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Abstract

Although having achieved great success in medical im-

age segmentation, deep convolutional neural networks usu-

ally require a large dataset with manual annotations for

training and are difficult to generalize to unseen classes.

Few-shot learning has the potential to address these chal-

lenges by learning new classes from only a few labeled ex-

amples. In this work, we propose a new framework for

few-shot medical image segmentation based on prototypical

networks. Our innovation lies in the design of two key mod-

ules: 1) a context relation encoder (CRE) that uses corre-

lation to capture local relation features between foreground

and background regions; and 2) a recurrent mask refine-

ment module that repeatedly uses the CRE and a prototypi-

cal network to recapture the change of context relationship

and refine the segmentation mask iteratively. Experiments

on two abdomen CT datasets and an abdomen MRI dataset

show the proposed method obtains substantial improvement

over the state-of-the-art methods by an average of 16.32%,

8.45% and 6.24% in terms of DSC, respectively. Code is

publicly available 1.

1. Introduction

Medical image segmentation is a fundamental task in

medical image analysis. It is used in many clinical ap-

plications, including disease diagnosis, treatment planning

and treatment delivery. Segmentation of anatomical struc-

tures or lesions is usually done manually by experienced

doctors, which is often tedious and labor-intensive. With

the recent use of deep convolutional neural networks, au-

tomated segmentation tools using computer programs can

achieve near human accuracy on multiple tasks with very

short processing time. However, in order to achieve good

performance, these systems are usually trained in a fully

supervised fashion with large amounts of annotated data.

Acquiring a dataset with abundant manual labels is often

1https://github.com/uci-cbcl/RP-Net

very expensive and time-consuming as it requires experts

with many years’ clinical experience. Moreover, the differ-

ences in image acquisition protocols among different med-

ical equipment and institutes pose great challenges to the

generalization ability of the learning based systems.

Few-shot learning has been proposed as one of the po-

tential solutions to addressing these challenges in the low

data regime [43, 46, 56, 8, 22]. The main few-shot image

segmentation approach forms the problem as meta learn-

ing [9, 10, 16] and uses supervised learning to train few-

shot learning models. A few-shot learning model is trained

to extract class-specific features from the set of support

images with annotations, and then perform segmentation

on the query images by using distilled knowledge from

the support images. During test time, by extracting fea-

tures from a set of new support images (unseen classes),

the model is able to segment novel classes. Many few-

shot learning methods have been proposed and achieved

great performance on natural image segmentation tasks

[33, 39, 6, 41, 59, 67, 66, 62, 17]. However, applying few-

shot learning models for medical image segmentation is still

in early stages [31, 36].

Few-shot segmentation in medical images is different

than that in natural images. Many approaches are based

on prototypical networks [43], and often apply masked av-

erage pooling [6, 59, 67] to extract class prototypes from

feature maps within the foreground mask. This step usu-

ally assumes the masked region contains sufficient features

to distinguish different classes, especially foreground and

background. However, this may not always be true in med-

ical images. Distinct local appearances and context infor-

mation are more critical in determining the boundary for

foreground and background. A clear boundary to separate

regions of interest from the background is of critical impor-

tance in medical image segmentation. Moreover, the back-

ground is usually large and spatially inhomogeneous while

the foreground is small and homogeneous [30], and there

exists the abundance of tissues that share very similar ap-

pearance to each other, all of which add ambiguity to define

the foreground and background regions. To address this is-

https://github.com/uci-cbcl/RP-Net


sue, we encourage the network to explicitly model the con-

text relationship between foreground and background pix-

els, especially pixels around the boundary.

In this work, we introduce a new network framework

for few shot medical image segmentation using prototypical

network (RP-Net: Recurrent Prototypical Networks). First,

we propose a context relation encoder (CRE) on top of the

extracted features, to explicitly model the relation between

foreground and background feature maps. The relationships

between foreground and background regions are more im-

portant in defining the boundary of the regions of interest in

medical image segmentation. To force the model to distill

and utilize the local context relation information, CRE uses

correlation to capture the differences in the foreground and

background regions. Pixel features are augmented with the

context relation features. The explicit extraction of the con-

text relationship poses a strong constraint to the features the

model would learn and forces it to focus on the boundary of

the region of interest. A prototypical network is followed to

produce predicted masks using these augmented features.

