesota, US, where high-quality ground-truth is
available from USDA Crop Data Layer 1.

2 Problem Definition

In this work, we aim to classify each location at the resolution
of a Sentinel pixel (10m×10m) into one of several major crop
varieties. The input features include MODIS data (coarse-
resolution) and Sentinel data (high-resolution), both of which
contain multiple time steps in a time period. We fix the time
interval to be every 10 days (the same with Sentinel) and uti-
lize MODIS composite images in each 10-day interval. More
dataset details will be introduced in Section 4.

For each location, we represent its coarse-resolution
MODIS input data as XM={xM1 , x

M
2 , ..., x

M
T } with a total of

T time steps. For high-resolution Sentinel data, we assume
each location has only one missing period between t1 and
t2 in method discussion, i.e., XS={xS1 , ..., x

S
t1
, xSt2 , ..., x

S
T }.

However, our proposed method can be easily generalized to
handle multiple missing periods in real-world datasets. In our
implementation, XM and XS are the data from the MODIS
pixel and the Sentinel pixel that cover this location.

Given the multi-scale sequential data collected from cer-
tain period, e.g. a year, our objective is to conduct a multi-

1https://nassgeodata.gmu.edu/CropScape/

class classification and output the posterior probability of
class label, p(y|XS , XM ). Besides, we wish to model the
progression of this posterior probability p(y|xS≤t, x

M
≤t), also

referred to as classification confidence, as time t progresses.
This enables the identification of crop types with reasonable
accuracy before collecting all the data from the entire period.

3 Method

In this section, we propose a framework to combine multi-
scale sequential data for classifying crops. We first introduce
a generative model for learning temporal patterns and han-
dling missing data. Then we will describe a progressive clas-
sification method based on the generative model.

3.1 Recurrent Generative Networks

Since MODIS data and Sentinel data are captured using dif-
ferent optical sensors, we model them separately with two
recurrent generative networks. However, we will later show
the use of the temporal information learned from the MODIS
sequence to assist the generative process of Sentinel data.

Figure 1: The generative modeling on MODIS sequential data.

We first build a variational recurrent neural networks
(VRNN) on MODIS data (Fig. 1). We will now describe the
generative process, recurrent process and inference in details.

The objective of the generative process is to estimate data
likelihood p(xM ). We will update model parameters through
optimizing the variational lower-bound of log-likelihood.
Then given any test data, we can conduct inference of the
latent variables zM , which are then used for classification.

Generative Process

At each time step t, VRNN retains the deterministic hidden
representation hMt in standard RNN to store the temporal in-
formation. While remote sensing data reflect crop growing
process over time, they are also influenced by variability in
environmental conditions (including weather as well as nutri-
ents applied by farmers). Therefore, VRNN also introduces
latent random variables zMt , which encode the knowledge of
underlying crop type and the natural/human factors with in-
fluence on spectral features.

The generative process starts with sampling zMt from a
Gaussian distribution determined by the information at the
previous time step t− 1, as:

zMt ∼ N (µM
0,t, diag((σM

0,t)
2)),

[µM
0,t, σ

M
0,t] = ϕprior(hMt−1; τ

prior),
(1)
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where hMt−1 is the hidden representation at t − 1, ϕprior is

a trainable function with parameter τprior (see Section 4.2),
diag(·) represents a diagonal variance matrix.

Then we sample xMt , i.e., MODIS data features at t, from a
Gaussian distribution with its mean and variance determined
by zMt through a function ϕgen, as follows:

xMt |zMt ∼ N (µM
x,t, diag((σM

x,t)
2)),

[µM
x,t, σ

M
x,t] = ϕgen(g(zMt ; τg), hMt−1; τ

gen).
(2)

