
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3030775, IEEE Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

Recurrent neural network-based robust 
nonsingular sliding mode control with 
input saturation for a non-holonomic 
spherical robot 
 
Shu-Bo Chen1, Alireza Beigi2, Amin Yousefpour3, Farhad Rajaee4, Hadi Jahanshahi5, 
Stelios Bekiros6,7, Raúl Alcaraz8, and Yu-Ming Chu9,10 
1School of Science, Hunan City University, Yiyang 413000, P. R. China  
2,3School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 14399‒57131, Iran  
4Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran 
5Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 5V6, Canada 
6European University Institute, Department of Economics, Via delle Fontanelle, 18, I-50014, Florence, Italy 
7Rimini Centre for Economic Analysis (RCEA), LH3079, Wilfrid Laurier University, 75 University Ave W., ON N2L3C5, Waterloo, Canada 
8Research Group in Electronic, Biomedical and Telecommunication Engineering, University of Castilla-La Mancha (UCLM), 16071, Cuenca, Spain 
9Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China 
10Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, 

Changsha 410114, P. R. China 

Corresponding authors: Yu-Ming Chu (e-mail: chuyuming@zjhu.edu.cn) 

“The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 

11601485).”  

ABSTRACT We develop a new robust control scheme for a non-holonomic spherical robot. To this end, 

the mathematical model of a pendulum driven non-holonomic spherical robot is first presented. Then, a 

recurrent neural network-based robust nonsingular sliding mode control is proposed for stabilization and 

tracking control of the system. The designed recurrent neural network is applied to approximate compound 

disturbances, including external interferences and dynamic uncertainties. Moreover, the controller is 

designed in a way that avoids the singularity problem in the system. Another advantage of the proposed 

scheme is its ability for tracking control while there exists control input saturation, which is a serious 

concern in robotic systems. Based on the Lyapunov theorem, the stability of the closed-loop system has 

also been confirmed. Lastly, the performance of the proposed control technique for the uncertain system in 

the presence of an external disturbance, unknown input saturation, and dynamic uncertainties has been 

investigated. Also, the proposed controller has been compared with a Fuzzy-PID one. Simulation results 

show the effectiveness and superiority of the developed control technique. 

INDEX TERMS Spherical robot; Sliding mode control; Recurrent neural network; External disturbance; 

Unknown input saturation; Control singularity. 

I. INTRODUCTION 

The pendulum-driven spherical robot can move by changing 

the position of its gravity centre. Indeed, the rotating of the 

pendulum generates the relocation of the mass centre 

position of the robot [1-3]. The spherical geometry is very 

suitable to use these robots for exploration in harsh 

environments, such as in the space, deserts, and earthquake 

ruins [4-7]. However, this kind of robot results in a nonlinear 

system with non-holonomic dynamics, which means that the 

dimensions of the state space model are more than the 

number of control inputs. This condition makes the tracking 

control of this robot difficult in real applications [8, 9]. 

Robotic systems are well-known samples of trajectory 

controllable mechanical ones. Nevertheless, their highly 

nonlinear dynamics, as well as uncertainties, cause a 

challenging control problem [10-12]. Hence, so far several 

studies have tried to solve the challenge of controlling a 

spherical robot. To this respect, a three-step technique has 

been developed by Li and Canny for the control of both 

position and orientation of a spherical robot [13]. A novel 

mechanism has also been proposed by Azizi and Naderi for 
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controlling a spherical robot [14]. Precisely, they have 

investigated the dynamical model of the system and its 

control.  Andani et al. [14] have proposed a sliding mode 

control (SMC) and a fuzzy SMC to control a spherical robot 

motion. They have demonstrated that the controlled system 

can track the desired path with minimum tracking error. 

However, they have not considered important issues, such as 

the control input limitation and the singularity problem. 

Kayacan et al. [15] have introduced another SMC with an 

online learning algorithm for spherical rolling robots. In one 

recent study, Rozegar et al. [8] have investigated the control 

and motion of a spherical robot on an inclined plane. They 

have proposed a terminal sliding mode control (TSMC) to 

maintain and control the robot on a variable slope.  