Second, we propose a recurrent mask refinement mod-

ule that iteratively refines the segmentation using CRE and

prototypical networks. This design draws inspiration from

recent works [53, 32, 18] that employ iterative refinement.

More importantly, the prediction mask modifies the mask

in the previous step, which results in updated local context

relationship. The recurrent module serves the purpose to re-

capture the updated context relationship and recompute its

context relationship based on new prediction. Starting from

the segmentation mask from the previous step, the model

uses the refined prediction mask in the previous step to com-

pute new context features using CRE, and then feeds it to

the same prototypical network. The weights of the module

are shared among multiple iterations so it is fully recurrent.

This recurrent module facilitates the learning and forces the

model to learn to gradually refine the segmentation.

Our contributions are summarized as:

- A context relation encoder (CRE) that uses correlation

between foreground and background to enhance context re-

lationship features around the object boundary.

- A new framework for few-shot medical image segmen-

tation that iteratively refines the prediction mask through a

recurrent module that uses CRE and prototypical networks.

- We conducted experiments on two abdomen CT

datasets and one abdomen MRI dataset. Experiments show

that the proposed framework outperforms the SOTA few-

shot framework for medical image segmentation by an av-

erage of 16.32% on ABD-110 dataset [49], 8.45% on MIC-

CAI15 Multi-Atlas Abdomen Labeling challenge dataset

[23] and 6.24% on ISBI 2019 Combined Healthy Abdomi-

nal Organ Segmentation Challenge [21] in terms of DSC.

2. Related work

2.1. Medical image segmentation

In recent years, deep learning has brought significant

progress to the field of medical image analysis [40], such

as computer-aided diagnosis [38, 48, 50, 52], image reg-

istration [2, 1, 14], reconstruction [64, 7, 63], and etc. In

terms of medical image segmentation, the development of

the deep convolutional neural networks has lead to vari-

ous successful applications, including segmentation of tis-

sue [44, 58, 28], anatomical structures [47, 3, 55, 70, 11, 5,

45, 4, 25, 51] and lesions [12, 69, 57, 24, 37, 61]. One of the

most famous and widely used network architecture is U-Net

[34]. U-Net uses lateral connection to fuse features from en-

coders and decoders. Many its variants were proposed, with

different focus on their designs. V-Net [26] extends the use

of U-Net to 3D volume data. Attention U-Net [29] proposes

to use gated mechanism to filter features. nnUNet [19] com-

bines different U-Net like network architectures and auto-

matically configure the optimal setting for different tasks,

which is the best out of box U-Net. These SOTA methods

require abundant manual annotations for their specific tasks

to achieve good performance. They are designed to fully

utilize the power of annotated dataset, and is limited when

segmenting novel classes.

2.2. Few­shot learning

Few-shot learning can be categorized into three main fo-

cuses: data, model and algorithm [60]. One main stream

of few-shot segmentation in natural image that focuses on

the model is prototypical networks [43]. Prototypical net-

work uses the idea of meta learning [9, 10, 16] and applies

averaged mask pooling to pool class-specific features from

the support set, which is called prototypes. Then, segmen-

tation for the query image is done by computing the cosine

distance with each class prototype . PANet [59] further im-

proves upon this idea by proposing a prototype alignment

network to better utilize the support set, by also predicting

on support images using query images as support set.

In few-shot medical image segmentation, most works fo-

cus on generating new training data to enlarge the training

set given only a few labels [68, 27, 31, 65]. However, this

still requires retraining the model when a new class needs to

be segmented. More recently, a few works focus on design-

ing network architecture that does not require retraining the

model. Squeeze and excite [36] first proposes a few-shot

learning architecture specifically designed for medical im-

age segmentation. They propose to use squeeze and excite

modules to fuse information from support image on to query

image to guide the segmentation arm. [30] proposes local

prototypes to enrich the representation of class prototypes

and a self-supervised training strategy using super pixels.

