
Recurrent neural network based language model

Tomáš Mikolov1,2, Martin Karafiát1, Lukáš Burget1, Jan “Honza” Černocký1, Sanjeev Khudanpur2

1Speech@FIT, Brno University of Technology, Czech Republic
2 Department of Electrical and Computer Engineering, Johns Hopkins University, USA

{imikolov,karafiat,burget,cernocky}@fit.vutbr.cz, khudanpur@jhu.edu

Abstract
A new recurrent neural network based language model (RNN
LM) with applications to speech recognition is presented. Re-
sults indicate that it is possible to obtain around 50% reduction
of perplexity by using mixture of several RNN LMs, compared
to a state of the art backoff language model. Speech recognition
experiments show around 18% reduction of word error rate on
the Wall Street Journal task when comparing models trained on
the same amount of data, and around 5% on the much harder
NIST RT05 task, even when the backoff model is trained on
much more data than the RNN LM. We provide ample empiri-
cal evidence to suggest that connectionist language models are
superior to standard n-gram techniques, except their high com-
putational (training) complexity.
Index Terms: language modeling, recurrent neural networks,
speech recognition

1. Introduction
Sequential data prediction is considered by many as a key prob-
lem in machine learning and artificial intelligence (see for ex-
ample [1]). The goal of statistical language modeling is to
predict the next word in textual data given context; thus we
are dealing with sequential data prediction problem when con-
structing language models. Still, many attempts to obtain such
statistical models involve approaches that are very specific for
language domain - for example, assumption that natural lan-
guage sentences can be described by parse trees, or that we
need to consider morphology of words, syntax and semantics.
Even the most widely used and general models, based on n-
gram statistics, assume that language consists of sequences of
atomic symbols - words - that form sentences, and where the
end of sentence symbol plays important and very special role.

It is questionable if there has been any significant progress
in language modeling over simple n-gram models (see for ex-
ample [2] for review of advanced techniques). If we would mea-
sure this progress by ability of models to better predict sequen-
tial data, the answer would be that considerable improvement
has been achieved - namely by introduction of cache models
and class-based models. While many other techniques have
been proposed, their effect is almost always similar to cache
models (that describe long context information) or class-based
models (that improve parameter estimation for short contexts by
sharing parameters between similar words).

If we would measure success of advanced language model-
ing techniques by their application in practice, we would have
to be much more skeptical. Language models for real-world
speech recognition or machine translation systems are built on
huge amounts of data, and popular belief says that more data
is all we need. Models coming from research tend to be com-

INPUT(t) OUTPUT(t)

CONTEXT(t)

CONTEXT(t-1)

Figure 1: Simple recurrent neural network.

plex and often work well only for systems based on very limited
amounts of training data. In fact, most of the proposed advanced
language modeling techniques provide only tiny improvements
over simple baselines, and are rarely used in practice.

2. Model description
We have decided to investigate recurrent neural networks for
modeling sequential data. Using artificial neural networks in
statistical language modeling has been already proposed by
Bengio [3], who used feedforward neural networks with fixed-
length context. This approach was exceptionally successful
and further investigation by Goodman [2] shows that this sin-
gle model performs better than mixture of several other models
based on other techniques, including class-based model. Later,
Schwenk [4] has shown that neural network based models pro-
vide significant improvements in speech recognition for several
tasks against good baseline systems.

A major deficiency of Bengio’s approach is that a feedfor-
ward network has to use fixed length context that needs to be
specified ad hoc before training. Usually this means that neural
networks see only five to ten preceding words when predicting
the next one. It is well known that humans can exploit longer
context with great success. Also, cache models provide comple-
mentary information to neural network models, so it is natural
to think about a model that would encode temporal information
implicitly for contexts with arbitrary lengths.

Recurrent neural networks do not use limited size of con-
text. By using recurrent connections, information can cycle in-

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

1045



side these networks for arbitrarily long time (see [5]). However,
it is also often claimed that learning long-term dependencies by
stochastic gradient descent can be quite difficult [6].