Recurrent Process

The hidden representation hMt at time t is obtained through
the recurrent procedure, as follows:

hMt = Rec(f(xMt ; τf ), g(zMt ; τg), hMt−1; θ), (3)

where the function Rec(·) is implemented using a Long-
Short Term Memory (LSTM) with parameter θ in our work,
f(xMt ; τf ) and g(zMt ; τg) extract features from raw MODIS
data and latent variables (see Section 4.2 for more details).
Inference: The direct inference of p(zMt |xMt ) requires
the marginalization over zMt , which is computationally in-
tractable. Instead, VRNN approximates p(zMt |xMt ) by a
Gaussian distribution q(zMt |xMt ) [Chung et al., 2015]. The
mean and variance of q(zMt |xMt ) are determined by xMt and
hMt−1 through a function ϕinf , as follows:

zMt |xMt ∼ N (µM
z,t, diag((σM

z,t)
2)),

[µM
z,t, σ

M
z,t] = ϕinf (f(xMt ), hMt−1; τ

inf ),
(4)

High-resolution Modeling

Next, we utilize the temporal information obtained from
MODIS data to guide the generative process of Sentinel data.
Specifically, the latent variable zSt for Sentinel data depends
not only on the high-resolution information by t−1 (encoded
by hSt−1), but also the temporal patterns of low-resolution data

by time t (encoded by hMt ), as shown in Fig. 2. The prior dis-
tribution of zSt can be expressed as:

zSt ∼ N (µS
0,t, diag((σ

S
0,t)

2)),

[µS
0,t, σ

S
0,t] = ψprior(hSt−1, h

M
t ; ξprior),

(5)

Then we sample xSt from zSt in a similar way with Eq. 2.
The generative process involves both the information from
previous Sentinel data as well as the MODIS data until cur-
rent time step. Similarly, the inference process should also
involve hMt , which depends on xM≤t. Therefore we have the

approximated inference function as q(zSt |x
S
t , x

M
≤t).

Variational Lower-bound

the log-likelihood of multi-scale data can be factorized into
two components, corresponding to coarse-resolution data and
high-resolution data, respectively.

log p(xM≤T , x
S
≤t1,t2:T )= log p(xS≤t1,t2:T |x

M
≤T ) + log p(xM≤T ),

(6)
where the subscript {≤ t1, t2 : T} represents all the available
time steps for high-resolution data, i.e., the time steps before
t1 and from t2 to T .

Figure 2: The generative process of Sentinel data and the use of the
generative process in producing missing data.

Since the marginalization over z is computationally in-
tractable, we alternatively maximize the variational lower-
bound of the log-likelihood. By using the fact that
q(zM≤T |x

M
≤T ) =

∏
t q(z

M
t |xM≤t, z

M
<t), and p(xM≤T , z

M
≤T ) =∏

t p(x
M
t |zM≤t, x

M
<t)p(z

M
t |xM<t, z

M
<t), we can obtain a varia-

tional lower-bound for the coarse-resolution data:

log p(xM≤T )≥∑

t

{−Eq(zM
<t|x

M
<t)

KL(q(zMt |xM≤t, z
M
<t)||p(z

M
t |xM<t, z

M
<t))

− Eq(zM
≤t

|xM
≤t

)log p(xMt |zM≤t, x
M
<t)}.

(7)
Similarly, we can derive the variational lower-bound

for the likelihood of high-resolution Sentinel data
log p(xSt=1:t1,t2:T

|xM≤T ) as follows:

log p(xS
≤t1,t2:T |x

M
≤T )

≥
∑

t≤t1,t2:T

{−E
q(zS<t|x

S,M
<t )

KL(q(zSt |x
S
≤t,x

M
≤t,z

S
<t)||p(z

S
t |x

S
<t,x

M
≤t,z

S
<t))

− E
q(zS

≤t
|xS,M

≤t
)
log p(xS

t |z
S
≤t,x

S
<t)}.

(8)

By approximating the expectation in Eqs. 7 and 8 by the
“reparameterization trick” [Kingma and Welling, 2013], the
variational lower-bound becomes fully differentiable and can
be maximized by the standard back-propagation algorithm.

