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Abstract

Inversions play an important role in disease and evolution but are difficult to characterize because 

their breakpoints map to large repeats. We increased by six-fold the number (n = 1,069) of 

previously reported great ape inversions using Strand-seq and long-read sequencing. We find that 

the X chromosome is most enriched (2.5-fold) for inversions based on its size and duplication 

content. There is an excess of differentially expressed primate genes near the breakpoints of large 

(>100 kb) inversions but not smaller events. We show that when great ape lineage-specific 

duplications emerge they preferentially (~75%) occur in an inverted orientation compared to their 

ancestral locus. We construct megabase-pair-scale haplotypes for individual chromosomes and 
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identify 23 genomic regions that have recurrently toggled between a direct and inverted state over 

15 million years. The direct orientation is most frequently the derived state for human 

polymorphisms that predispose to recurrent copy number variants associated with 

neurodevelopmental disease.

Inversions play an important role in disease and genome evolution as they suppress 

recombination1 and predispose to non-allelic homologous recombination (NAHR) 

associated with cancer and neurodevelopmental disease2. They are notoriously difficult to 

detect using both long- and short-read sequencing technologies3,4 because inversion 

breakpoints are typically embedded within highly identical segmental duplications (SDs)5–7 

exceeding 50–100 kb in size8. It is estimated that more than 50% of inversions within human 

genomes are flanked by such inaccessible SDs4,6,9,10. True inversions are also difficult to 

distinguish from repeat sequences that have mobilized and inserted in an inverted 

orientation11. As a result, inversions are now recognized as one of the most under-

ascertained forms of structural variation in human4 and nonhuman primate genomes, 

limiting our understanding of their evolution12.

Among apes, the largest cytogenetically visible inversions were first documented by Yunis 

and Prakash13, and most subsequent studies have inferred a subset of events using indirect 

genomic approaches12,14–18. For example, smaller inversions embedded in a unique 

sequence were readily detected using paired-end sequencing19, linked reads12,20, and 

assembly-based approaches12,21. These approaches especially fail to detect events that are 

flanked by SDs exceeding the length of the library inserts or sequence read length17.

Here, we apply Strand-seq22,23 to discover a comprehensive set of inversions in the great ape 

lineage and leverage long-read sequencing data to validate novel events that could not be 

confirmed by other approaches. Strand-seq is a single-cell sequencing technique that 

preserves directionality of single-stranded DNA at chromosome-length scale, allowing 

inversions to be readily detected and genotyped4,7. We apply this approach to provide a 

comprehensive framework for understanding the evolution and recurrence of inversions in 

the ape lineage.

RESULTS

Great ape inversion discovery

To systematically detect inversions in nonhuman primates (NHPs), we generated strand-

specific sequence (Strand-seq) data from a representative of each great ape species22,23. We 

selected NHP individuals that differed from those where whole-genome assemblies were 

recently generated12, although this complicates the validation of heterozygous events not 

fixed in each species. We generated 62 high-quality single-cell libraries for chimpanzee 

(Dorien), 51 for bonobo (Ulindi), 81 for gorilla (GGO9), and 60 for orangutan (PPY10) 

(Table 1, Supplementary Fig. 1a, and Methods). Because genome coverage for each single-

cell Strand-seq library is low (~0.02x) (Supplementary Fig. 1b), we increased the resolution 

for smaller inversions (1–50 kb) by concatenating all directional reads across all selected 

Strand-seq libraries into NHP-specific composite files4,7 (Fig. 1a, Supplementary Fig. 2, and 
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Methods). Using composite files aligned to the human reference assembly (GRCh38), we 

detected inverted NHP loci as short as 1 kb in length by tracking changes in read 

directionality along each chromosome24 (Methods).

We distinguish three classes of inversions. A homozygous inversion present on both 

homologs appears as a complete switch in reads mapping in reference orientation to all reads 

mapping in an inverted orientation (Fig. 1b). A heterozygous inversion resides on a single 

homolog and results in a 1:1 ratio of reads mapping in reference and inverted orientation. If 

there is no associated change in the underlying copy number, we group heterozygous and 

homozygous inversions as “simple” inversions (Fig. 1b). These are distinct from inverted 

duplications, where a change in copy number accompanies the localized change in read 

directionality. This class is often associated with lineage-specific SDs where at least one 

copy of a given locus resides in the genome in inverted orientation (Fig. 1b).

Among the NHPs, we detected 682 simple inversions and 387 inverted duplications (Fig. 1c, 

Supplementary Fig. 3, and Methods) with the number of events increasing with phylogenetic 

distance (Table 1). The vast majority of simple inversions (n = 604) are homozygous and 

likely represent fixed differences between humans and NHPs. The remainder (n = 78) are 

heterozygous, indicative of inversion polymorphisms within a great ape lineage 

(Supplementary Fig. 4b). As expected, nearly all (385 out of 387) inverted duplications 

appeared “heterozygous”, suggesting the duplicated locus occurs in an inverted orientation 

compared to the human locus and is on the same chromosome. These were easily 

distinguishable from simple heterozygous inversions by the increased sequence read depth 

over ancestral loci.

We performed extensive validations of both simple inversions and inverted duplications 

using a variety of orthogonal sequencing and mapping technologies (Supplementary Table 1 

and Methods). Using fluorescence in situ hybridization (FISH), for example, we tested five 

large inversions (between 500 kb and 2.7 Mb in size) and confirmed that all were inverted in 

the predicted great ape (Supplementary Fig. 5, Supplementary Table 2, and Methods). We 

considered an inversion validated if it overlapped (50% reciprocal overlap) with an inversion 

call made by an orthogonal technology or an inversion was already published12,13,18,21,25 

(Supplementary Fig. 6). Additionally, we attempted to assemble the breakpoints of 119 

inversions using a recent phased long-read assembly approach4,26. This approach confirmed 

27 inversions and provided sequence resolution of the inversion breakpoints (Supplementary 

Fig. 7, Supplementary Table 3, and Supplementary Note). Altogether, we validated 88% of 

our simple inversions (Fig. 1d), including most fixed events. Of the inversions that lack 

validation, 80% are either heterozygous (and therefore likely polymorphic in the lineage) or 

flanked by SDs and thus difficult to ascertain by other technologies. We estimate we have 

increased the number of validated simple inversions more than six-fold (78 vs. 521) when 

compared to previous studies (Fig. 1d).

Size and chromosomal distribution

Simple inversions ranged from 1,055 bp to 9.1 Mb in length (Supplementary Fig. 4a). Those 

flanked by SDs (n = 227; median 71,873 bp) were significantly larger (Wilcoxon rank sum 

test, two-sided, P = 1.21 × 10−19) (Fig. 1e) when compared to inversions not flanked by SDs 
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(n = 455; median 12,476 bp). We note that this difference is unlikely due to ascertainment 

biases associated with previous studies12,27. Additionally, we found inversion size correlated 

positively with the size of SDs flanking the inversion28 (Supplementary Fig. 8). Strand-seq 

detection is much more sensitive than short-read-pair mapping approaches because inversion 

detection does not depend on the mapping of discordant reads to the reference genome17,29. 