In our work, we have used an architecture that is usually
called a simple recurrent neural network or Elman network [7].
This is probably the simplest possible version of recurrent neu-
ral network, and very easy to implement and train. The network
has an input layer x, hidden layer s (also called context layer
or state) and output layer y. Input to the network in time t is
x(t), output is denoted as y(t), and s(t) is state of the network
(hidden layer). Input vector x(t) is formed by concatenating
vector w representing current word, and output from neurons in
context layer s at time t − 1. Input, hidden and output layers
are then computed as follows:

x(t) = w(t) + s(t− 1) (1)

sj(t) = f

 X
i

xi(t)uji

!
(2)

yk(t) = g

 X
j

sj(t)vkj

!
(3)

where f(z) is sigmoid activation function:

f(z) =
1

1 + e−z
(4)

and g(z) is softmax function:

g(zm) =
ezmP
k e

zk
(5)

For initialization, s(0) can be set to vector of small values, like
0.1 - when processing a large amount of data, initialization is
not crucial. In the next time steps, s(t+1) is a copy of s(t). In-
put vector x(t) represents word in time t encoded using 1-of-N
coding and previous context layer - size of vector x is equal to
size of vocabulary V (this can be in practice 30 000− 200 000)
plus size of context layer. Size of context (hidden) layer s is
usually 30− 500 hidden units. Based on our experiments, size
of hidden layer should reflect amount of training data - for large
amounts of data, large hidden layer is needed1.

Networks are trained in several epochs, in which all data
from training corpus are sequentially presented. Weights are
initialized to small values (random Gaussian noise with zero
mean and 0.1 variance). To train the network, we use the stan-
dard backpropagation algorithm with stochastic gradient de-
scent. Starting learning rate is α = 0.1. After each epoch,
the network is tested on validation data. If log-likelihood of
validation data increases, training continues in new epoch. If no
significant improvement is observed, learning rate α is halved
at start of each new epoch. After there is again no signifi-
cant improvement, training is finished. Convergence is usually
achieved after 10-20 epochs.

In our experiments, networks do not overtrain significantly,
even if very large hidden layers are used - regularization of net-
works to penalize large weights did not provide any significant
improvements. Output layer y(t) represents probability dis-
tribution of next word given previous word w(t) and context

1Consequently, time needed to train optimal network increases faster
than just linearly with increased amount of training data: vocabulary
growth increases the input and output layer sizes, and also the optimal
hidden layer size increases with more training data.

s(t − 1). Softmax ensures that this probability distribution is
valid, ie. ym(t) > 0 for any word m and

P
k yk(t) = 1.

At each training step, error vector is computed according to
cross entropy criterion and weights are updated with the stan-
dard backpropagation algorithm:

error(t) = desired(t)− y(t) (6)

where desired is a vector using 1-of-N coding representing the
word that should have been predicted in a particular context and
y(t) is the actual output from the network.

Note that training phase and testing phase in statistical lan-
guage modeling usually differs in the fact that models do not get
updated as test data are being processed. So, if a new person-
name occurs repeatedly in the test set, it will repeatedly get a
very small probability, even if it is composed of known words.
It can be assumed that such long term memory should not re-
side in activation of context units (as these change very rapidly),
but rather in synapses themselves - that the network should con-
tinue training even during testing phase. We refer to such model
as dynamic. For dynamic model, we use fixed learning rate
α = 0.1. While in training phase all data are presented to net-
work several times in epochs, dynamic model gets updated just
once as it processes testing data. This is of course not optimal
solution, but as we shall see, it is enough to obtain large perplex-
ity reductions against static models. Note that such modification
is very similar to cache techniques for backoff models, with the
difference that neural networks learn in continuous space, so if
’dog’ and ’cat’ are related, frequent occurrence of ’dog’ in test-
ing data will also trigger increased probability of ’cat’.

Dynamically updated models can thus automatically adapt
to new domains. However, in speech recognition experiments,
history is represented by hypothesis given by recognizer, and
contains recognition errors. This generally results in poor per-
formance of cache n-gram models in ASR [2].

The training algorithm described here is also referred to as
truncated backpropagation through time with τ = 1. It is not
optimal, as weights of network are updated based on error vec-
tor computed only for current time step. To overcome this sim-
plification, backpropagation through time (BPTT) algorithm is
commonly used (see Boden [5] for details).