3.2 Adversarial Data Generation

It is noteworthy that the lower-bound in Eq. 8 only takes the
summation over t ≤ t1 and t2 ≤ t ≤ T . However, to com-
pute the distribution at time step t2, we need the information
of xSt1+1:t2−1 and hSt1+1:t2−1. Also, the information in miss-
ing period enables the modeling of a complete crop growing
process and facilitates the progressive classification described
in Section 3.3. Therefore, we generate missing data during
the period [t1+1, t2− 1] in the following way. For each time
step t in [t1 + 1, t2 − 1], we first generate zSt by Eq. 5 using
hSt−1 and hMt . Then we sample xSt according to the Gaussian

distribution determined by zSt (Fig. 2). After obtaining xSt ,
we compute hSt and the distributions at t+ 1.
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Due to the potential temporal changes caused by a vari-
ety of natural/human factors, a reasonable generative process
may output sequential data following t1 in various trajecto-
ries with different probabilities. To ensure that the generated
data are consistent with the true scenario, we leverage two
auxiliary information sources to constrain the data genera-
tion. First, as mentioned in Section 3.1, we utilize the coarse-
resolution data (MODIS) to guide the transition of Sentinel
data, as MODIS data is more frequently available. Second,
we impose an adversarial regularizer to enforce that the gen-
erated data do not deviate from the true data after t2.

Specifically, we repeat the generative process to sample
the data after t2. The adversarial regularizer enforces that
the generated data and the true data after t2 cannot be eas-
ily distinguished by a well trained discriminative classifier
D : zS 7→ [0-true, 1-generated]. Our cost function for the
generative model combines the log-likelihood (Eqs. 7 and 8)
and the adversarial regularizer with a hyper-parameter λ, as:

J = −log(p(XM , XS)) + λLD,

LD=sup
D

∑

t≥t2

Ex̂S
t |xS

≤t1
,xM

≤t
logD(zSt |x̂

S
t )+EXS

t
log(1−D(zSt |x

S
t )),

(9)

where x̂ denotes the generated data. XS
t represents the dis-

tribution of provided Sentinel data at time t. The selection of
hyper-parameters will be discussed in Section 4.2.

3.3 Progressive Classification

After gathering latent variables from the generative model,
we utilize them to capture the progression of classification
confidence over time. Specifically, we utilize the accumu-
lated discriminative information until time t to make clas-
sification decision at t. We expect that the model becomes
more and more confident about the classification as time pro-
gresses. For location i, the discriminative information at time
t is computed from its obtained latent variables [zSi,t, z

M
i,t ].

Here we add the subscript i to represent the location index.
To mitigate the noise at individual locations, we also adopt
an isotropic Gaussian smoothing over the spatial neighbor-
hood N (i). In the smoothing process, we use latent variables
learned from MODIS data since MODIS data are more robust
to noise. More formally, we collect the discriminative infor-
mation at time t and add it to an accumulated variable oi,t, as:

oi,t=oi,t−1+
∑

j∈N (i)

exp{−||zMi,t − zMj,t||
2/2γ2}

(2πγ2)dm/2
sigm(W [zSj,t, z

M
j,t]),

(10)

where γ2 represents the isotropic variance in the smoothing
process, and dm is the dimensionality of zM . W denotes the
parameters in sigmoid function to transform latent variables
[zSj,t, z

M
j,t] to the discriminative information at t.

Then we compute the posterior probability of class label yi
by time step t, via a softmax function, as:

p(yi|x
S
≤t, x

M
≤t) = softmax(oi,t) (11)

The entire framework can be trained using back-
propagation algorithm in two stages. In the first stage, we

conduct unsupervised training by minimizing the cost func-
tion in Eq. 9. Then in the second stage, we fine-tune model
parameters in supervised fashion with training labels.

4 Experiment

4.1 Datasets

MODIS. We combine MODIS MOD09A1 and MOD09Q1
multi-spectral products, collected by MODIS instruments on-
board NASA’s satellites. MODIS data are collected for ev-
ery single day. The dataset provides reflectance values on
7 spectral bands (620-2155 nm) for every location at 250 m
resolution. The product MOD09A1 and MOD09Q1 prerpro-
cess the satellite data by filtering precipitable water and cloud.
To match the temporal frequency of Sentinel data, we utilize
MODIS composite images by selecting per-pixel reflectance
values with least noise during each time interval.