Likewise, we focus on few-shot medical image segmenta-
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Figure 1. RP-Net consists of three main components: (1) A feature encoder that extracts features from both support and query images; (2)

A context relation encoder (CRE) that use correlation to enhance the local context relationship features; (3) A recurrent mask refinement

module that iteratively uses CRE and a prototypical network to recaptures the change of local context features and refines the mask.

tion without retraining the model, and we propose a new

framework that uses CRE and recurrent mask refinement

module to better capture local feature and shape differences

around foreground object boundary.

3. Method

We first describe the formal definition of few-shot medi-

cal image segmentation. Next, we introduce the architecture

of RP-Net, especially the context relation encoder (CRE)

and recurrent mask refinement module.

3.1. Problem definition

In few-shot medical image segmentation task, the model

is trained using images and a set of semantic labels Ctr

drawn from a training dataset Dtr. During inference, the

model segments a new set of semantic classes Cte from test

images Dte, given a few labeled examples of Cte. Note

that Ctr ∩ Cte = ∅. For example, the model is trained

using semantic labels Ctr = {liver, left and right kidney}
and during testing time the model needs to segment new se-

mantic classes Cte = {spleen}. Let N be the number of

semantic classes in Cte, and K be the number of examples

for each semantic class in Cte. The few-shot learning prob-

lem is also referred to as N-way K-shot learning. In medical

image segmentation, most works usually consider 1-way 1-

shot learning [36, 30].

To achieve the goal of segmenting unseen classes in in-

ference time, an episodic training strategy is used widely

[59, 30, 36]. To simulate the situation in testing time where

only K examples for each class are provided, the episodic

training schema randomly draws each training example in

the form of a support and query data pair [(xs,ys), (xq,yq)]

from Dtr. The model is trained to distill knowledge about a

semantic class from the support set (xs,ys) and then apply

this knowledge to segment query set xq . In inference time,

only the K support images xs and their corresponding la-

bels ys are given, and the model performs segmentation on

query images xq .

3.2. Proposed method

We now introduce RP-Net for few-shot learning in med-

ical images. For the rest of this section, we consider a 1-

way K-shot learning problem. The architecture of RP-Net

is shown in Figure 1. Our approach consists of three steps:

1) extracting image features, 2) enhancing context relation

features using CRE, 3) iteratively applying CRE and proto-

typical network to refine the segmentation mask. All stages

are differentiable and can be trained end-to-end.

3.2.1 Feature extraction

The input to the network is a set of K support images xs ∈
R

H×W×1 and a query image xq ∈ R
H×W×1, padded to the



same height H and width W. The support and query images

are first aligned globally using affine transformation, which

is a common step in many medical image tasks.

The model first uses the same feature encoder fθ to ex-

tract support features Fs ∈ R
H′

×W ′
×Z and query features

Fq ∈ R
H′

×W ′
×Z respectively. H′ and W′ are the height

and width of the feature map, and Z is the number of fea-

ture channels. An adapted version of the U-Net backbone

was used as the feature encoder fθ. Instead of upsam-

pling the feature maps to the original resolution as imple-

mented in the original U-Net, we remove the last two up-

sampling blocks in the U-Net to save GPU memory and

computation. This results in the resolution of the sup-

port and query features being 1/4 of the image resolution

(H ′ = H/4,W ′ = W/4).

3.2.2 Context relation encoder (CRE)

In medical image segmentation, the local context features

are important to determine the boundary of foreground and

background. To strengthen and emphasize these features,

we propose the context relation encoder to enhance context

features and force the model to focus on the shape and con-

text of the region of interest rather than pixels themselves.