One prevalent problem in TSMC is the singularity, which 

causes by some terms in the terminal sliding mode surface 

(this kind of singularity does not occur in SMC). To avoid 

this singularity problem, a saturation function has been 

introduced in [16] for dealing with the singularity problem in 

the case of chained nonlinear systems with matched 

perturbations. In this method, without changing the design of 

the controller, it was proposed to limit the control signal 

when singularity occurs. However, in this method, the 

stability of the closed-loop system where singularity occurs 

was not proven. A nonsingular TSMC method was presented 

in [17], which simply swaps the state variables in the 

conventional TSMC function while retaining the finite time 

convergence feature. Also, in [18] switching between TSMC 

and a linear hyper plane-based sliding mode was proposed. 

Another approach is to transfer the trajectory to a prescribed 

region in advance where no singularity occurs, which is the 

so-called two-phase control strategy [19]. It should be noted 

that these methods are adopting indirect approaches to avoid 

singularity. In [20], an adaptive non-singular integral TSMC 

has been presented for trajectory tracking of autonomous 

underwater vehicles with dynamic uncertainties and time-

varying external disturbances, which can eliminate the 

singularity problem. In [21], a modified time-varying 

nonsingular TSMC manifold has been proposed to avoid the 

singularity problem.  

In general, another type of singularity problem, which is 

the result of the dynamic of systems, may occur in control 

systems. In this kind of singularity, due to some terms that 

there exist in the functions of the system, the singularity will 

happen. This issue has been solved for TSMC in some 

studies [22-25]. However, there are a few studies that have 

solved this kind of singularity through SMC. Actually, most 

studies in this field have considered nonsingular approaches 

for TSMC, and solving this detrimental problem through 

SMC is neglected.  

In most real-world applications, it is rare to found 

accurate information about the dynamics of the systems, and 

moreover, they are often in the presence of various 

disturbances [26-30]. Thus, in these cases it is very beneficial 

to apply a controller that is robust to unmodeled dynamics 

and external disturbances [31-33]. To this end, previous 

works have proposed several disturbance-observers with 

different control schemes for some systems [34, 35]. 

Neural networks have been presented as an appropriate tool 

for approximation of any unknown function [36, 37]. Thus, 

using this advantage, several research studies have applied 

neural networks for control purposes [38-40]. For instance, a 

neural network-based SMC has been designed by Guo et al. 

for an autonomous underwater vehicle [41]. However, few 

studies have shown that when there are unexpected changes 

in the system, recurrent neural networks (RNN) perform 

better than conventional feedforward neural networks [42-

45]. To this respect, a RNN-based disturbance observer has 

been employed to fortify the robustness of the controller by 

Salgado and Chairez [46]. To approximate the uncertain 

dynamics of a MIMO system, Salgado et al. [47]  have also 

developed a RNN-based observer for an adaptive SMC. The 

authors have proven that this control scheme can 

approximate the unknown states of a given nonlinear system 

and lessen the convergence time, as well as the oscillations in 

the steady-state responses. Fei et al. [42] have presented an 

adaptive SMC by using a double loop RNN to approximate 

unknown dynamics. Zhang and Chu [48] have designed an 

adaptive SMC based on the local RNN to estimate the 

uncertainties for trajectory tracking control of an autonomous 

underwater robot. Xu et al. [49] have proposed a RNN-based 

robust tracking control to measure an online unknown 

nonlinear system function. The authors have shown that an 

RNN-based robust tracking control is able to significantly 

improve the performance of the controller. Also, there have 

been a lot of research works focusing on approximating time-

variant functions using an RNN. For instance, Chow and 

Fang [45] have used RNN as an estimator to develop an 

algorithm that can approximate any trajectory tracking 

accurately. Feedback connections between layers of the 

recurrent neural network create sophisticated dynamics that 

can deal with time-varying outputs and estimate them. Li et 

al. [50] have shown the excellent ability of continuous-time 

recurrent neural networks in the estimation of dynamical 

time-variant systems.  