Sentinel. Sentinel-2A data are collected by European Space
Agency, which aims to provide global data for every 10 days.
The Sentinel-2A data product performs a cloud screening, but
does not conduct atmospheric corrections. The data consist of
reflectance values on 13 spectral bands, including the visible
spectrum, NIR and SWIR. Depending on the spectral bands,
the spatial resolution of collected data is 10/20/60 m. In our
work, we project all the bands into 10 m spatial resolution.
Due to operational or quality issues, many data are missing
on certain dates.

Study region. Our study region in southwestern Minnesota
covers 490,000 locations at the resolution of Sentinel data,
which cover an area of 4,900 ha. We establish the map-
ping between MODIS and Sentinel and gather the MODIS
data for each location. The involved MODIS data in total
cover 1,236 MODIS pixels. In the experiment, we only con-
sider major crop types planted in this region, which include
corn, soybean and sugarbeet, as their ground-truth labels in
USDA crop data layer product are more accurate than other
minor crops. Among all the locations in our study region,
217,435 locations are corns, 101,883 locations are soybeans
and 96,612 locations are sugarbeets.

4.2 Classification

We first evaluate the classification performance of MARSM.
In our implementation, we conduct pixel-wise classification
for each location/pixel at Sentinel level (10m×10m). We
use two-layer neural networks for functions ϕgen, ϕprior and
ϕprior with 120 hidden variables for Sentinel and 80 hidden
variables for MODIS. The dimension of the latent variable z
is 80 and 60 for Sentinel data and MODIS data, respectively.
The hyper-parameter λ in adversarial learning is set to 0.2.

We compare MARSM to multiple baselines, including Ar-
tificial Neural Networks (ANN) using concatenated multi-
temporal data, ensemble single-date Random Forest model
(e-RF) [Waske and Braun, 2009], ensemble Fully Convolu-
tional Neural Networks (e-FCNN) [Audebert et al., 2017],
and standard LSTM using concatenated multi-scale data at
each time step and linear interpolation for missing data.

We also compare against baselines that impute missing
data, including GRU-D [Che et al., 2016], and LSTM mod-
els using the generated missing data by a temporal-example
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Entire-region test Cross-region test

TA TB TA TB
Method Corn Soy Sugar All Corn Soy Sugar All Corn Soy Sugar All Corn Soy Sugar All

ANN 0.80 0.03 0.01 0.66 0.80 0.33 0.42 0.69 0.61 0.23 0.17 0.59 0.63 0.00 0.33 0.64
e-RF 0.77 0.57 0.82 0.75 0.81 0.78 0.84 0.81 0.73 0.60 0.53 0.66 0.72 0.63 0.63 0.69
e-FCNN 0.80 0.59 0.82 0.78 0.81 0.83 0.83 0.82 0.70 0.61 0.58 0.66 0.74 0.63 0.62 0.72
LSTM 0.74 0.65 0.75 0.72 0.87 0.83 0.94 0.88 0.79 0.62 0.57 0.70 0.82 0.61 0.61 0.74

LSTMtel 0.80 0.75 0.78 0.78 0.89 0.85 0.92 0.90 0.77 0.63 0.57 0.69 0.80 0.61 0.63 0.73
LSTMgen 0.84 0.75 0.82 0.82 0.92 0.90 0.91 0.93 0.78 0.65 0.59 0.73 0.82 0.69 0.56 0.76
cLSTM 0.88 0.80 0.79 0.85 0.91 0.88 0.94 0.92 0.77 0.62 0.66 0.73 0.83 0.62 0.58 0.76
GRU-D 0.87 0.77 0.90 0.85 0.94 0.82 0.92 0.92 0.69 0.22 0.03 0.54 0.65 0.47 0.69 0.59

MARSMstn 0.78 0.79 0.77 0.77 0.81 0.78 0.83 0.79 0.76 0.62 0.49 0.67 0.78 0.63 0.59 0.72