CRE takes the extracted features F (we drop subscript

q and s for convenience) and foreground mask m as in-

put and outputs augmented features Fcre = fcre(F,m) ∈
R

H′
×W ′

×Z . m is the mask of the foreground class from

the support image (ys), or the proposed foreground mask

of a query image. Features of foreground and background

are first extracted by masking F using the mask m: Ff =
φf (F ⊙ m) and Fb = φb(F ⊙ (1 − m)). φf and φb de-

note 3 × 3 convolution. Next, a correlation computation

is applied to acquire the context relation features between

foreground and background feature vectors at each spatial

location (x, y) of Fb and (x − i, x − j) of Ff with offset i
and j:

C(x,y,i,j) =
∑

z

F
(x,y,z)
f F

(x−i,x−j,z)
b (1)

Instead of computing correlation between every pair of pix-

els on Ff and Fb, we limit the maximum displacement d
for comparison at each location (x, y). Given a maximum

displacement d, we only compute correlation C(x,y,i,j) in

a neighborhood of size 2d + 1 by limiting the range of

(i, j). As a result, the context relation feature C is of size

H ′ × W ′ × (2d + 1)2. C(x,y) effectively captures infor-

mation of how a background pixel is related to foreground

when it is close to the object boundary. Finally, we concate-

nate C and Ff along channel dimension and apply a 1 × 1
convolution to fuse foreground features and context relation

features to obtain Fcre. d is set to 5 based on empirical re-

sults (see Table 2 for details).

Compared to directly computing correlation between

feature maps, separating feature map into foreground and

background features is important. Correlation calculated

this way is sparse and has only non-zero values around the

boundary, which captures the shape of the object and clearly

differentiate a pixel from the background. Correlation cal-

culated between full feature maps is not able to achieve this

because it does not have the sense of boundary of the region.

3.2.3 Prototypical networks

Following [30, 59], we use a relative simple method for cal-

culating the prototypes, averaging feature vectors within the

mask and across support images. Given the enhanced im-

age features of support set Fcre,s, we first compute the pro-

totype of class c via masked average pooling:

pc =
1

K

K∑

k=1

∑
x,y F

(k,x,y)
cre,s y

(k,x,y,c)
s

∑
x,y y

(k,x,y,c)
s

(2)

where (x, y) is the index of pixels on the feature map,

(x, y, c) indexes the spatial locations of the binary mask of

class c and K is the number of support images.

Segmentation is done using a non-parametric metric

learning method. Prototypical network calculates the dis-

tance between the query feature vector and the computed

prototypes P = {pc|c ∈ C}. A softmax over the distances

is applied to produce a probabilistic output over all classes.

Formally, for each pixel at location (x, y) of query feature

map Fcre,q , we have:

msoft = cos(Fcre,q, P ), and

cos(Fcre,q, P )(x,y,c) =
exp(−αd(F

(x,y)
cre,q,pc))

∑
pj∈P exp(−αd(F

(x,y)
cre,q,pj))

(3)

where the distance function d is a commonly used cosine

distance and α is a scaling factor for this distance function

to work best with the softmax function. α is set to 20 [59].

The class prediction can be obtained by:

m(x,y) = argmax
c

m
(x,y,c)
soft (4)

3.2.4 Recurrent mask refinement

Since the mask m used to compute context relation features

would change every time the network makes a prediction,

we propose a recurrent mask refinement module to recap-

ture this change and compute new context relation features

based on the previous prediction.

The recurrent mask refinement module estimates a se-

quence of mask predictions {m1,m2, ...,mn} from an ini-

tial mask which is the union of all support masks: m0 =



⋃K

i=1 y
i
s. At each iteration t, it produces a new segmenta-

tion mask mt based on mt−1. The design of this archi-

tecture mimics the steps of an optimization algorithm. For

this purpose, all the weights in the recurrent module are

shared across multiple iterations. The model is trained to

learn to modify the mask gradually so that the final output

mask mn converges to an optimum solution. Note that, in

this work the m0 is initialized using the average of support

masks since images are affine aligned, but it is also possible

to better initialize m0 using other methods.