Instead, the directionality with respect to the reference is embedded in every sequencing 

read, allowing for the unambiguous detection of inversions even when flanked by complex 

SDs7. Similarly, inverted duplications, which likely arise by duplicative transposition, show 

a wide size distribution (range 10,171–1,708,343 bp; median 48,421 bp) but rarely exceed 1 

Mb in length, suggesting an upper bound for SD formation (Fig. 1e). Of note, we set a lower 

limit for inverted duplication calls at 10 kb.

While the number of simple inversions generally correlates with chromosome length (R2 = 

0.3) (Fig. 1f,g), the X chromosome is an exception with ~2.5-fold more inversions when 

compared to the autosomal length (z-score = 3.57, P = 0.000177, one-sided) (Fig. 1f). This 

difference is even more pronounced for heterozygous inversions (4.6-fold), consistent with 

elevated rates of inversion polymorphism on the X chromosome (Supplementary Fig. 9). We 

also note that X chromosome inversions show a tighter size distribution (up to ~100 kb) 

compared to autosomes (Supplementary Fig. 10), possibly due to differences in the 

underlying architecture of SDs.

Unlike simple inversions, the number of inverted duplications correlates less strongly with 

chromosome size (R2 = 0.1) (Supplementary Fig. 11) but instead with SD content in the 

human genome (R2 = 0.301) (Fig. 1g). This is expected since lineage-specific duplications 

are 10-fold more likely to arise adjacent to ancestral duplicated sequences shared between 

two ape species30,31. If such a duplication arises in an inverted orientation, it will appear as 

an inverted duplication. For example, human chromosomes 5, 7, 10, 16 and 17 are among 

the most SD-rich chromosomes and similarly showed the greatest density of ape inverted 

duplications, often in close proximity to known human SDs (Supplementary Fig. 12). Once 

again, the clear exception is the X chromosome, which shows an excess of inverted 

duplications (Fig. 1g) with respect to autosomes given the chromosomal SD content.

Phylogenetic reconstruction

We compared the distribution of inversions among all great apes, including an African 

human sample4 (NA19240) (Fig. 2a, colored bars). Human-specific inversions are 

identifiable as loci that were inverted in all NHPs compared to the “direct” orientation in the 

human genome (Fig. 2b, left). We identified 26 total human-specific inversions, of which 

only 6 were previously reported (Fig. 2b, right, Methods)12,18. Excluding human reference 

genome misassemblies4, we classified all human-specific inversions as ancestral or lineage-

specific parsimoniously assigning them to an ape phylogenetic tree (Methods). We placed 60 

inversions on ancestral branches of the great ape phylogeny with the majority (n = 45), 

occurring on the ancestral Pan lineage (Fig. 2c). This was expected due to the recent 

divergence of chimpanzee and bonobo. Approximately 27% (16/60) of all ancestral 

inversions are heterozygous in one or more ape species and are likely polymorphic.
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Using a nonredundant dataset of simple autosomal inversions (n = 358), we also constructed 

a Bayesian evolutionary tree (Fig. 2d and Methods), and we estimate the rate of fixation of 

simple inversions as ~7 autosomal inversions per million years of evolution. No ape lineage 

showed evidence of inversion acceleration, with branch rates ranging from 0.0075–0.0093 

inversions per locus (Supplementary Table 4); however, we observe variable inversion rates 

after accounting for the number of inverted base pairs per single-base-pair substitution 

(range: 0.05–17.13) (Supplementary Table 4). Interestingly, we identified 27 inverted loci 

that show evidence of homoplasy (Fig. 2a, black asterisks) either due to recurrent mutation 

or incomplete lineage sorting. For instance, 5 inversions shared between human, gorilla, and 

orangutan were absent in the Pan lineage, 11 out of the 27 likely recurrent loci reside on 

chromosome X, and 85% (23/27) are flanked by known human SDs.

Human polymorphism and inversion hotspots

We compared the 388 nonredundant simple ape inversions (including X chromosome) to 150 

simple human inversions recently described for six humans of diverse ancestry4 

(Supplementary Fig. 13 and Methods). Strikingly, we found one-third (49/150) of the human 

polymorphic inversions overlapped with an inversion detected in an NHP (Fig. 3a). Of these, 

43% (21/49) mapped to the X chromosome (Fig. 3b, top track) and 31% (15/49) 

corresponded to the aforementioned recurrent ape inversion sites (n = 27). Notably, more 

than half (27/49) of these loci were heterozygous in an NHP lineage (Supplementary Fig. 

14), evidence of polymorphism across multiple ape lineages. The majority (38/49) of these 

inversions were flanked by highly homologous SDs (Fig. 3b, bottom track), with 10 of these 

regions being polymorphic in a larger genotyping panel of the human population32 

(Supplementary Fig. 15).

Inversion breakpoints were not randomly distributed but clustered into 23 discrete genomic 

regions (median size 5.5 Mb) (Fig. 3c and Supplementary Fig. 16) enriched for human 

female meiotic recombination hotspots (P = 0.021, z-score = 2.438) (Supplementary Fig. 

17a). Twelve of these clusters harbor half (25/49) of the inversions shared between humans 

and NHPs. As expected, breakpoint clusters are enriched ~5.6-fold for SDs (Fig. 3c inset) 

with chromosomes 16, 17 and X harboring the greatest number. For example, we observe 

three distinct inversion clusters on chromosome X that encompass 21 inversions shared 

between humans and NHPs (Supplementary Fig. 18). Using the phase information 

embedded in Strand-seq data, we ordered and phased all 21 inversions, along the entire 

length of the chromosome X (Fig. 3d, Supplementary Fig. 19, and Methods), which revealed 

a remarkable degree of evolutionary toggling between humans and NHPs with SDs 

bracketing recurrently inverting regions and frequently containing protein-coding genes (Fig. 

3d, top track, and Supplementary Fig. 20). Each human haplotype in these regions shows a 

unique combination of inverted and directly orientated loci (n = 21) (Supplementary Fig. 21) 

and is not significantly different from a random inversion state at these loci (Mantel statistic, 

P = 0.162; low bootstrap support; Supplementary Note). A similar pattern of inversion 

toggling was observed in two regions on chromosome 16 (Fig. 3e). Interestingly, both X 

chromosome and the reported regions on chromosome 16 are biased towards female meiotic 

recombination (Supplementary Fig. 17b).
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Because inversion polymorphic regions have been associated with particular recurrent 

rearrangements8,33,34, we investigated 36 recurrent large-scale copy number variants 

(CNVs) associated with neurodevelopmental disorders in humans35 and found that 47% 

(17/36) of these overlap (50% reciprocal overlap) with our map of NHP inversions. This 

represents a ~14-fold enrichment when compared to a random simulation of pathogenic 

CNVs (z-score = 17.2, P = 2.09 × 10−66, two-sided, 100 iterations) (Supplementary Fig. 22a, 

Supplementary Table 5, and Methods). Two of these inversions are classified as occurring 

specifically in the human lineage, two inversions are known to be polymorphic in humans, 

while the remaining 13 are observed as simple NHP inversions (Supplementary Fig. 22b). At 

the species level, orangutan shows the greatest correspondence with nearly 42% (15/36) of 

recurrent CNVs overlapping an inversion and the highest frequency (0.88) of inverted loci at 

these regions (Supplementary Fig. 22c). In about half of these cases (8/15), orangutan 

represents the ancestral configuration based on synteny analysis with macaque and mouse 

(Supplementary Table 6). Interestingly, most of these CNV hotspot regions are in an inverted 

orientation in at least one NHP while most human haplotypes are in a direct orientation with 

respect to the human reference (Supplementary Figs. 23 and 24).