One of major differences between feedforward neural net-
works as used by Bengio [3] and Schwenk [4] and recurrent
neural networks is in amount of parameters that need to be
tuned or selected ad hoc before training. For RNN LM, only
size of hidden (context) layer needs to be selected. For feedfor-
ward networks, one needs to tune the size of layer that projects
words to low dimensional space, the size of hidden layer and
the context-length2.

2.1. Optimization

To improve performance, we merge all words that occur less
often than a threshold (in the training text) into a special rare
token. Word-probabilities are then computed as

P (wi(t+1)|w(t), s(t−1)) =

(
yrare(t)
Crare

if wi(t+ 1) is rare,
yi(t) otherwise

(7)

2It is out of scope of this paper to provide a detailed comparison of
feedforward and recurrent networks. However, in some experiments we
have achieved almost twice perplexity reduction over n-gram models by
using a recurrent network instead of a feedforward network.

1046



Table 1: Performance of models on WSJ DEV set when increas-
ing size of training data.

Model # words PPL WER
KN5 LM 200K 336 16.4
KN5 LM + RNN 90/2 200K 271 15.4
KN5 LM 1M 287 15.1
KN5 LM + RNN 90/2 1M 225 14.0
KN5 LM 6.4M 221 13.5
KN5 LM + RNN 250/5 6.4M 156 11.7

where Crare is number of words in the vocabulary that occur
less often than the threshold. All rare words are thus treated
equally, ie. probability is distributed uniformly between them.

Schwenk [4] describes several possible approaches that can
be used for further performance improvements. Additional pos-
sibilities are also discussed in [10][11][12] and most of them
can be applied also to RNNs. For comparison, it takes around 6
hours for our basic implementation to train RNN model based
on Brown corpus (800K words, 100 hidden units and vocab-
ulary threshold 5), while Bengio reports 113 days for basic
implementation and 26 hours with importance sampling [10],
when using similar data and size of neural network. We use
only BLAS library to speed up computation.

3. WSJ experiments
To evaluate performance of simple recurrent neural network
based language model, we have selected several standard
speech recognition tasks. First we report results after rescor-
ing 100-best lists from DARPA WSJ’92 and WSJ’93 data sets
- the same data sets were used by Xu [8] and Filimonov [9].
Oracle WER is 6.1% for dev set and 9.5% for eval set. Training
data for language model are the same as used by Xu [8].

The training corpus consists of 37M words from NYT sec-
tion of English Gigaword. As it is very time consuming to train
RNN LM on large data, we have used only up to 6.4M words
for training RNN models (300K sentences) - it takes several
weeks to train the most complex models. Perplexity is evalu-
ated on held-out data (230K words). Also, we report results
for combined models - linear interpolation with weight 0.75 for
RNN LM and 0.25 for backoff LM is used in all these experi-
ments. In further experiments, we denote modified Kneser-Ney
smoothed 5-gram as KN5. Configurations of neural network
LMs, such as RNN 90/2, indicate that the hidden layer size is
90 and threshold for merging words to rare token is 2. To cor-
rectly rescore n-best lists with backoff models that are trained
on subset of data used by recognizer, we use open vocabulary
language models (unknown words are assigned small probabil-
ity). To improve results, outputs from various RNN LMs with
different architectures can be linearly interpolated (diversity is
also given by random weight initialization).

The results, reported in Tables 1 and 2, are by no means
among the largest improvements reported for the WSJ task ob-
tained just by changing the language modeling technique. The
improvement keeps getting larger with increasing training data,
suggesting that even larger improvements may be achieved sim-
ply by using more data. As shown in Table 2, WER reduc-
tion when using mixture of 3 dynamic RNN LMs against 5-
gram with modified Kneser-Ney smoothing is about 18%. Also,
perplexity reductions are one of the largest ever reported, al-
most 50% when comparing KN 5gram and mixture of 3 dy-

Table 2: Comparison of various configurations of RNN LMs
and combinations with backoff models while using 6.4M words
in training data (WSJ DEV).

PPL WER
Model RNN RNN+KN RNN RNN+KN
KN5 - baseline - 221 - 13.5
RNN 60/20 229 186 13.2 12.6
RNN 90/10 202 173 12.8 12.2
RNN 250/5 173 155 12.3 11.7
RNN 250/2 176 156 12.0 11.9
RNN 400/10 171 152 12.5 12.1
3xRNN static 151 143 11.6 11.3
3xRNN dynamic 128 121 11.3 11.1

Table 3: Comparison of WSJ results obtained with various mod-
els. Note that RNN models are trained just on 6.4M words.