This recurrent mask refinement module takes in support

features Fs, query features Fq and the mask mt−1 in previ-

ous step, uses CRE to enhance query features, and applies

prototypical network to output a segmentation mask mt.

msoft,t = cos(fcre(Fq,msoft,t−1), P ) (5)

We apply 4 iterations of the recurrent mask refinement

module during training to save memory and computation

cost. In inference time, we apply 10 iterations. We show in

Figure 2 the performance at each iteration during inference

time and 10 iterations are sufficient to obtain a stable result.

The final prediction is obtained by upsampling mn to the

same resolution of the xq using bilinear interpolation.

3.2.5 Loss function

We supervise our network using dice loss and cross entropy

between the final predicted mask msoft,n and ground truth

segmentation mask yq:

Lseg = βLdice + Lce

Ldice = 1−
2
∑

i,j,c m
(i,j,c)
soft,ny

(i,j,c)
q

∑
i,j,c m

(i,j,c)
soft,n +

∑
i,j,c y

(i,j,c)
q

Lce = −
1

HWC

∑

i,j,c

y(i,j,c)
q log(m

(i,j,c)
soft,n)

(6)

where β is a constant controlling the strength of the two

loss terms and is set to 1. Note that the use of the sum of

dice loss and cross entropy is widely used in medical image

segmentation tasks, such as [20].

4. Experiment

4.1. Setup

Dataset We conducted experiments using two abdomen

CT datasets and one MRI dataset:

- ABD-110 is an abdomen dataset from [49] that contains

110 3D CT images from patients with various abdomen tu-

mors and these CT scans were taken during the treatment

planning stage.

- ABD-30 is an abdomen dataset from the MICCAI 2015

Multi-Atlas Abdomen Labeling challenge [23]. It contains

30 3D abdominal CT scans (ABD-30) from patients with

various pathologies and has variations in intensity distribu-

tions between scans.

- ABD-MR is a MRI dataset from ISBI 2019 Combined

Healthy Abdominal Organ Segmentation Challenge [21]. It

contains 20 3D T2-SPIR MRI scans.

We perform the same 5-fold cross validation and con-

sider only 1-way 1-shot learning, following the same proto-

col as previous work setting 2 [30]. Liver, spleen and left

and right kidney are used as semantic classes. Within each

fold, one organ is considered as unseen semantic class for

testing while the rest are used for training. Moreover, to re-

duce the variance by choosing only one support image dur-

ing inference, following [59], for each query image in the

test set we randomly sample one support image from the

test set, repeat this process for 5 times and the final result is

obtained by averaging the 5 runs.

Evaluation metric We use the same evaluation metric

Sørensen–Dice coefficient (DSC) as in previous work [30,

36]. DSC measures the overlap of the prediction mask m

and ground truth mask g, and is defined as:

DSC(m,g) =
2|m ∩ g|

|m|+ |g|
(7)

Implmentation details All images are resampled to

have the same xy-plane spacing of 1.25mm × 1.25mm. For

segmenting 3D volume data, we follow the same protocol

used in [30, 36] by dividing the support and query images

into 12 chunks and segmenting all slices in the query chunk

by using the center slice in the corresponding chunk of the

support image. During training, a pair of support and query

images and their labels are both cropped to have a fixed size

of 256 × 256 around the image center. Support and query

images are aligned online using affine transformation before

feeding into the network. RP-Net is trained from scratch us-

ing Adam as optimizer with initial learning rate 0.0001 for

50 epochs and the learning rate is reduced by a factor of 10

every 20 epochs. We also add the alignment loss to train

RP-Net as in [59].