On the other hand, since input saturation is a potential 

problem in many practical dynamic systems and has played 

an important role in many branches of control applications 

during the past decades, several valuable control schemes for 

uncertain nonlinear systems have been proposed up to now 

[51-53]. By employing the idea of auxiliary system design, 

Esfandiari et al. [53] have introduced nonsymmetric input 

saturation constraints for a class of uncertain nonaffine 

nonlinear systems with external disturbances. In [52], an 

adaptive backstepping approach has been introduced to 

control a single-input uncertain nonlinear system in the 

presence of external disturbances and input saturation. In that 

method, a Nussbaum function is employed to solve the 

problem of the saturation nonlinearity. By making use of the 

smooth nonlinear function of the control input signal, a 

nonaffine pure-feedback stochastic nonlinear system has 

been investigated in [51]. More precisely, the proposed 

control guaranteed convergence of the tracking error to an 
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arbitrarily small neighborhood around the origin in the sense 

of mean quartic value. 

To the best of the author’s knowledge, very few attempts 

have been made to design a neural network-based controller 

for spherical robots [54, 55]. Moreover, none of these works 

have considered control input saturation in the system. 

However, as it is evident, because of the current limitations 

in real actuators, the bounds of control input should be 

considered in real-world systems [56-58]. Similarly, although 

the singularity problem can be induced to a large control 

input [59-62], this has not been taken to account in most 

previous studies on spherical robots. Moreover, the 

advantages presented by RNNs have still not been 

completely exploited for the control of this kind of robots. 

Hence, in the present work, a novel controller has been 

designed for an uncertain non-holonomic spherical robot in 

the presence of unknown disturbances, control singularity 

problem, and control input saturation. Precisely, an RNN has 

been combined with an SMC. Moreover, it has been 

demonstrated that the proposed RNN-based disturbance 

observer can identify time-varying disturbances and 

uncertainties when the robot is on a variable slope inclined 

plane.  The control input saturation has also been taken into 

account for evaluating the performance of the robot in a 

practical, real-world scenario. Moreover, the proposed 

technique has been able to avoid the singularity problem in 

the spherical robot. The stability of the system has been 

proven by the Lyapunov stability theory and the Taylor 

expansions technique, even when control input limitations 

were considered.  

Overall, the improvements reached by the proposed 

control method, regarding other previous works on control of 

spherical robots, can be summarized as follows: 

(1) Ability to deal with the control input saturation and 

singularity problem through SMC, simultaneously. 

(2) Access to the estimated disturbance and uncertainty 

by depicting the online assessed value of the overall 

disturbance.  

(3) High-rate of accuracy in the disturbance estimation 

using the outputs of each step as the inputs of the 

next one in the RNN.   

(4)  Utilizing both activation function and biases in the 

neural network disturbance observer by taking to 

account the stability constraints. 

The remainder of the work is organized as follows. Section 

2 details non-holonomic spherical robot formulation. In 

Section 3, the RNN-based nonsingular SMC (RNN-based 

NSMC) is designed for the uncertain spherical robot. In 

Section 4, the proposed scheme is applied to control the 

motion of the system. Also, the performance of the proposed 

controller is compared with a Fuzzy-PID one. Lastly, 

conclusions are presented in Section 5. 

 
II.  MATHEMATICAL FORMULATION OF THE SYSTEM 

A spherical robot is an active system which is led to a 

desired position and orientation by moving the pendulum. By 

adjusting the center of mass gravity, the motion of the robot 

could be controlled. A schematic representation of the system 

is depicted in Fig. 1, where points A, G, C, and P represent 

the center of the shell, the mass center of the robot, the 

contact point between the plane and robot, and the position of 

the pendulum, respectively. In what follows, 𝑖̂, 𝑗,̂ and �̂�, 

respectively, denote the unit vectors in 𝑥, 𝑦, and 𝑧 directions. 

The Euler–Lagrange equations for the system are given by 𝑑𝑑𝑡 (𝜕ℒ𝜕�̇�) − (𝜕ℒ𝜕𝓆) = 𝑄 
(1) 

 

 

FIGURE 1.  A spherical robot on an inclined surface. 

