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There exist large classes of time series, such as those with nonlinear moving 
average components, that are not well modeled by feedforward networks 
or linear models, but can be modeled by recurrent networks. We show that 
recurrent neural networks are a type of nonlinear autoregressive-moving 
average (N ARMA) model. Practical ability will be shown in the results of 
a competition sponsored by the Puget Sound Power and Light Company, 
where the recurrent networks gave the best performance on electric load 
forecasting. 

1 Introduction 

This paper will concentrate on identifying types of time series for which a recurrent 
network provides a significantly better model, and corresponding prediction, than 
a feedforward network. Our main interest is in discrete time series that are par­
simoniously modeled by a simple recurrent network, but for which, a feedforward 
neural network is highly non-parsimonious by virtue of requiring an infinite amount 
of past observations as input to achieve the same accuracy in prediction. 

Our approach is to consider predictive neural networks as stochastic models. Section 
2 will be devoted to a brief summary of time series theory that will be used to 
illustrate the the differences between feedforward and recurrent networks. Section 3 
will investigate some of the problems associated with nonlinear moving average and 
state space models of time series. In particular, neural networks will be analyzed as 
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nonlinear extensions oftraditionallinear models. From the preceding sections, it will 
become apparent that the recurrent network will have advantages over feedforward 
neural networks in much the same way that ARMA models have over autoregressive 
models for some types of time series. 

Finally in section 4, the results of a competition in electric load forecasting spon­
sored by the Puget Sound Power and Light Company will discussed. In this com­
petition, a recurrent network model gave superior results to feed forward networks 
and various types of linear models. The advantages of a state space model for 
multivariate time series will be shown on the Puget Power time series. 

2 Traditional Approaches to Time Series Analysis 

The statistical approach to forecasting involves the construction of stochastic mod­
els to predict the value of an observation Xt using previous observations. This is 
often accomplished using linear stochastic difference equation models, with random 
inputs. 

A very general class of linear models used for forecasting purposes is the class of 
ARMA(p,q) models 

p q 

Xt = L <PXt-1 + L (Jet-i + et 
1=1 i=l 

where et denotes random noise, independent of past X"~ The conditional mean 
(minimum mean square error) predictor Xt of Xt can be expressed in the recurrent 
form 

p q 

Xt = L<pXt-, + L(Jet-i· 
1=1 i=l 

where ek is approximated by 

fk = Xk - Xk, Ie = t - 1, ... , t - q 

The key properties of interest for an ARMA(p,q) model are stationarity and invert­
ibility. If the process Xt is stationary, its statistical properties are independent of 
time. Any stationary ARMA(p,q) process can be written as a moving average 

00 

Xt = L hket-k + et· 
k=l 

An invertible process can be equivalently expressed in terms of previous observations 
or residuals. For a process to be invertible, all the poles of the z-transform must 
lie inside the unit circle of the z plane. An invertible ARMA(p,q) process can be 
written as an infinite autoregression 

00 

Xt = L <PkXt-k + et· 
k=l 

As an example of how the inverse process occurs, let et be solved for in terms of Xt 
and then substitute previous et's into the original process. This can be illustrated 
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Xt = et + (}et-1 

et-i = Xt-i - (}et-i-1 

Xt = et + (}(Xt-1 - (}et-2) 

Xt = et + ~(-I)i-1(}iXt_i 
i 

Looking at this example, it can be seen that an MA(I) processes with I(}I ~ 1 will 
depend significantly on observations in the distant past. However, if I(}I < 1, then 
the effect of the distant past is negligible. 

In the nonlinear case, it will be shown that it is not always possible to go back 
and forth between descriptions in terms of observables (e.g. Xi) and descriptions 
in terms of unobservables (e.g. ei) even when St = O. For a review of time series 
prediction in greater depth see the works of Box [1] or Harvey [2]. 

3 Nonlinear ARMA Models 

Many types of nonlinear models have been proposed in the literature. Here we focus 
on feed forward and recurrent neural networks and how they relate to nonlinear 
ARMA models. 

3.1 Nonlinear Autoregressive Models 

The simplest generalization to the nonlinear case would be the nonlinear autore­
gressive (NAR) model 

Xt = h(xt-1! Xt-2, ... , Xt-p) + et, 

where hO is an unknown smooth function with the assumption the best (i.e., mini­
mum mean square error) prediction of Xt given Xt-1I ... , Xt-p is its conditional mean 

Zt = E(xtl x t-1I ... , Xt_p) = h(xt-1I ... , Xt-p). 