Inverted orientation bias for lineage-specific duplications

A relatively unique feature of the Strand-seq assay is the ability to distinguish simple 

inversions from inverted duplications associated with a copy number change4 (Fig. 1b). 

Unlike simple inversions that accumulate relatively uniformly between ape lineages, we 

observe a slight excess of inverted duplications in gorilla and orangutan when compared to 

bonobo and chimpanzee (Supplementary Fig. 25a), although the number of lineage-specific 

duplications generally recapitulates the ape phylogeny (Supplementary Fig. 25b). Taking 

advantage of short-read sequencing data from 286 human, ape, and archaic hominin 

genomes, we genotyped copy number and assayed lineage specificity for 387 inverted 

duplications (Methods). The majority of orangutan (93%) and gorilla (79%) copy number 

increases are lineage specific in comparison to the chimpanzee and bonobo, where >50% of 

the inverted duplications are shared (50% reciprocal overlap) due to their more recent 

divergence (Fig. 4a and Supplementary Fig. 25d). We highlight a human-specific duplication 

of GPRIN2 that was recently shown to be missing from the human reference (GRCh38)36 

(Supplementary Fig. 26). Using an independent map of great ape–specific duplicatons31,37, 

we investigated if SDs show a preferential bias in their orientation (Methods). Excluding 

interchromosomal events (Supplementary Fig. 27 and Methods), we find that ~78% of 

lineage-specific duplications map in an inverted orientation (P < 0.005, Bonferroni 

corrected) (Fig. 4b). If we limit the analysis to only those lineage-specific duplications with 

no more than one or two additional copies (n = 3 or 4 copy number estimate in a diploid 

genome), this bias remains significant with ~75% of lineage-specific duplications occurring 

in an inverted orientation. In addition to this orientation bias, it should be noted that we 

predict an enrichment of inverted duplications mapping near the ends of chromosomes (last 

5% of a chromosomal arm) with this difference being the most pronounced in gorilla (P = 

0.001) (Fig. 4c)38.
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Rearrangement and NHP gene expression differences

The association of inversions and SDs creates the potential for the formation of novel fusion 

transcripts and genes during evolution. We examined all NHP inverted regions searching for 

the presence of novel fusion genes based on a comparison of long-read genome sequence 

data and full-length non-chimeric (FLNC) transcripts generated for the different NHP 

species (Supplementary Table 8). We detected 15 putative fusion transcripts, of which three 

were further supported by long-read Pacific Biosciences (PacBio) data (Supplementary 

Table 9 and Methods). We identified a fusion gene specific to the gorilla lineage that was 

created by inverted duplication and reintegration of a segment of DNA between 

chromosomes 4 and 7 (Fig. 4d). This fusion is supported by both split-read mapping of 

FLNC transcripts and long PacBio reads.

Inversions also carry the potential to rearrange gene regulatory regions and thus perturb 

gene-enhancer interactions, for example, by disrupting the structure of topologically 

associating domains (TADs), as previously reported in the context of human diseases39,40 

(Supplementary Fig. 28). Notably, we find that breakpoints of larger inversions (>100 kb) 

tend to co-localize with human-defined TAD boundaries41 (Fig. 5a,b), whereas shorter 

(<100 kb) inversions do not show such tendency and instead their breakpoints appear to be 

strongly depleted from TAD boundaries (Fig. 5b, inset). Next, we investigated the effect of 

these large-scale balanced rearrangements on primate gene expression by analyzing bulk 

RNA-seq data from 21 human and 47 NHP samples spanning six tissues42. Per tissue, we 

observed a median of 1,499 differentially expressed (DE) genes in each NHP (compared to 

the corresponding human tissue). We found DE genes were located more frequently (~1.15-

fold increase, P = 0.0048, one-sided permutation test; Methods) in TADs disrupted by an 

inversion compared to intact TADs that did not contain an inversion breakpoint (Fig. 5c). 

When testing differential expression with respect to inversion breakpoints, we observe more 

DE genes near the breakpoints of large inversions (>100 kb), when compared to small 

inversions (<100 kb) (Fig. 5d). We further investigated this effect using other recently 

published datasets42–45 with a specific emphasis on brain genes. We preselected protein-

coding genes with disrupted gene-enhancer interaction at breakpoints of 388 nonredundant 

simple inversions. In total, we found 249 candidate genes, of which 102 are DE genes in at 

least one from the above-mentioned datasets, with 30 genes confirmed by two datasets 

(Supplementary Fig. 30a, Supplementary Table 10, and Supplementary Note), including 

neurodevelopmental disease genes (e.g., SETD7 or CTNNA3). In line with the previous 

analysis46, we continue to observe the trend of more DE genes located near the breakpoints 

of larger inversions (>100 kb) (Supplementary Fig. 30b, see circle sizes).

DISCUSSION

Inversions have been long thought to be a driving force in human evolution with the 

potential to reduce recombination, create fusion genes, and alter patterns of gene 

expression47,48. We assessed the latter by comparing regions of ape inversion with 

corresponding NHP bulk RNA-seq data42 with previously defined TADs41. Notably, we 

observe evidence that large (>100 kb) inversions may mediate gene regulatory changes in 

NHP evolution, unlike smaller inversions, which rarely associate with NHP gene expression 
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changes. Irrespective of this, inversions are responsible only for a relatively small number of 

DE changes (~1.15-fold enrichment of DE genes), suggesting more complex gene regulatory 

relationships46. We further find that 15 out of 26 human-specific inversions have known 

enhancer regions49 within 5 kb distance (Supplementary Fig. 31a). For example, a human-

specific inversion on chromosome 12 repositioned an enhancer in the vicinity of SLC48A1 

that was previously shown to be upregulated in human neuronal cells (excitatory and 

inhibitory neurons) and radial glia44. SLC48A1 shows the highest expression in the spinal 

cord and enhances tumorigenic functions of non-small-cell lung cancer cells and tumor 

growth50 (Supplementary Fig. 31b).