Model DEV WER EVAL WER
Lattice 1 best 12.9 18.4
Baseline - KN5 (37M) 12.2 17.2
Discriminative LM [8] (37M) 11.5 16.9
Joint LM [9] (70M) - 16.7
Static 3xRNN + KN5 (37M) 11.0 15.5
Dynamic 3xRNN + KN5 (37M) 10.7 16.34

namic RNN LMs - actually, by mixing static and dynamic RNN
LMs with larger learning rate used when processing testing data
(α = 0.3), the best perplexity result was 112.

All LMs in the preceding experiments were trained on only
6.4M words, which is much less than the amount of data used
by others for this task. To provide a comparison with Xu [8] and
Filimonov [9], we have used 37M words based backoff model
(the same data were used by Xu, Filimonov used 70M words).
Results are reported in Table 3, and we can conclude that RNN
based models can reduce WER by around 12% relatively, com-
pared to backoff model trained on 5x more data3.

4. NIST RT05 experiments
While previous experiments show very interesting improve-
ments over a fair baseline, a valid criticism would be that the
acoustic models used in those experiments are far from state
of the art, and perhaps obtaining improvements in such cases
is easier than improving well tuned system. Even more crucial
is the fact that 37M or 70M words used for training baseline
backoff models is by far less than what is possible for the task.

To show that it is possible to obtain meaningful improve-
ments in state of the art system, we experimented with lattices
generated by AMI system used for NIST RT05 evaluation [13].
Test data set was NIST RT05 evaluation on independent headset
condition.

The acoustic HMMs are based on cross-word tied-states tri-
phones trained discriminatively using MPE criteria. Feature ex-

3We have also tried to combine RNN models and discriminatively
trained LMs [8], with no significant improvement.

4Apparently strange result obtained with dynamic models on eval-
uation set is probably due to the fact that sentences in eval set do not
follow each other. As dynamic changes in model try to capture longer
context information between sentences, sentences must be presented
consecutively to dynamic models.

1047



Table 4: Comparison of very large back-off LMs and RNN LMs
trained only on limited in-domain data (5.4M words).

Model WER static WER dynamic
RT05 LM 24.5 -
RT09 LM - baseline 24.1 -
KN5 in-domain 25.7 -
RNN 500/10 in-domain 24.2 24.1
RNN 500/10 + RT09 LM 23.3 23.2
RNN 800/10 in-domain 24.3 23.8
RNN 800/10 + RT09 LM 23.4 23.1
RNN 1000/5 in-domain 24.2 23.7
RNN 1000/5 + RT09 LM 23.4 22.9
3xRNN + RT09 LM 23.3 22.8

traction use 13 Mel-PLP’s features with deltas, double and triple
deltas reduced by HLDA to 39-dimension feature vector. VTLN
warping factors were applied to the outputs of Mel filterbanks.
The amount of training data was 115 hours of meeting speech
from ICSI, NIST, ISL and AMI training corpora.

Four gram LM used in AMI system was trained on vari-
ous data sources, see description in [13]. Total amount of LM
training data was more than 1.3G words. This LM is denoted as
RT05 LM in table 4. The RT09 LM was extended by additional
CHIL and web data. Next change was in lowering cut-offs, e.g.
the minimum count for 4-grams was set to 3 instead of 4. To
train the RNN LM, we selected in domain data that consists
of meeting transcriptions and Switchboard corpus, for a total
of 5.4M words – RNN training was too time consuming with
more data. This means that RNNs are trained on tiny subset
of the data that are used to construct the RT05 and RT09 LMs.
Table 4 compares the performance of these LMs on RT05.

5. Conclusion and future work
Recurrent neural networks outperformed significantly state of
the art backoff models in all our experiments, most notably even
in case when backoff models were trained on much more data
than RNN LMs. In WSJ experiments, word error rate reduction
is around 18% for models trained on the same amount of data,
and 12% when backoff model is trained on 5 times more data
than RNN model. For NIST RT05, we can conclude that models
trained on just 5.4M words of in-domain data can outperform
big backoff models, which are trained on hundreds times more
data. Obtained results are breaking myth that language model-
ing is just about counting n-grams, and that the only reasonable
way how to improve results is by acquiring new training data.