Feedforward networks were first proposed as an N AR model for time series predic­
tion by Lapedes and Farber [3]. A feedforward network is a nonlinear approximation 
to h given by 

I p 

Zt = h(Xt-1I ... , Xt-p) = ~ Wd(~ WijXt-j). 

i=l ;=1 

The weight matrix W is lower diagonal and will allow no feedback. Thus the feed­
forward network is a nonlinear mapping from previous observation onto predictions 
of future observations. The function /(x) is a smooth bounded monotonic function, 
typically a sigmoid. 

The parameters Wi and Wij are estimates from a training sample x~, ... , x')." thereby 

obtaining an estimate of h of h. Estimates are obtained by minimizing the sum 
of the square residuals E~l (Xt - Zt)2 by gradient descent procedure known as 
"backpropagation" [4]. 
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3.2 NARMA or NMA 

A simple nonlinear generalization of ARMA models is 

It is natural to predict 

Zt = h(Xt-b Xt-2, ... , Xt-p, et-b ... , et-q). 

If the model h(Xt-b Xt-2, ... , Xt-p, et-l, ... , et-q) is chosen, then a recurrent network 
can approximate it as 

1 p q 

Zt = h(Xt-1' ... , Xt-p) = L Wd(L WijXt-j + L wij(Xt-j - Zt-j». 
i=1 j=1 ;=1 

This model is a special case of the fully interconnected recurrent network 

1 n 

Zt = L Wd(L wijXt-j) 
i=1 j=1 

where wij are coefficients of a full matrix. 

Nonlinear autoregressive models and nonlinear moving average models are not al­
ways equivalent for nondeterministic processes as in the linear case. If the prob­
ability of the next observation depends on the previous state of the process, a 
representation built on et may not be complete unless some information on the pre­
vious state is added[8]. The problem is that if et, ... , et-m are known, there is still 
not enough information to determine which state the series is in at t - m. Given 
the lack of knowledge of the initial state, it is impossible to predict future states 
and without the state information, the best predictions cannot be made. 

If the moving average representation cannot be made with et alone, it still may be 
possible to express a model in terms of past et and state information. 

It has been shown that for a large class of nondeterministic Markov processes, a 
model of this form can be constructed[8]. This link is important, because a recurrent 
network is this type of model. For further details on using recurrent networks to 
NARMA modeling see Connor et al[9]. 

4 Competition on Load Forecasting Data 

A fully interconnected recurrent network trained with the Williams and Zipser algo­
rithm [10] was part of a competition to predict the loads of the Puget Sound Power 
and Light Company from November 11, 1990 to March 31, 1991. The object was 
to predict the demand for the electric power, known as the load, profile of each day 
on the previous working day. Because the forecast is made on Friday morning, the 
Monday prediction is the most difficult. Actual loads and temperatures of the past 
are available as well as forecasted temperatures for the day of the prediction. 
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Neural networks are not parsimonious and many parameters need to be determined. 
Seasonality limits the amount of useful data for the load forecasting problem. For 
example, the load profile in August is not useful for predicting the load profile in 
January. This limited amount of data severely constrains the number of parameters 
a model can accurately determine. We avoided seasonality, while increasing the size 
of the training set by including data form the last four winters. In total 26976 
vectors were available when data from August 1 to March 31 for 1986 to 1990 were 
included. The larger training set enables neural network models be trained with 
less danger of overfitting the data. If the network can accurately model load growth 
over the years, then the network will have the added advantage of being exposed 
to a larger temperature spectrum on which to base future predictions. The larger 
temperature spectrum is hypothetically useful for predicting phenomenon such as 
cold snaps which can result in larger loads than normal. It should be noted that 
neural networks have been applied to this model in the past[6]. 

Initially five recurrent models were constructed, one for each day of the week, with 
Wednesday, Thursday and Friday in a single network. Each network has tempera­
ture and load values from a week previous at that hour, the forecasted temperature 
of the hour to be predicted, the hour year and the week of the forecast. The week of 
the forecast was included to allow the network to model the seasonality of the data. 
Some models have added load and temperature from earlier in the week, depending 
on the availability of the data. The networks themselves consisted of three to four 
neurons in the hidden layer. This predictor is of the form 

It(k) = et(k - 7) + I(lt(k - 7), et(k - 7), it(k), T8(k - 1), t, d, y), 

where 10 is a nonlinear function, It(k) is the load at time t and day k, et is the 

noise, T is the temperature, T is the forecasted temperature, d is the day of the 
week, and y is the year of the data. 