 

where 𝓆 illustrate the generalized coordinates, 𝑄 indicates 

the generalized external forces and ℒ is the Lagrangian 

function of the system and is given by  ℒ = 𝑇 − 𝑈, (2) 

where 𝑇 indicates the total kinetic energy of the system and 𝑈 denotes the potential energy. The total kinetic energy can 

be expanded as 𝑇 = 𝑇𝑐𝑎𝑠𝑒 + 𝑇𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 , (3) 

where 𝑇𝑐𝑎𝑠𝑒   and 𝑇𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚are given by 

 𝑇𝑐𝑎𝑠𝑒 =  12 𝑚𝑠‖𝑉𝐴‖2 + 12 𝐼𝐴‖𝜔𝑠‖2, and (4) 

𝑇𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 =  12 𝑚𝑝‖𝑉𝑝‖2
,  (5) 

where 𝑚𝑠 is the mass of the spherical shell, 𝑉𝐴 denotes the 

velocity of shell center, 𝐼𝐴 is the spherical shell moment of 

inertia and 𝜔𝑠 = (�̇� − �̇�)�̂� represents the angular velocity 

of the spherical shell, where 𝜙 is the rotation of the spherical 

shell relative to the inclined plane, and 𝛼 is the angle of the 

inclined plane. Also, 𝑚𝑝 and 𝑉𝑝 indicate the mass of the 

pendulum and velocity of the pendulum, respectively. 

According to the system that is shown in Fig. 1 the 

velocities are as  
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𝑉𝐶 = 𝑥�̇�𝑗̂ , 𝑉𝐴/𝐶 = 𝜌�̇�𝑖̂ →  �⃗� 𝐴 = 𝑉𝐶 + 𝑉𝐴/𝐶 = 𝜌�̇�𝑖̂ + 𝑥�̇�𝑗,̂ and 

(6) 

𝑉𝑃 = 𝑉𝐴 + 𝑉𝑃/𝐴, �⃗� 𝑃/𝐴 = 𝑟�̇�(𝑐𝑜𝑠(𝜃)𝑖̂ + 𝑠𝑖𝑛(𝜃)𝑗̂), (7) 

Where 𝜃 stands for the instantaneous angle of the pendulum, 

relative to the inclined plane.  𝜌 is radius of the spherical shell and 𝑟 denotes the radius of 

the pendulum. The potential energy and external force can be 

then expressed as 𝑈 = 𝑀𝑔(𝑥 𝑠𝑖𝑛(𝛼) + 𝜌 𝑐𝑜𝑠(𝛼)− 𝑟𝐺𝑐𝑜 𝑠(𝛼 + 𝜃)), and 

(8) 

𝑄 = 𝜏𝑚, (9) 

where 𝑟𝐺  denotes the radius of the robot mass center and 𝜏𝑚 

is the motor torque. If ℒ is recomputed by Eq. (3) to Eq . (7), 

these equations will be obtained as (𝐼𝑐 + 𝑚𝑝𝜌2)�̈� + 𝑚𝑝𝜌𝑟 𝑐𝑜𝑠(𝜃) �̈�− 𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝜃)(�̇�2 + �̇��̇�) − 𝐼𝐴�̈�− 𝑀𝜌(𝑥0 + 𝜌𝜙)�̇�2+ 𝑀𝑔𝜌 𝑠𝑖𝑛(𝛼) = 𝜏𝑚, (10) 

𝑚𝑝𝑟2�̈� + 𝑚𝑝𝜌𝑟 𝑐𝑜𝑠(𝜃) �̈� + 𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝜃)�̇��̇�+ 𝑚𝑝𝑟(𝑥0 + 𝜌𝜙)𝑠𝑖𝑛(𝜃)�̈�+ 𝑀𝑔𝑟𝐺 𝑠𝑖𝑛(𝛼 + 𝜃) = 𝜏𝑚 (11) 

 