Our analysis shows that inversions are among the most biased forms of genetic variation 

showing a highly nonrandom distribution. The X chromosome is the greatest outlier with 

approximately 2.5-fold more inversions based on its size and duplication content when 

compared to ape autosomes (Fig. 1f). This difference is most pronounced for heterozygous 

inversions suggesting elevated rates of inversion polymorphism for the X chromosome 

(Supplementary Fig. 9). It has been hypothesized that X chromosome hemizygosity and the 

absence of male recombination (outside the pseudoautosomal region) may be responsible for 

the abundance of X chromosome inversions by promoting NAHR for unpaired X 

chromosomes during meiosis51. It is possible that regions of sex-biased recombination may 

be particularly prone to inversions if such regions are more likely to fail to pair 

homologously during meiosis, allowing preferential intrachromosomal or interchromatidal 

exchange of genomic regions between duplicated sequences. Importantly, regions of 

inversion toggling, such as chromosome 16, are also known to be hotspots for NAHR 

associated with recurrent rearrangement, commonly seen in neurodevelopmental delay35 

(Fig. 3e, red arrows). It is also interesting that the size distribution of simple inversions on 

the X chromosome is more tightly distributed than autosomes with an upper limit of ~100 kb 

(Supplementary Fig. 10). This size constraint may be the consequence of the relatively 

unique SD organization on the X chromosome, where closely distributed pairwise SDs 

provide the substrates for NAHR as opposed to autosomes where recent duplications are 

more interspersed52. Alternatively, selective effects on sex chromosomes may be playing a 

role53,54 eliminating such events in males.

Within a chromosome, there is also clear regional clustering and we identify 23 discrete 

regions where we observe an excess of ape inversions. These inversion breakpoint clusters 

are enriched ~6-fold for the presence of SDs (Fig. 3b, inset) with regions on chromosomes 

16, 17 and X showing some of the largest intervals (Supplementary Fig. 22). Interestingly, 

chromosomes 16 and X are particularly biased for female recombination where genetic 

estimates suggest a 10-fold reduction in male recombination55 (Supplementary Fig. 17b). 

Targeted sequencing of large-insert BAC clones from orangutan, chimpanzee, and human 

confirm an excess of fixed and inverted polymorphisms with breakpoints mapping to these 

SDs56. Related to this feature, we also observe 27 shared inversions among the different ape 

species suggesting either recurrent inversions or incomplete lineage sorting during evolution 

(Fig. 2a)57. Several lines favor recurrent hotspots of mutation—85% (23/27) of these 

hotspots, for example, are flanked by SDs that would promote recurrent mutation by NAHR. 

We find that inversions flanked by SDs are much more likely to be polymorphic when 

compared to ape inversions not flanked by SDs. When we separately analyzed 150 validated 
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human inversion polymorphisms4, we find 33% (49/150) overlap those detected in NHPs 

with 77% flanked by SDs and many mapping to the predicted 23 inversion breakpoint 

clusters. Once again, the X chromosome is disproportionately enriched carrying more than a 

third of these likely recurrent sites (11/27).

Phasing of individual human and NHP haplotypes reveals a remarkable pattern of inversion 

toggling extending previous observations of individual loci8,51,58 to entire chromosomal 

regions (Fig. 3d). One of these inversion hotspots on the X chromosome, for example, 

corresponds to the previously described FLNA-EMD inversion, which has been estimated to 

have undergone at least 10 independent inversion events based on a comparative sequencing 

study of 27 eutherian mammals51. The dynamics of recombination, linkage disequilibrium, 

and allele frequency of such ancient evolutionary polymorphisms can now be more 

systematically evaluated and is especially interesting in light of the fact that these inversion 

hotspots frequently contain protein-coding genes (e.g., MAGEA11, H2BFWT, HWBFRM, 

etc.) (Fig. 3d).

The association between SDs, inversion polymorphisms, and microdeletion and 

microduplication syndromes is long standing2,4,8,33,34. Recurrent inversions on the X 

chromosome have also been associated with Factor VIII deficiency observed both in humans 

and dogs, which appears to be mediated by inverted repeats arising independently or 

homogenized by conversion at the same regions58. In a few cases where the underlying 

mechanism has been investigated59–62, individuals carrying inverted haplotypes appear 

predisposed to higher rates of NAHR either because of SDs evolved in the flanking regions 

in direction orientation or because SDs become configured to predispose to 

interchromosomal rearrangement in the heterozygous state34,61. Related to this, one of the 

important findings of this study is the ability to distinguish simple inversions from inverted 

duplications by comparing SD and Strand-seq datasets31. In so doing, we determined that 

the preferred (75%) orientation for emergence of lineage-specific duplications is in the 

inverted orientation as opposed to the direct. While this is selectively advantageous in the 

short-term for reducing NAHR-mediated copy number changes, inverted duplications do set 

the stage for cascading and recurrent inversion toggling leading to simple inversions and 

ultimately more complex SDs predisposing to recurrent rearrangement and 

neurodevelopmental disease.

METHODS

Strand-seq library preparation and sequencing

Strand-seq libraries were prepared from B-cell lymphoblastic cell lines previously generated 

for a female Western chimpanzee (Pan troglodytes; Dorien), female bonobo (Pan paniscus; 

Ulindi), male Western gorilla (Gorilla gorilla; GGO9), and male orangutan (Pongo abelii; 

PPY10). All lines were maintained in RPMI-1640 with 10% FBS, 1% Glutamax and 1% 

penicillin/streptomycin. BrdU (Bromodeoxyuridine; Sigma, B5002) was added to log-phase 

cell cultures at 40 μM or 100 μM concentrations for a period of 18 or 24 hours. Single nuclei 

were prepared and sorted using the BD FACSMelody cell sorter into 96-well plates for 

Strand-seq library production, as previously described22,23. The Strand-seq protocol was 

implemented on a Biomek FXP liquid handling robotic system, and pooled single-cell 
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libraries were sequenced on the NextSeq5000 platform (MID-mode, 75 bp paired-end 

protocol). After demultiplexing, Strand-seq reads were aligned to the human reference 

assembly GRCh38 (GCA_000001405.15_GRCh38_no_alt_analysis_set.fna) using the 

default parameters of BWA-MEM (version 0.7.15-r1140). Aligned BAM files were sorted 

by genomic position using SAMtools (version 1.7) and duplicated reads marked using 

sambamba (version 0.6.6). After alignment, each single library was evaluated to select only 

high-quality Strand-seq data for downstream analyses. Specifically, libraries with visible 

background reads (i.e., reads mapped to opposite direction on chromosomes that inherited 

template strands with the same directionality) and libraries with low (<50,000 reads) or 

uneven coverage were excluded, as detailed previously23,63.

Inversion detection from Strand-seq data

To increase the sensitivity of inversion calling and inversion breakpoint resolution, we 

constructed composite files for each individual great ape genome. As previously 

described4,7, composite files were generated by merging Strand-seq data for each 

chromosome based on shared strand inheritance patterns in order to produce a high-coverage 

directional file for the genome. Briefly, we concatenated reads from multiple Strand-seq 

libraries from each chromosomal region genotyped as either Watson-Watson (WW, inverted 

orientation) or Crick-Crick (CC, reference orientation) state. To match the reference 

orientation, we have reverse-complemented regions genotyped as WW prior to merging 

subsequent Strand-seq libraries. From a composite file, read directionality can then be 

assigned as either ‘reference’ and in the same (forward) orientation as the reference 

assembly or ‘inverted’ and in the opposite (reverse) orientation of the assembly. The ape-

specific composite files produced in this study are available as UCSC formatted BED files 

(Data availability).