4.2. Comparison with the state­of­the­art methods

Table 1 shows the performance comparison of RP-Net

with previous work on ABD-110, ABD-30, ABD-MR re-

spectively. PANet [59] is an extended version of the widely

used prototypical network [43] designed for natural image

segmentation. PANet-init means directly using the pre-

trained VGG16 feature extraction backbone without any

finetuning on the few-shot setting. SE-Net [36] is the first

specifically designed architecture for few-shot medical im-

age segmentation. SSL-ALPNet [30] is the state-of-the-art

few-shot medical image segmentation framework that uses



Dataset Method Spleen Kidney L Kidney R Liver mean

ABD-110

PANet-init [59] 30.95±1.09 19.24±0.37 17.64±0.71 49.91±0.34 29.43

PANet [59] 35.89±1.75 40.22±1.71 41.54±0.82 52.36±0.60 42.50

SE-Net [36] 29.48±1.07 37.48±2.08 37.53±1.97 19.09±0.36 30.89

SSL-ALPNet [30] 64.90±1.62 61.58±2.53 64.05±2.27 71.83±1.81 65.59

Affine 50.42±0.91 53.04±1.57 52.025±2.17 66.99±1.20 55.62

RP-Net (Ours) 78.77±0.64 81.89±1.45 85.12±0.98 81.88±0.63 81.91

Fully supervised [49] 95.9 95.7 95.7 96.4 95.92

ABD-30

SE-Net [36] 0.23 32.83 14.34 0.27 11.91

PANet [59] 25.59 32.34 17.37 38.42 29.42

SSL-ALPNet [30] 60.25 63.34 54.82 73.65 63.02

Affine 48.99 43.44 45.67 68.93 51.75

RP-Net (Ours) 69.85±2.34 70.48±2.55 70.00±0.89 79.62±0.91 72.48

Fully supervised [70] 96.8 95.3 92.0 97.4 95.4

ABD-MR

SE-Net [36] 51.80 62.11 61.32 27.43 50.66

PANet [59] 50.90 53.45 38.64 42.26 46.33

SSL-ALPNet [30] 67.02 73.63 78.39 73.05 73.02

Affine 62.87 64.70 69.10 65 65.41

RP-Net (Ours) 76.35±0.66 81.40±2.10 85.78±1.12 73.51±1.55 79.26

Fully supervised [20] - - - - 94.6

Table 1. DSC comparison with other methods on ABD-110, ABD-30 and ABD-MR (unit: %).

Experiment Method Spleen Kidney L Kidney R Liver mean

Added components

Affine 50.42 53.04 52.025 66.99 55.62

Affine + Grabcut 57.93 64.17 64.25 65.27 62.91

Affine + Concat 56.41 52.39 54.99 70.87 58.66

Affine + CRE 57.73 58.05 60.62 73.53 62.48

Affine + Concat + Recurrent 59.99 60.65 62.31 83.03 66.50

Affine + CRE + Recurrent 78.77 81.89 85.12 81.88 81.91

Backbone

VGG16 73.57 67.49 56.81 72.04 67.48

Res18 72.39 79.13 81.61 80.89 78.50

U-Net 78.77 81.89 85.12 81.88 81.91

Correlation radius

d = 0 78.40 81.90 82.12 83.89 81.58

d = 1 80.03 81.87 82.09 82.1 81.52

d = 3 79.12 81.79 83.41 81.32 81.41

d = 5 78.77 81.89 85.12 81.88 81.91

d = 7 77.56 80.25 81.77 80.22 79.95

Initialization

Affine 50.42 53.04 52.02 66.99 55.62

Demons 63.60 63.89 61.89 73.59 65.74

RP-Net (Affine) 78.77 81.89 85.12 81.88 81.91

RP-Net (Demons) 80.31 83.55 85.01 82.86 82.93

Table 2. Ablation study on ABD-110 (unit: %). Underlined is the final configuration used in RP-Net.

self-supervised learning and prototypical networks. Affine

is the result of the accuracy after globally aligning the sup-

port and query image using affine transformation, which

we use as an initial mask. [30] reported performance for

PANet-init, PANet, SE-Net and SSL-ALPNet on ABD-30

and ABD-MR, so these numbers are directly quoted. We

ran these algorithms using public available code to report

their performance on ABD-110.