Respectively. By defining the states of the 

system as 𝜙 = 𝑥1, �̇� = 𝑥2, 𝜃 = 𝑧1, �̇� = 𝑧2, the 

state space equations of the system are �̇�1 = 𝑥2, (12) �̇�2= − 1[𝐼𝑐 + 𝑚𝑝𝜌2 sin2 𝑧1] (−𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝑧1)(𝑧22+ 𝑧2�̇�) − 𝐼𝐴�̈� − 𝑀𝜌(𝑥0 + 𝜌𝑥1)�̇�2+ 𝑀𝑔𝜌 𝑠𝑖𝑛(𝛼)+ 𝜌 𝑐𝑜𝑠(𝑧1)𝑟 [−[𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝑧1)�̇�𝑥2+ 𝑚𝑝𝑟(𝑥0 + 𝜌𝑥1)𝑠𝑖𝑛(𝑧1)�̈�+ 𝑀𝑔𝑟𝐺 𝑠𝑖𝑛(𝛼 + 𝑧1)]] ) + 𝜏𝑚 [1 − 𝜌 𝑐𝑜𝑠(𝑧1)𝑟 ][(𝐼𝑐 + 𝑚𝑝𝜌2 sin2 𝑧1)]   
(13) 

�̇�1 = 𝑧2, (14) �̇�2= 𝑚𝑝𝜌𝑟𝑐𝑜𝑠(𝑧1)(𝐼𝑐𝑚𝑝𝑟2 + 𝑚𝑝2𝜌2𝑟2 𝑠𝑖𝑛2 𝑧1) [𝑀𝑔𝜌 𝑠𝑖𝑛(𝛼)− 𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝑧1)(𝑧12 + 𝑧2�̇�) − 𝐼𝐴�̈�− 𝑀𝜌(𝑥0 + 𝜌𝑥2)�̇�2]+ (𝐼𝑐 + 𝑚𝑝𝜌2)(𝐼𝑐𝑚𝑝𝑟2 + 𝑚𝑝2𝜌2𝑟2 𝑠𝑖𝑛2 𝑧1) [−𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝑧1)�̇�𝑥2− 𝑚𝑝𝑟(𝑥0 + 𝜌𝑥2)𝑠𝑖𝑛(𝑧1)�̈� − 𝑀𝑔𝑟𝐺 𝑠𝑖𝑛(𝛼 + 𝑧1)]+ [𝐼𝑐 + 𝑚𝑝𝜌2 − 𝑚𝑝𝜌𝑟 𝑐𝑜𝑠(𝑧1)](𝐼𝑐𝑚𝑝𝑟2 + 𝑚𝑝2𝜌2𝑟2 𝑠𝑖𝑛2 𝑧1) 𝜏𝑚  
(15) 

Eqs. (12)-(15) have been derived from the Lagrange 

equation and the total kinetic energy of the system.  

Combining Eqs. (13)-(15) and assuming that the �̇� and �̈� are 

negligible, we have �̇�1 = 𝑥2, (16) �̇�2 = − 1[𝐼𝑐 + 𝑚𝑝𝜌2 sin2 𝑧1] (−𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝑧1)(𝑧22)+ 𝑀𝑔𝜌 𝑠𝑖𝑛(𝛼)− 𝜌 𝑐𝑜𝑠(𝑧1)𝑟 [𝑀𝑔𝑟𝐺 𝑠𝑖𝑛(𝛼
+ 𝑧1)] ) + 𝜏𝑚 [1 − 𝜌 𝑐𝑜𝑠(𝑧1)𝑟 ][(𝐼𝑐 + 𝑚𝑝𝜌2 sin2 𝑧1)]  

(17) 

�̇�1 = 𝑧2, (18) �̇�2= 𝑚𝑝𝜌𝑟𝑐𝑜𝑠(𝑧1)(𝐼𝑐𝑚𝑝𝑟2 + 𝑚𝑝2𝜌2𝑟2 sin2 𝑧1) ([−𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝑧1)(𝑧12)+ 𝑀𝑔𝜌 𝑠𝑖𝑛(𝛼)])+ (𝐼𝑐 + 𝑚𝑝𝜌2)(𝐼𝑐𝑚𝑝𝑟2 + 𝑚𝑝2𝜌2𝑟2 sin2 𝑧1) [−𝑀𝑔𝑟𝐺 𝑠𝑖𝑛(𝛼
+ 𝑧1)] + [𝐼𝑐 + 𝑚𝑝𝜌2 − 𝑚𝑝𝜌𝑟 𝑐𝑜𝑠(𝑧1)](𝐼𝑐𝑚𝑝𝑟2 + 𝑚𝑝2𝜌2𝑟2 sin2 𝑧1) 𝜏𝑚  

(19) 
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This model contains enormous complexity. Thereby, 

reaching a favorable controller is the most challenging 

problem in this system, which motivates the rest of the 

present study. 