In each composite file, we then called inversions using the Bioconductor package 

breakpointR24 (Code availability). We used the ‘runBreakpointr’ function with the following 

parameters: [windowsize = 10000, binMethod = “multi”, background = 0.1, peakTh = 0.25, 

trim = 10, zlim = 3.291, minReads = 20, min.mapq = 10]. To run the same version of 

breakpointR as in this paper, please refer to github (Code availability). Inversion breakpoint 

resolution highly depends on the underlying genome architecture on each side of the 

inversion. Because short Strand-seq reads have difficulty mapping within SDs flanking the 

inversion, the breakpoint is typically placed within the SD range. In such regions, breakpoint 

prediction is less accurate and thus might not represent the exact breakpoint position. Details 

of breakpoint resolution achieved by breakpointR have been discussed previously24.

We curated every inversion breakpoint detected by breakpointR manually in the UCSC 

Genome Browser64 and classified events as simple inversion calls without an evidence for 

increased copy number (‘INV’) and more complex inversions with increase in copy 

(WSSD)65 as inverted duplication (‘invDup’). We assigned each inversion a genotype as 

either ‘HOM’ where vast majority of reads map in inverted orientation (Watson, minus 

strand) or ‘HET’ where there is approximately 1:1 ratio between reads in inverted (Watson, 

minus strand) and reference (Crick, plus strand) orientation.
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Smaller changes in directionality not detected by breakpointR were included into the final 

callset only if they were supported either by the PacBio or Illumina callset. Because of 

limited coverage of Strand-seq data, we excluded simple inversions with less than 1 kb of 

unique sequence and inverted duplications smaller than 10 kb to ensure the high quality of 

our callset.

Long-read alignment parameters

Raw PacBio and Iso-Seq reads were obtained from previous studies12 (Supplementary Table 

11). PacBio reads were aligned to GRCh38 using minimap2 (version 2.14-r883) using 

recommended minimap2 parameters by PBSV pipeline (--MD -t 8 -x map-pb -a --eqx -L -O 

5,56 -E 4,1 -B 5 --secondary=no -z 400,50 -r 2k -Y). Iso-Seq reads were mapped to GRCh38 

using minimap2 (version 2.14-r883) using the following parameters: -ax splice -uf -C5 --

secondary=no –eqx.

Inversion validations

Strand-seq inversion callsets were validated using multiple orthogonal datasets, such as 

PacBio, Illumina, and Bionano optical maps (Supplementary Table 1). We called inversions 

in PacBio data using PBSV (version 2.0.2) and SNIFFLES (version 1.0.10) with default 

parameters. We used DELLY (version 0.7.9) to call inversions in short Illumina reads. 

Bionano inversion calls were obtained using an analysis pipeline provided by the vendor 

(Supplementary Note). Furthermore, we used previously published and validated NHP 

inversions12,18,25. We used the primatR package function ‘getReciprocalOverlaps’ in order 

to find for each Strand-seq inversion the best matching inversion call from any of the 

orthogonal dataset. Strand-seq inversions having ≥50% reciprocal overlap with any 

orthogonal dataset were deemed as validated. We attempted to validate the remaining 

unvalidated inversions by manual inspection of Bionano alignments and by projecting NHP 

de novo assemblies12 (Supplementary Table 12) against GRCh38 using dotplot analysis. In 

the case of bonobo, we used long-read data generated from the Mhudiblu cell line examining 

local assemblies of the inversion breakpoints. Lastly, we attempted to validate a selected 

number of inversions using FISH (Supplementary Note).

Phylogenetic analyses

In order to identify human-specific inversions and eliminate reference artefacts, we repeated 

the Strand-seq analysis with data generated for the Yoruban individual NA192404 using the 

same parameters. Human-specific inversions were defined as regions that are homozygously 

inverted in all NHPs with respect to a human reference (homozygous reference orientation) 

and confirmed with NA19240. We also removed all previously reported misassemblies in the 

human reference (Supplementary Table 13)4. We used 50% reciprocal overlap to delineate 

shared and lineage-specific inversions among great apes. We constructed a simple matrix 

where individuals (rows) that share any given loci (columns) based on 50% reciprocal 

overlap are assigned a value of one; otherwise they are assigned zero. Next, we compute the 

Hamming distance between all great apes, which is then used by hierarchical clustering to 

reconstruct the phylogeny purely based on the presence or absence of shared loci. In this 

analysis we do not take into account heterozygosity.
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Estimating inversion rates in the great ape lineage

We computed three different rate estimates: the mean fixation rate of simple inversions per 

million years, branch rate estimates, and the rate per inverted base per single-nucleotide 

substitution.

The mean fixation rate of simple inversions per million years assumes a clockwise inversion 

rate across the great ape phylogeny and thus is defined as the total number of simple species-

specific inversions divided by the sum of divergence times (in million years) among species. 

To infer the branch-specific rates and the phylogenetic relationships among primates of 

interest using the 358 autosomal inversion calls, we performed the Lewis Markov k model66 

implemented in Bayesian phylogenetic-based (BEAST v2.5.0) analyses. We modeled the 

evolution of individual inversions as changes in separate discrete traits, where each trait has 

three states: homozygous human reference, heterozygous inverted, and homozygous inverted 

orientations. To run BEAST, we used Lewis Mk, with GAMMA Category Count=3 for the 

site model and a random local clock for clock model parameter to explicitly test mutation 

rate on individual branches in the tree. For tree priors, we used the birth-death model with 

default parameters but added a prior for the calibration of human–gorilla divergence using a 

log-normal distribution (M = 2.1, S = 0.085). We performed five independent runs to infer 

the phylogeny using a chain length of 10,000,000 samples and recorded every 1,000 

samples. We used the accompanying program Tracer (v.1.7.1) to determine the quality of 

each run and used the first 10% as burn-in. All phylogenetic trees were plotted using Figtree 

(v1.4.3) and DensiTree (v2.2.6).

Finally, to estimate the rate of simple inversions relative to that of single-nucleotide variants 

(SNVs) on each branch of the inferred phylogeny as proposed by Sudmant et al.31, we 

computed the rate of inverted bases per substitution for each branch with the following 

formula: # inverted bases per substitution of a branch = (# total inverted bases on the 

branch / 2.87 × 109) / the substitution rate of inversion, where 2.87 × 109 is the genome size 

after excluding simple repeats and the rate of inversion is estimated by BEAST as listed in 

Supplementary Table 4.

Inverted duplication analysis

Besides inverted duplications, we list the number of direct duplications in the NHP genomes. 