First, compared to PANet, RP-Net outperforms PANet

by 39.49%, 43.06% and 21.75% on the three datasets ABD-

110, ABD-30 and ABD-MR respectively. Second, com-

pared to SE-Net, RP-Net outperforms SE-Net by 51.02%,

60.57% and 27.42% on ABD-110, ABD-30 and ABD-MR

respectively. Third, compared to the state-of-the-art method



SSL-ALPNet, RP-Net outperforms SSL-ALPNet by an av-

erage of 16.32%, 9.46% and 6.24% on ABD-110, ABD-30

and ABD-MR respectively.

These experiments demonstrate our approach can

achieve the SOTA accuracy on medical image datasets with

different image modalities (CT and MRI). Also, we focus

on designing a new framework for few-shot medical image

segmentation, which outperforms other approaches of the

same motivation, e.g. SE-Net by a large margin. Additional

gain may be obtained by combining our method with the

self-supervised training schema proposed in SSL-ALPNet.

4.3. Ablation study

Ablation experiments are conducted using the ABD-110

dataset, because it has more data compared to the other two.

Table 2 shows the results for the following experiments.

Effect of each component To verify the contribution of

the two added components - context relation encoder and re-

current module, we conducted experiments by adding one

component at a time: 1) model trained and tested without

the CRE. To make use of the support mask which is used

in CRE, we concatenate the mask to the feature map from

backbone and apply a 3× 3 convolution for a fair compari-

son (denoted as concat). 2) model trained without recurrent

module. Note that if we remove both CRE and recurrent

training, the model becomes the PANet [59]. Moreover,

we compare with Grabcut [35] which is an unsupervised

method that uses iterated Graphcut. Grabcut can be seen as

an unsupervised version of our algorithm.

First, we verify the effect of using CRE. Affine + Con-

cat is a naive way of integrating support masks by concate-

nating it directly to the feature maps, which outperforms

the Affine by 3.04%. Affine + CRE implements the more

sophisticated way of exploring local feature differences us-

ing CRE, which outperforms the Affine + Concat by 3.82%.

This shows the CRE better captures the local difference via

the use of correlation. However, the performance improve-

ment is still not significant and the reason is that the mask

prediction is changed each time and it lacks a mechanism

to recapture this change and recompute the new local dif-

ferences. The recurrent mask refinement module serves this

purpose and we discuss its effect in the next paragraph.

Second, we compare the performance of using the recur-

rent mask refinement module. Affine + Concat + Recurrent

means we apply the recurrent module to the concatenated

feature map, which performs 7.84% better than not using

the recurrent module (Affine + Concat). This shows that the

recurrent training indeed helps the model to find the right

mask prediction because the initial mask from support is a

very rough estimation of the location of the region of in-

terests. If we combine the two added components together

(Affine + CRE + Recurrent), we can achieve a big improve-

ment by 15.39% compared to Affine + Concat + Recurrent.

This demonstrates that the integration of recurrent module

to recapture local changes in the CRE is very important and

can greatly boost the performance.

Third, we compare with Grabcut. Our method is in some

sense similar to Grabcut - we both use an iterative update

to refine the segmentation mask. Grabcut outperforms the

baseline Affine by 7.29%, showing that iteratively refining a

mask is indeed beneficial. RP-Net (Affine + CRE + Recur-

rent) outperforms Grabcut by 19%. There are mainly three

reasons for this large improvement. First, Grabcut only

uses one image, thus only image intensity is used to sep-

arate foreground and background region. On the contrary,

RP-Net uses the support images to extract knowledge about

the relationship between the foreground and background re-

gion, and utilize this knowledge to guide the segmentation

of the new image. Second, Grabcut only refines the mask

in the probable foreground region which is a human defined

boundary and lacks the flexibility to attend other areas in

the image, as well as the ability to correct error in the sure

foreground region. RP-Net does not have these constraints

and can potentially use information from the whole image.

Third, RP-Net uses training data to train the feature extrac-

tor, while Grabcut is not a learning-based method and only

uses information directly derived from pixel intensity.