 

III. Controller Design  

In the current section, an RNN-based NSMC is designed 

for a non-holonomic spherical robot, and the tracking 

convergence of the closed-loop system is proven. Suppose  �̅� = 𝜏𝑚 , we have the following nonlinear system: 

�̇�1 = 𝑥2, (20) 

�̇�2 = 𝑓𝑥𝑧 + ∆𝑓𝑥𝑧 + (𝑔𝑥𝑧 + ∆𝑔𝑥𝑧)�̅� + 𝑑(𝑡), (21-a) 𝑓𝑥𝑧 = − 1[𝐼𝑐+𝑚𝑝𝜌2 𝑠𝑖𝑛2 𝑧1] (−𝑚𝑝𝜌𝑟𝑠𝑖𝑛(𝑧1)(𝑧22) +𝑀𝑔𝜌 𝑠𝑖𝑛(𝛼) − 𝜌 𝑐𝑜𝑠(𝑧1)𝑟 [𝑀𝑔𝑟𝐺 𝑠𝑖𝑛(𝛼 + 𝑧1)] )    (21-b) 

𝑔𝑥𝑧 = [1 − 𝜌 𝑐𝑜𝑠(𝑧1)𝑟 ][(𝐼𝑐 + 𝑚𝑝𝜌2 𝑠𝑖𝑛2 𝑧1)]  (21-c) 

where 𝑑(𝑡) denotates the external disturbances. These 

equations include uncertainties and disturbances against 

(a) 

 
 

 

(b) 

 
FIGURE 2.   (a) Internal structure of the proposed RNN-based NSMC disturbance observer. (b) Global block diagram of the proposed RNN-based 

NSMC for a non-holonomic spherical robot. 
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whom the system must be robust. According to the uncertain 

terms ∆𝑔𝑥𝑧 and  ∆𝑓𝑥𝑧, Eq. (21) can be rewritten as �̇�2 = 𝑓𝑥𝑧 + (𝑔𝑥𝑧)�̅� + 𝐷(𝑡), (22) 

where 𝐷(𝑡) is defined as  𝐷(𝑡) =  ∆𝑓𝑥𝑧 +  ∆𝑔𝑥𝑧�̅� + 𝑑(𝑡).  

(23) 

A. Selecting an RNN-based controller  

Up to now, neural networks have been applied for 

enormous applications and have shown successful results in 

several problems. In [63], it is demonstrated that neural 

networks in conjunction with recursive least squares can be 

used effectively for model identification of nonlinear time-

variant processes. Actually, if we combine a feedforward 

neural networks with a recursive method, then it can estimate 

time-varying functions  as well.    

In [64], it is proven that Multilayer feedforward networks 

are universal approximators and are capable of 

approximating any smooth function. However, feedforward 

networks need appropriate inputs to approximate any time-

varying functions. Also, In [65], it is proven that RNNs are 

universal approximators even when they have only one layer.    

An RNN is a powerful neural network that could be used 

for predicting complex uncertainties. In comparison with 

conventional feedforward neural networks, RNNs have better 

performance when changes in the system are unexpected 

[42, 66]. In addition, time-sequential can be stored through 

the recurrent weights of the network, and recurrent neurons 

can then reflect time sequences. Therefore, an RNN could 

estimate disturbances better than a conventional feedforward 

techniques [48, 67]. 

Especially, RNN, which possesses recursive features, is 

highly recommended for time-variant problems. Indeed, due 

to the recurrent information which has been indirectly stored 

in a neural cell, RNN provides short-term dependencies that 

create the capability of processing and learning time-varying 

smooth functions [50, 68, 69]. Hence, RNN is more 

applicable to the estimation of the time-evolving condition 

[70-72].  