We did this by scanning Strand-seq composite files in the UCSC Genome Browser and 

reporting regions of increased read depth (based on WSSD track) and reads mapped 

preferentially in the reference orientation (Supplementary Table 7). We further genotyped all 

lineage-specific duplications detected previously31. Of all 11,260 lineage-specific 

duplications, we retained only regions ≥10 kb that did not appear in humans. Note that a 

strength of Strand-seq is that it distinguishes directionality of intrachromosomal duplications 

in the majority of cases, including clustered duplications. In such cases seeing a mixture of 

direct and inverted reads mapping over the duplicated loci is evidence that at least one copy 

of this loci is in inverted orientation (Fig. 1b). However, the directionality of 

interchromosomal duplications is more difficult to reliably assess using Strand-seq. Because 

strand-state of chromosomes where a corresponding duplication resides might differ within a 

single Strand-seq library based on assortment, read directionality of these duplicated copies 

Porubsky et al. Page 12

Nat Genet. Author manuscript; available in PMC 2020 December 15.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



will reflect the strand-state of the chromosome they reside in. To avoid evaluating low-

confidence inverted duplication sites, we removed regions that overlap with 

interchromosomal links predicted by PacBio split-read mappings (see below). This left us 

with 504 nonredundant regions. Of these, one region failed to lift from GRCh36 to GRCh38 

coordinates. Next, we genotyped these regions as HET – heterozygous, HOM – homozygous 

inverted, or REF – homozygous reference (using primatR ‘genotypeRegions’ function with 

min.reads=5, alpha=0.05). Last, we calculated proportions between inverted and direct 

duplications for each NHP and established the significance of this difference using a chi-

square test. Resultant P-values were corrected for multiple testing using Bonferroni 

correction. The same significance tests were repeated with 387 inverted and 88 direct 

duplications reported in this study (Supplementary Fig. 25c).

We attempted to validate inverted duplications using discordantly mapped BAC-end 

sequences with signatures of an inversion, deletion, or insertion. Inverted duplications that 

overlapped with at least 5% of discordantly mapped BAC ends and at least two discordantly 

mapped BAC ends in total were marked as supported by BAC-end mappings. In addition, we 

attempted to validate inverted duplications using de novo assembly and SDA36 for each 

NHP. We aligned assembled contigs against the human reference using minimap2 (version 

2.17) to obtain genomic locations where given contigs map. Next, we used nucmer (version 

3.1) to align all contigs against specific loci in the human reference with the following 

parameters: --mumreference -c 100 -g 1000 -l 5. Such alignments were visualized as 

dotplots and regions showing clear inversion patterns were marked as supported by de novo 

assembly (Supplementary Table 7).

Mapping inverted duplication loci

To identify the putative integration sites of lineage-specific duplications, we constructed a 

pseudo mate-pair read using PacBio reads that extend over inverted duplication breakpoints. 

Specifically, we split individual long PacBio reads using a k-mer size of 2 kb and a step size 

of 1 kb. For instance, a PacBio read of 12 kb in length is cut such that we initially create a 2-

kb portion on the left and leave the rest of the PacBio read (10 kb) on the right. Then we 

move the cut site by 1 kb to the right, creating the left portion of the PacBio read of 4 kb and 

leaving the remaining 8-kb portion on the right. We iterated this procedure until the left mate 

read equals 2 kb (Supplementary Fig. 27a). The resulting pseudo mate-pairs were mapped to 

the human reference genome (GRCh38) in a paired-end fashion using BWA-MEM (version 

0.7.15-r1140) with ‘-x pacbio’ parameter. Discordant read pairs that map to different 

chromosomal locations point to the sites where duplicated sequences integrate in the 

genome. We required a minimum of 10 unique PacBio reads to support such 

interchromosomal connections.

Human inversion callset and overlap

We compared NHP inversion data to a set of 150 human polymorphic inversions identified 

and phased from three 1000 Genomes Project trios of Han Chinese, Puerto Rican, and 

Yoruban Ibadan origin4. To detect inverted loci shared between NHPs and humans, we 

constructed a nonredundant dataset of NHP simple inversions. The set of human 

polymorphic inversions4 was filtered for events with ≥1 kb of unique sequence. We detected 
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shared inversions between the HGSVC and NHP callsets based on 50% reciprocal overlap. 

Next, we re-genotyped shared NHP inversions based on Strand-seq composite files and 

reported the inverted loci frequency for both HGSVC and NHP individuals based on the 

number of inverted loci (HOM = 2 inverted loci, HET = 1 inverted loci, and REF = 0 

inverted loci). To see how many of these regions are flanked by known human SDs, we 

downloaded a UCSC Genome Browser track of known human SDs and calculated the 

distance of each inversion breakpoint to the closest SD. We set inversions where both 

breakpoints are no further than 5 kb away from the closest SD as being flanked by SDs.

Overlap between simple inversions and pathogenic CNVs

The list of human pathogenic CNVs was obtained from a previous study that identified 

regions showing an excess of large deletions and duplications in cases of pediatric 

developmental delay when compared to normal population controls35. We searched for 50% 

reciprocal overlap between pathogenic CNVs (n = 36) and simple inversions (n = 682) using 

the primatR ‘getReciprocalOverlaps’ function. Those pathogenic CNVs that overlapped with 

simple inversions have been re-genotyped (primatR ‘genotypeRegions’ function) in all 

NHPs in order to compute the frequency of inverted loci in these regions (HOM = 2 inverted 

loci, HET = 1 inverted loci, and REF = 0 inverted loci). To estimate the level of enrichment 

of pathogenic CNVs in NHP simple inversions, we randomly shuffled these pathogenic 

CNVs 100 times and each time we evaluated 50% reciprocal overlap. This randomization 

was performed using the primatR ‘randomizeRanges’ function. Each pathogenic CNV was 

shuffled within its chromosome of origin and we excluded assembly gaps and centromeres 

from the randomization process.

Assigning human and NHP inversion to haplotypes

In order to assign all inversions (homozygous and heterozygous) to their corresponding 

haplotypes, we used phasing information embedded in Strand-seq data63. We used RTG 

tool67 (RTG Core Non-Commercial version 3.9.1) to call SNVs in Strand-seq data merged in 

a single BAM file. We used following RTG parameters: --min-mapq 10 --min-base-quality 

10 --snps-only --no-calibration --machine-errors illumina --max-coverage 30. After 

obtaining the set of heterozygous SNVs, we used StrandPhaseR to phase single-cell 

haplotypes and to split all Strand-seq reads into their respective haplotypes68. Next we used 

the read-depth profile of haplotype-specific reads in order to assign inverted and reference 

alleles, in heterozygous conformation, into their respective haplotypes (Supplementary Fig. 

19). We visualized the order and orientation of inverted regions using CRAN package 

‘gggenes’ (version 0.4.0, https://cran.r-project.org/web/packages/gggenes/).

Fusion gene detection

To detect putative fusion genes, we used a tool called ‘cDNA_Cupcake’69 (https://

github.com/Magdoll/cDNA_Cupcake/) and its function called ‘fusion_finder.py’ to perform 

fusion gene prediction based on recommended settings at https://github.com/Magdoll/

cDNA_Cupcake/wiki/. In order to remove excess false positive calls we narrowed down 

initially predicted gene fusions to only those that lie in the vicinity (+/-1 kb) of predicted 

simple inversion and inverted duplication breakpoints. We further investigated split-read 

mapping signatures of Iso-Seq (FLNC) reads that map to different chromosomes of the 
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human reference genome. To reduce the level of false positive calls, we further removed 

fusion predictions that do not overlap with known genes from the GENCODE database 

(v29) at both donor and acceptor sites as well as sites that overlap with known SD regions on 

either donor or acceptor sites. Lastly, we attempted to validate these fusion gene predictions 

based on PacBio split-read mappings as described in ‘Detection of inverted duplication 

transposition.’