MARSMwadv 0.90 0.82 0.82 0.87 0.89 0.90 0.84 0.90 0.80 0.61 0.60 0.74 0.82 0.63 0.61 0.75
MARSMwsp 0.89 0.87 0.86 0.90 0.91 0.96 0.94 0.95 0.84 0.64 0.60 0.77 0.83 0.68 0.64 0.80
MARSM 0.92 0.89 0.88 0.92 0.92 0.97 0.93 0.96 0.84 0.64 0.64 0.78 0.88 0.63 0.65 0.80

Table 1: The entire-region test and the cross-region test for each period {TA,TB} using F1-score for each crop and overall accuracy (All).

learning(TEL)-based super-resolution approach [Zhang et al.,
2017a] (LSTMtel) and by the proposed MARSM method
(LSTMgen). Also, we compare against an LSTM combining
multi-scale data in the final layer (cLSTM) following [Chen
and Stow, 2003] (using generated data by MARSM).

We finally compare against three variants of MARSM to
show the efficacy of several factors: (1) MOD - incorpora-
tion of MODIS data, (2) ADV - adversarial regularizer, and
(3) SP - spatial smoothing in classification. These variants
are MARSMstn (no MOD, ADV or SP), MARSMwadv (with
MOD), MARSMwsp (with MOD+ADV).

We test each method on two periods in 2016: TA - Jan 06
to May 25 with Sentinel data missing on Feb 25, Mar 06, and
Mar 16, and TB - Apr 05 to Nov 11 with Sentinel data miss-
ing on July 04 and July 14. Note that TA does not cover the
crop growing season, but crop residues still show distinctions
among different varieties.

For each period, we measure the classification performance
by randomly selecting 60% data for training and then testing
on the remaining 40% data. Also, we evaluate the perfor-
mance in two scenarios: 1) entire-region test: the training and
testing data are sampled from the same region, i.e., the entire
study region, and 2) cross-region test: we randomly select a
continuous test region, and then take training samples which
do not overlap with test region.

According to Table 1, we observe that the performance in
cross-region test is generally worse than that in entire-region
test since farmers in different places have different preference
in planting and harvesting crops. Besides, the performance
in TB is generally better than TA, as TB covers the growing
season, which shows more distinctive characteristics of crops.

In both tests, MARSM outperforms the other baselines.
The comparison between MARSMstn and MARSMwadv

shows that MODIS data can provide promising insights in
learning the temporal patterns which contribute to missing
data generation and classification. The improvement from
MARSMwadv to MARSMwsp shows the effectiveness of the
adversarial regularizer. In addition, MARSM outperforms
MARSMwsp because it incorporates the spatial smoothing.

Besides, we can observe that ANN does not perform as
well as other sequential models. This is because different

crops look similar in many single dates. Moreover, the en-
semble single-date methods e-RF and e-FCNN do not per-
form well because they do not make use of the temporal grow-
ing patterns. Also, e-RF does not model any interactions be-
tween data from two sources.

The comparison between {LSTM, LSTMtel} and
{LSTMgen, LSTMcomb} demonstrates that MARSM can
generate high-quality data. The direct interpolation used in
LSTM baseline or the TEL-based super-resolution approach
in LSTMtel suffer from the heavy noise that exists at individ-
ual locations in Sentinel data. Also, they can hardly capture
the variability of crops. Overall, these methods have lower
accuracy than MARSM since the error for generated data can
be further accumulated to classification. The method GRU-D
imputes missing data based on a decaying factor determined
by the data. This method performs well in the entire-region
test but cannot generalize to different test regions with shift
on the feature space.

4.3 Generated Missing Data

We zoom into a small region and show the generated data
on Jul 14 (Fig. 3 (a)). Due to the heavy noise in Sentinel
data and the complex relationships among multiple spectral
bands, the generated data is slightly blurry compared to true
data. Nevertheless, the generated data capture the boundaries
of croplands and distinctions between different crops, which
are critical to the classification.