Perplexity improvements reported in Table 2 are one of the
largest ever reported on similar data set, with very significant
effect of on-line learning (also called dynamic models in this
paper, and in context of speech recognition very similar to un-
supervised LM training techniques). While WER is affected
just slightly and requires correct ordering of testing data, on-
line learning should be further investigated as it provides natural
way how to obtain cache-like and trigger-like information (note
that for data compression, on-line techniques for training pre-
dictive neural networks have been already studied for example
by Mahoney [14]). If we want to build models that can really
learn language, then on-line learning is crucial - acquiring new
information is definitely important.

It is possible that further investigation into backpropagation
through time algorithm for learning recurrent neural networks

will provide additional improvements. Preliminary results on
toy tasks are promising. However, it does not seem that simple
recurrent neural networks can capture truly long context infor-
mation, as cache models still provide complementary informa-
tion even to dynamic models trained with BPTT. Explanation is
discussed in [6].

As we did not make any task or language specific assump-
tion in our work, it is easy to use RNN based models almost ef-
fortlessly in any kind of application that uses backoff language
models, like machine translation or OCR. Especially tasks in-
volving inflectional languages or languages with large vocabu-
lary might benefit from using NN based models, as was already
shown in [12].

Besides very good results reported in our work, we find pro-
posed recurrent neural network model interesting also because
it connects language modeling more closely to machine learn-
ing, data compression and cognitive sciences research. We hope
that these connections will be better understood in the future.

6. Acknowledgements
We would like to thank Puyang Xu for providing WSJ data,
and Stefan Kombrink for help with additional NIST RT experi-
ments. The work was also partly supported by European project
DIRAC (FP6-027787), Czech Ministry of Interior project No.
VD20072010B16, Grant Agency of Czech Republic project
No. 102/08/0707, Czech Ministry of Education project No.
MSM0021630528 and by BUT FIT grant No. FIT-10-S-2.

7. References
[1] Mahoney, M. Text Compression as a Test for Artificial Intelli-

gence. In AAAI/IAAI, 486-502, 1999
[2] Goodman Joshua T. (2001). A bit of progress in language model-

ing, extended version. Technical report MSR-TR-2001-72.
[3] Yoshua Bengio, Rejean Ducharme and Pascal Vincent. 2003. A

neural probabilistic language model. Journal of Machine Learning
Research, 3:1137-1155

[4] Holger Schwenk and Jean-Luc Gauvain. Training Neural Network
Language Models On Very Large Corpora. in Proc. Joint Confer-
ence HLT/EMNLP, October 2005.

[5] Mikael Bodén. A Guide to Recurrent Neural Networks and Back-
propagation. In the Dallas project, 2002.

[6] Yoshua Bengio and Patrice Simard and Paolo Frasconi. Learn-
ing Long-Term Dependencies with Gradient Descent is Difficult.
IEEE Transactions on Neural Networks, 5, 157-166.

[7] Jeffrey L. Elman. Finding Structure in Time. Cognitive Science,
14, 179-211

[8] Puyang Xu and Damianos Karakos and Sanjeev Khudanpur. Self-
Supervised Discriminative Training of Statistical Language Mod-
els. ASRU 2009.

[9] Denis Filimonov and Mary Harper. 2009. A joint language model
with fine-grain syntactic tags. In EMNLP.

[10] Bengio, Y. and Senecal, J.-S. Adaptive Importance Sampling to
Accelerate Training of a Neural Probabilistic Language Model.
IEEE Transactions on Neural Networks.

[11] Morin, F. and Bengio, Y. Hierarchical Probabilistic Neural Net-
work Language Model. AISTATS’2005.

[12] Tomáš Mikolov, Jiřı́ Kopecký, Lukáš Burget, Ondřej Glembek
and Jan Černocký: Neural network based language models for
highly inflective languages, In: Proc. ICASSP 2009.

[13] T. Hain. et al., “The 2005 AMI system for the transcription of
speech in meetings,” in Proc. Rich Transcription 2005 Spring
Meeting Recognition Evaluation Workshop, UK, 2005.

[14] Mahoney, M. 2000. Fast Text Compression with Neural Net-
works. In Proc. FLAIRS.

1048