Effect of feature extraction backbone We also exper-

imented with three different feature extraction backbones -

VGG16 [42], Res18 [13] and U-Net [34]. To make sure the

output feature map is 1/4 of the original image resolution for

a fair comparison, we only kept the first two downsampling

operations in both VGG16 and Res18 backbones and the

rest of the network architecture remained the same. As seen

from Table 2, VGG16 backbone performs the worst among

the three backbones, which is 8.03% lower than Res18. U-

Net backbone outperforms Res18 backbone by an average

of 2.32% which is mainly because of the lateral connection

in U-Net that fuses both low-level and high-level features.

This demonstrates that RP-Net is compatible with different

backbones, and backbones that perform better on medical

image segmentation task, such as U-Net, would result in

similar gain when combined with RP-Net.

Effect of correlation radius We conducted experiments

with different radius d = 0, 1, 3, 5, 7 in the correlation layer,

which controls how many neighbouring pixels are included

when computing correlation. d = 0 means the correlation

computation is carried out only at a single point. Note that

even with d = 0, the model is able to use features from the

surrounding pixels because φf and φb are used to extract

foreground and background specific features. Table 2 shows

our approach is not very sensitive to the radius, and this is

likely because RP-Net is designed to focus on a small region

around the object boundary at a time, a larger context may

not necessarily bring more benefits.

Effect of number of inference iterations We show in



Figure 2. DSC at each refinement iteration. This figure shows the

DSC performance of the proposed model per iteration. DSC of

four organs and an average is shown for two models: one w/ re-

current training (purple) and one w/o recurrent training (cyan).

Figure 2 the performance at each inference iteration from

one fold in ABD-110. Although the model is trained using 4

iterations of recurrent module, we can apply more iterations

during inference. As seen from this figure, a model without

recurrent training diverges after the 1st iteration, while a

model with recurrent training quickly converges and does

not diverge after 20 epochs. It demonstrates that with the

recurrent training, the model learns to gradually refine its

prediction and converges to a stable solution.

Effect of initialization Demons [54] is a medical im-

age registration method that uses deformable registration,

which performs 10.12% better than a simple affine trans-

formation. As shown in Figure 2, using a better initial-

ization (Demons), RP-Net achieves a 1.02% improvement.

Although better initialization improves the result, the im-

provement is small compared to that of the initialization it-

self, and our network is less sensitive to the initial mask as

long as it roughly locates the foreground region. For this

reason, we only use initialization mask from Affine trans-

formation for its simplicity. In many cases, a coarse map

or a map derived through affine registration would suffice.

Some recent registration methods (e.g., DEEDS [15] and

its extensions) that can handle large anatomical variations,

although missing details, can fit well to our method.

4.4. Qualitative result

We show in Figure 3 how the segmentation mask con-

verges to the optimum solution in multiple iterations. In

general, we can observe that RP-Net refines the initial mask

gradually, finds a better segmentation mask at each itera-

tion, and finally converges to an optimum solution. RP-Net

is able to learn to distill knowledge about the relation be-

tween the foreground and background from the support im-

age, and apply it to segment query images by comparing

local differences and modifying its prediction to conform to

Query                        Support                      Iteration 0                  Iteration 1                    Iteration 2                 Iteration 10 

 

 

 

 

 

 

 

Figure 3. Examples of predication of RP-Net at different iterations.

Each row represents one slice of the a test scan (row 1-5 are CT

images, row 6-7 are MR images).

the shape and boundary. Moreover, RP-Net generates satis-

fying segmentation masks that have a clear boundary along

the object boundary, demonstrating the successful design of

the CRE and recurrent module.

5. Conclusion

In this work, we present a new few-shot medical image

segmentation framework that refines the segmentation mask

iteratively using a context relation encoder and a recurrent

module. The proposed model learns to incrementally refine

the segmentation mask to better align the object boundary.

Experiments on three organ segmentation datasets demon-

strate that RP-Net outperforms the previous state-of-the-art

approach by as much as 16% in terms of DSC. Moreover,

the proposed CRE and recurrent module are generic and can

also be integrated into other types of network to enhance

context relationship features.
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