To quantify the performance of data generation, we eval-
uate MARSM, MARSMwadv and MARSMstn by compar-
ing the generated data with true data. Specifically, for each
method, we generate data from Jul 24 to Sep 2 (five time
steps). Then we measure the average absolute distance be-
tween generated data and true data over all the locations. The
results are shown in Fig. 3 (b). We observe that the generated
data by MARSM stay close to true data over all the five steps.
Without adversarial regularizer, MARSMwadv does not per-
form as well as MARSM, especially after more time steps.
On the other hand, as MODIS data provide information of
temporal evolution and mitigate the noise in Sentinel data, the
removal of MODIS data leads to the generation of less accu-
rate data, as can be seen by the performance of MARSMstn.
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(a) (b)

Figure 3: (a) The generated data on Jul 14 in an example region
(shown by a specific spectral band). (b) The average absolute dis-
tance between generated data and true data from Jul 24 to Sep 2.
The error bar represents the ± standard deviation.

Figure 4: Confidence progression for different crop types over time.
The error bar represents the ± standard deviation.

4.4 Confidence Progression

Here we apply MARSM from Apr 05 to Nov 11 (23 time
steps). For each class of corn, soybean, and sugarbeet, we
measure the classification confidence (averaged over corre-
sponding samples) over time, as shown in Fig. 4.

Our method captures that corn samples quickly gain confi-
dence at the 8th and 9th time steps, which correspond to Jun
14∼Jun 24. To validate the correctness of this finding, we
show the RGB image of an example region captured on Jun
24 in Fig. 5 (a). We can clearly see that in the early growing
season, corn turns into green more quickly than soybean and
sugarbeet, and therefore can be identified in this period.

Fig. 4 shows MARSM detects that sugarbeets still gain
confidence after October. We show another RGB image on
Oct 05 (the same example region) in Fig. 5 (b). While corns
and soybeans have been harvested, sugarbeets still remain
green. This demonstrates that MARSM can successfully cap-
ture the periods with discriminative knowledge and quickly
gains confidence in these periods.

5 Related Work

Many existing works map croplands by using MODIS data at
250/500m spatial resolution [Inglada et al., 2016; Zhong et
al., 2016], but they cannot identify small crop patches that
widely exist in the world. Some other works directly ap-
ply machine learning algorithms on high-resolution imagery

(a) (b)

Figure 5: The satellite imagery in RBG captured on (a) Jun 24 and
(b) Oct 05. Color legend for blocks: yellow - corn, blue - soybean,
red - sugarbeet.

(e.g., Landsat and Sentinel) [Zhong et al., 2014; Inglada et
al., 2016], or on the extracted object-based or shape-based
features [Gueguen and Hamid, 2015; Myint et al., 2011].
However, these works do not well address the challenges
in high-resolution data, including natural noise factors, ir-
regular temporal frequency and low data quality. To solve
these challenges, researchers have sought for combining data
in different resolutions for detection [Chen and Stow, 2003;
Kurtz et al., 2012; Audebert et al., 2017]. However, these
works only focus on combining data at single snapshots.

With recent advances of deep learning, RNN-based mod-
els have shown to be effective in many land cover and en-
vironmental problems [Lyu et al., 2016; Jia et al., 2017a;
Jia et al., 2017b; Jia et al., 2019b; Jia et al., 2019a; Jia et
al., 2019c]. However, due to their fully deterministic inter-
nal transition structure, they are inappropriate to model the
variability in data with complex dependencies. To this end,
VRNN is proposed which introduces randomness via latent
variables and models the dependencies between latent vari-
ables at neighboring time steps [Chung et al., 2015]. Our
proposed method is based on the VRNN model but extends it
to handle multi-scale multi-temporal data and track the real-
time confidence progression.

6 Conclusion

In this paper, we propose a framework MARSM that com-
bines multi-scale remote sensing data to identify croplands.
The experimental results demonstrate that MARSM greatly
improves the detection by learning from multi-scale data.
Also, the generated missing data by MARSM stay close to
true data over time, and lead to a better classification. In ad-
dition, the obtained confidence progression results conform
to the growth patterns of crops through visual validation.
With the advances in remote sensing technology, the pro-
posed framework can contribute to a large class of land cover
problems, which help promote the understanding of global
environmental changes.

MARSM can also be applied to other important applica-
tions, such as the disease progression modeling where health-
care data are often collected at different time scales with high
missing rate [Yang et al., 2018; Zhang et al., 2017b].
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