Defining inverted breakpoint clusters

To detect regions of clustered inversion breakpoints, we merged together nonredundant 

HGSVC and NHP inversion callsets. We extracted inversion breakpoints for each inversion 

and submitted a sorted list of inversion breakpoints to the primatR ‘hotspotter’ function24 

(parameters: bw=2000000, pval=5e-10). This function searches for regions of increased 

density of inversion breakpoints around the genome by using the density function to perform 

a KDE (Kernel Density Estimation). A P-value was calculated by comparing the density 

profile of the genomic events with the density profile of a randomly subsampled set of 

genomic events (bootstrapping).

Analysis of TAD disrupting inversions

A set of human-specific TAD boundaries was obtained from the study of Dixon et al.41. 

Coordinates of these boundaries were translated into the GRCh38 reference assembly using 

the liftOver tool available from the UCSC Genome Browser. All but one TAD were 

successfully mapped to the new reference genome (GRCh38). We measured the distance of 

TAD boundaries to breakpoints of simple inversions (nonredundant set n=388) separately for 

various inversion sizes (<100 kb, >100 kb and <10 Mb, and >10 Mb) (we excluded inverted 

duplications as we did not want copy number changes to affect the differential expression 

analyses). The distribution of distances to the closest TAD boundaries for each inversion size 

category was drawn as a KDE fitted curve. TADs were further marked as ‘disrupted’ in a 

scenario when only one breakpoint of a given inversion was positioned within the TAD 

(Supplementary Fig. 28), otherwise the TAD was classified as ‘intact’. Rates of disrupted 

TADs for different inversion size categories were examined as follows: the number of 

disrupted TADs per inversion category was counted and compared to values after inversion 

positions were randomized within each chromosome (excluding gaps and centromeric 

regions, and preserving inversion lengths and their relative distances) 100 times using 

regioneR70 (version 1.16.2) ‘circularRandomizeRegions’ function. This resulted in an 

estimate for the fold enrichment of broken TADs compared to randomly expected levels.

We further report genes whose differential expression is likely caused by an inversion that 

disrupts predicted gene-enhancer interaction. A gene-enhancer interaction was considered 

disturbed if one but not both inversion breakpoints fell between a gene and its associated 

enhancer. For this analysis, we used gene-enhancer interactions obtained from the 

geneHancer (v4.8)49 track from the UCSC Genome Browser. Only so-called ‘double elite’ 

gene-enhancer interactions derived from more than one experimental or computational 

method have been considered.
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Differential gene expression analysis

Our differential expression considered 16,524 1:1:1:1:1 orthologs provided by ENSEMBL 

v91. We excluded genes that were non-expressed consistently across all samples (fpkm < 1 

across all samples and tissues). We also excluded a list of 91 genes escaping X inactivation 

(obtained from71 due to expected gender-specific expression bias), which left us with 15,117 

genes. The level of differential expression per gene was calculated using DEseq272 (version 

1.24.0), with gender information included as a cofactor. Gene-wise read counts derived from 

RNA-seq data were obtained from Brawand et al.42. All NHPs were tested separately against 

human, resulting in a list of DE genes for each species. We consistently performed between-

species DE analyses for matched tissues (e.g., human brain vs. chimpanzee brain, human 

brain vs. bonobo brain, …., human kidney vs. orangutan kidney). There was no data 

available for orangutan testis, and accordingly we performed 23 DE comparisons overall (4 

species × 6 tissues, minus orangutan testis). Genes with an absolute shrunken fold-change 

larger than 2 and an adjusted Shannon information value (aka ‘surprisal (s) value’, a 

standard feature of DEseq2) below 0.005 were considered as ‘differentially expressed.’ 

Supplementary Figure 29 depicts differential expression in brain as an example. Overall DE 

levels per ape genome are consistent with the NHP phylogeny and species divergence 

(Supplementary Fig. 29b).

Differential expression in broken versus intact TADs

Genes were assigned to two groups based on whether or not they fell into a broken TAD 

(mediated by a balanced inversion), and the ratio of DE genes over total genes was 

calculated for each group separately. All genes were counted once for each tissue and 

species, resulting in 15,117 × 23 = 347,691 tests. A permutation test was used to test for 

statistical significance of the enrichment of DE genes in broken TADs. In 50,000 repetitions, 

genes were randomly assigned to the two groups (preserving the number of genes in both), 

and DE ratios were calculated after each permutation. The P-values were derived from the 

percentile of the observed versus randomized DE ratio. Distances of DE genes to the closest 

inversion breakpoint were obtained across all genes and for all 23 DE comparisons, and 

randomization was pursued by shuffling each inversion randomly on the chromosome that 

inversion had been observed in (shuffling was pursued 1,000 times).

Reporting Summary

Further information on research design is available in the Nature Research Life Sciences 

Reporting Summary linked to this article.

External datasets

Set of TADs in human41.

Bulk RNA-seq data for all NHPs42.

Set of X-inactivation escape genes71.

Brain organoids sequencing data was obtained from GEO under ID: GSE124299 and dbGaP 

phs000989.v344.
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Raw Strand-seq data for NA19240 can be obtained at ENA (European Nucleotide Archive) 

under ID: PRJEB12849.

The raw 10X Genomics data are available on NCBI under BioProject PRJNA593056.

CODE AVAILABILITY

primatR package: https://github.com/daewoooo/primatR

breakpointR package: https://github.com/daewoooo/breakpointR, (devel branch)

Custom scripts: https://github.com/daewoooo/ApeInversion_paper/tree/master/

Custom_scripts

Software releases at the publication date are available at zenodo, DOI: 10.5281/

zenodo.3556774

DATA AVAILABILITY

Strand-seq data aligned to GRCh38 and ape-specific composite files are available at zenodo, 

DOI: 10.5281/zenodo.3818043

PacBio and Bionano datasets are reported in Supplementary Tables 11 and 14.

Supplementary data: https://github.com/daewoooo/ApeInversion_paper

PacBio and Bionano inversion callset: https://github.com/daewoooo/ApeInversion_paper/
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Figure 1 |. Inversion call summary
a, Circular representation of composite files for each member of a great ape family. Genome 

of each individual is divided into 500-kb bins, and the number of reads mapped in forward 

(light color) and reverse (dark color) orientation in each bin is depicted as a bar along each 

chromosome. b, Example of inversion classes mapped in orangutan. Directional reads are 

binned into 10-kb bins (step 5 kb), and the number of reads mapped in forward (light color) 

and reverse (dark color) orientation is depicted as a vertical bar along a given genomic 

region. Inverted loci are highlighted by dashed lines. c, Summary of all inversions and 

inverted duplications mapped in this study. Inner circle summarizes the number of events 

found for each SV class (simple inversion, INV; inverted duplication, invDup). d, (i) 

Summary of validated simple inversions by other orthogonal technologies. (ii) Summary of 

validated simple inversions that appear to be novel in comparison to previously published 

data (green, novel; orange, published). e, Size distribution of simple inversions flanked by 

segmental duplications (SDs) (SDflankINV n = 227), simple inversions not flanked by SDs 

(noSDflankINV n = 455), and inverted duplications (invDup n = 387). White dot shows the 

mean of each distribution along with IQR range (Wilcoxon rank sum test). f, Scatterplot of 

the number of simple inversions (n = 682) given the chromosome length. g, Scatterplot 

showing the number of inverted duplications (n = 387) given the total length of known 

human SDs per chromosome. For f and g, regression line is added as a solid black line and 
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95% confidence intervals are highlighted as red dashed lines. Deviation from an expected 

number of inversions is expressed in the number of residuals.
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Figure 2 |. Lineage-specific simple inversions and their evolutionary rates
a, An upsetR73 plot showing the number of shared inversions between members of the great 

ape family (≥50% reciprocal overlap). Black arrowhead points to putative human-specific 

inversions. Asterisks highlight inversions with recurrent or incomplete-lineage-sorting 

signatures. b, Example of a human-specific inversion predicted based on Strand-seq data. 