After comparing its performance to the winner of the competition, the linear model 
in Fig. 1, the poor performance could be attributed to the choice of model, rather 
than a problem with recurrent networks. It should be mentioned that the linear 
model took as one of its inputs, the square of the last available load. This is a 
parsimonious way of modeling nonlinearities. A second recurrent predictor was 
then built with the same input and output configuration as the linear model, save 
the square of the previous load term which the nets nonlinearities can handle. This 
net, denoted as the Recurrent Network, had a different recurrent model for each 
hour of the day. Each hour of the day had a different model, this yielded the best 
predictions. This predictor is of the form 

It(k) = et(k) + It.(lt(k - 1), et(k - 1), it(k), Ts(k - 1), d, y). 

All of the models in the figure use the last available load, forecasted temperature 
at the hour to be predicted, maximum forecasted temperature of the day to be 
predicted, the previous midnight temperatures, and the hour and year of the pre­
diction. A second recurrent network was also trained with the last available load 
at that hour, this enabled et-l to be modeled. The availability of et-l turned out 
to be the difference between making superior and average predictions. It should be 
noted that the use of et-l did not improve the results of linear models. 

The three most important error measures are the weekly morning, afternoon, and 
total loads and are listed in the table below. The A.M. peak is the mean average 
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Recurrent .0275 .0355 .0218 .0311 

Table 1: Mean Square Error 

percent error (MAPE) of the summed predictions of 7 A.M. to 9 A.M., the P.M. 
peak is the MAPE of the summed predictions of 5 P.M. to 7 P.M, and the total 
is the MAPE of the summed predictions over the entire day. Results, of the total 
power for the day prediction, of the recurrent network and other predictors are 
shown in Fig. 1. The performance on the A.M. and P.M. peaks were similar[9]. 

The failure of the daily recurrent network to accurately predict is a product of trying 
to model to complex a problem. When the complexity of the problem was reduced 
to that of predicting a single hour of the day, results improved significantly[7]. 

The superior performance of the recurrent network over the feedforward network 
is time series dependent. A feedforward and a recurrent network with the same 
input representation was trained to predict the 5 P.M. load on the previous work 
day. The feedforward network succeeded in modeling the training set with a mean 
square error of .0153 compared to the recurrent networks .0179. However, when 
the tested on several winter outside the training set the results, listed in the table 
below, varied. For the 1990-91 winter, the recurrent network did better with a 
mean square error of .0311 compared to the feedforward networks .0331. For the 
other winter of the years before the training set, the results were quite different, 
the feedforward network won in all cases. The differences in prediction performance 
can be explained by the inability of the feedforward network to model load growth 
in the future. The loads experience in the 1990-91 winter were outside the range of 
the entire training set. The earlier winters range of loads were not as far form the 
training set and the feedforward network modeled them well. 

The effect of the nonlinear nature of neural networks was apparent in the error 
residuals of the training and test sets. Figs. 2 and 3 are plots of the residuals 
against the predicted load for the training and test sets respectively. In Fig. 2, 
the mean and variance of the residuals is roughly constant as a function of the 
predicted load, this is indicative of a good fit to the data. However, in Fig. 3, 
the errors tend to be positive for larger loads and negative for lesser loads. This 
is a product of the squashing effect of the sigmoidal nonlinearities. The squashing 
effect becomes acute during the prediction of the peak loads of the winter. These 
peak loads are caused when a cold spell occurs and the power demand reaches record 
levels. This is the only measure on which the performance of the recurrent networks 
is surpassed, human experts outperformed the recurrent network for predictions 
during cold spells. The recurrent network did outperform all other statistical models 
on this measure. 
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Figure 1; Competition Performance on Total Power 
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Figure 2: Prediction vs. Residual on Training Set 
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Figure 3: Prediction vs. Residual on Testing Set 
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5 Conclusion 

Recurrent networks are the nonlinear neural network analog of linear ARMA mod­
els. As such, they are well-suited for time series that possess moving average com­
ponents, are state dependent, or have trends. Recurrent neural networks can give 
superior results for load forecasting, but as with linear models, the choice of model 
is critical to good prediction performance. 
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