Inverted region is highlighted by dashed lines. Human-specific inversion is deemed as a 

region inverted in all NHPs in respect to the flanking region, but in direct orientation in 

humans. Inset: Venn diagram showing predicted human-specific inversions with respect to 

known genome minor alleles/misorients, human inversion polymorphisms4, and already 

published human-specific inverted loci. c, A tree constructed based on shared simple 

inversions (≥50% reciprocal overlap) using hierarchical clustering. Each branching node 

contains a number of shared inversions in a given subtree together with a barplot showing 

inversion genotypes per individual (B, bonobo; C, chimpanzee; G, gorilla; H, human; O, 

orangutan). Tips of the tree contain the number of inversions without a significant overlap 

(<50%) with any other inversion and are likely species specific. Barplot showing inversion 

genotypes for such species-specific inversions is plotted at each tip of the tree (Methods). d, 

A rooted MCMC evolutionary tree constructed based on a nonredundant set of 358 

autosomal simple inversions among great apes. Inversion rates are reported for each branch 

as 95% highest posterior density confidence intervals. Numbers at each branching node 

provide posterior support for this tree topology based on 10,000 MCMC trees sampled from 

an MCMC chain of 10,000,000 samples constructed from these data.
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Figure 3 |. Shared inversions and inversion hotspots
a, Venn diagram showing overlapping simple inversions (50% reciprocal overlap) between 

HGSVC nonredundant dataset and NHP redundant dataset. b, Top tracks: number of shared 

inversions between HGSVC and NHP datasets from a shown as counts per chromosome. 

Bottom track: inversions flanked by segmental duplications (SDs) are colored blue and those 

not flanked are orange. c, A genome-wide map of detected inversion breakpoint clusters 

based on simple inversions from HGSVC and NHPs. A set of inversions (n = 49) from a is 

plotted over this genome-wide map as green dots. Inset: compares the total number of SD 
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base pairs mapping to the 23 breakpoint clusters (red dot, observed = 29,138,268) compared 

to a random genome-wide simulation (n = 1,000 permutations, RegioneR70 ‘permTEST’, 

min: 1,653,112, 1stQ: 3,757,630, median: 5,301,424, 3rdQ: 7,084,019, max: 11,940,452). d, 

Each row represents a haplotype with all tested inversions phased along the whole X 

chromosome. Inverted direction is shown by an orange arrow and direct orientation by a teal 

arrow. Top track plots protein-coding genes (blue rectangles) that overlap with either the 

inversion itself or with flanking SDs, shown as yellow arrows. Previously defined inversion 

breakpoint clusters are shown as gray rectangles at the top of the figure and are linked to 

their location on chromosome X in c. e, Each row represents a haplotype with all tested 

inversions phased along the whole chromosome 16. Inverted direction is shown by an orange 

arrow and direct orientation by a teal arrow. Top track plots protein-coding genes (blue 

arrows) that overlap either the inversion itself or with a flanking SD, shown as yellow 

arrows. Previously published35 pathogenic CNVs are shown as red arrows in the top track.
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Figure 4 |. Evolutionary impact of inverted duplications
a, Heatmap of estimated copy number (mean CN) per inverted duplication (columns) in 

multiple human populations and NHPs (rows). b, Left: number of mapped duplicated 

regions in inverted versus direct orientation. Significance of observed differences between 

inverted and direct duplications is reported above each bar as P-value (chi-squared with 

Bonferroni correction). Right: each bar shows the proportions of inverted and direct 

duplications per NHP (colored as denoted in a). c, Enrichment analysis of inverted 

duplication in 0.05 fraction of each chromosome end (1–22 and X). Observed counts are 

shown by a black dot and the distributions of permuted counts (n = 1,000 permutations, 

RegioneR70 ‘permTEST’,) are depicted by violin plots. White dots show the mean of each 

distribution (B-8.54, C-8.69, G-15.6, O-16). At the bottom of each distribution there is a P-

value showing the significance of difference between observed (B-12, C-15 G-34 O-18) and 

permuted counts. d, Predicted gene fusion between XRCC2 on chromosome 7 and LRPAP1 

on chromosome 4. Upper track: split-read mappings of Iso-Seq reads over the predicted 
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breakpoint (red vertical line). Iso-Seq reads that belong to the same transcript share the same 

color. Middle track: gene models of above mentioned genes (Exons, wide boxes; Introns, 

lines in between). Bottom track: split-read mapping of PacBio reads over the fusion 

breakpoint on chromosome 4. Black arc line connects ends of PacBio reads with split-read 

mappings.
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Figure 5 |. Impact of copy-neutral inversions on genome topology and differential gene 
expression
a, Length distribution of all 387 nonredundant simple inversions, classified as ‘Short’ (<100 

kb; blue) or ‘Long’ (>100 kb, orange). The histogram illustrates absolute counts of binned 

inversion lengths and the overlaid dots represent the cumulative frequency of inversions 

corresponding to each bin. (bp, base pair; kb, kilobase). b, Distance of each inversion 

breakpoint (centered at 0) to the closest topologically associating domain (TAD) boundary, 

stratified by inversion length (color coding according to a). The expected distance 

distribution for randomly placed breakpoints is indicated by the gray dotted line (Mb, 

Megabase). The inlay displays the proportion of inversions (stratified by length) that disrupt 

TADs (median short: −67.1%, median long: −2.4%). Percent ‘enrichment’ or ‘depletion’ is 

shown as the ratio of observed over expected disruptions calculated after randomizing 

inversion locations (Methods). c, Proportion of differentially expressed (DE) genes in TADs 

classified as either ‘broken’ (solid green horizontal line) or ‘intact’ (solid purple horizontal 

line). The underlying histogram depicts the expected DE frequency after randomizing TAD 

labels. Dotted lines represent the DE proportion after excluding genes in segmental 

duplications (SDs). One-sided permutation testing was used to derive P-values (Methods). d, 

Proportion of DE genes relative to inversion breakpoints and stratified by inversion length or 

whether the inversion disrupts a TAD. The shaded areas show the expected DE proportion 

measured in matched randomized breakpoints.
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Table 1 |

Summary of Strand-seq inversion callset

# of Strand-seq libraries Depth of coverage # of simple inversions # of inverted duplications

Chimpanzee 62 1.28 159 71

Bonobo 51 0.97 153 63

Gorilla 81 1.68 160 122

Orangutan 60 1.68 210 131
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