B. Designing an RNN-based NSMC 

Consider 𝜁 as an input vector, �̂� as the estimated 

disturbance, and 𝛤 as a constant parameter which should be 

larger than the value of the compound disturbance, i.e., than 

all uncertainties and perturbations, we have �̂� =  Γ𝑓(𝑊1̂ 𝑇𝜁 + �̂�1) + 𝜀𝑛, (24) 

where 𝑊1̂ = [𝜛1, 𝜛2, … ,𝜛𝑛]𝑇  is the vector of weights of 

the RNN, �̂�1 denotes bias, 𝜀𝑛 is the estimation error, and 𝑓(𝑋) is an activation function [56-58].  

In the current study, we have used SoftSign as an 
activation function due to the fact that SoftSign is smoother 

than tanh and sigmoid, and approaches its saturation regime 

much slower. Consequently, compared with sigmod and 

tanh, SoftSign prevents the chattering in the estimation 

process and is less likely to oscillate between minimum and 

maximum bounds [73]. Even though tanh and softsign 

functions are closely related, tanh converges exponentially, 

whereas softsign converges polynomially.  Softsign functions 

produce outputs in scale of [-1, +1]; hence, Γ𝑓(𝑊1̂ 𝑇𝜁 + �̂�1) 

will be in [−𝛤, 𝛤]. 
     Adaptive laws for updating the bias and weights of the 

RNN are designed as  �̂̇�1 = − Γ𝑆2𝑓̇ (𝑊1̂𝑇𝜁 + �̂�1), and (25) 

𝑊1̇̂ =  −𝑆2 𝑓̇ (𝑊1̂𝑇𝜁 + �̂�1) 𝜁, (26) 

respectively, where 𝑆2 is the sliding surface that will be 

determined as described below. These updating rules with 

utilizing the backpropagation method update the weights and 

bias of the recurrent neural network. The optimal value of 

compound disturbance which observer can estimate is 

modeled as  𝐷𝑡 =  Γ𝑓(𝑊1𝑇𝜁 + 𝑏1), (27) 

where the input vector 𝜁 includes 𝑆1 , 𝑡 ∙ 𝑆2 ,  𝑋1 , 𝑋2.  The 

RNN operation is shown in Fig. 2(a), whereas Fig.2 (b) 

shows the procedure of the proposed controller. The RNN 

disturbance observer has been combined with a SMC to 

compensate the effects of control singularity, input 

saturation, and external disturbance.  

 

Assumption 4. There exist ideal vector of weights and 

bias of the RNN such that |𝜀𝑛| < 𝜀𝑚 with constant 𝜀𝑚 > 0 

for all 𝜁. 

Assumption 5.  The activation function 𝑓(∗) is bounded. 

By virtue of Assumption 4, it can be concluded that �̂� is also 

bounded. 

The manifolds of the sliding surface are designed as 𝑆1 = 𝑒 = 𝑥1 − 𝑥1𝑑 , and (28) 

𝑆2 = �̇� + 𝛼𝑐𝑒 = 𝑆1̇ + 𝛼𝑐𝑆1, (29) 

where e indicates the error of the system, which can be 

measured by a sensor. Moreover, 𝛼𝑐  is a positive parameter 

that should be designed. The first-time derivative 𝑆2 is then �̇�2 = �̇�2 − �̇�2𝑑 + 𝛼𝑐(𝑥2 − 𝑥2𝑑).  (30) 

Due to the limitation of the control force, the input 

saturation function should be considered in practical, real-

world applications. In the present study, the amount of the 

controller input has been restricted by 𝑢𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛. 
Hence, the restricted control input (�̅�) is considered as [74]: 
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�̅� = {𝑢𝑚𝑎𝑥                                 𝑖𝑓 𝑢 > 𝑢𝑚𝑎𝑥    𝑢                    𝑖𝑓  𝑢𝑚𝑎𝑥 ≥  𝑢 ≥ 𝑢𝑚𝑖𝑛𝑢𝑚𝑖𝑛                                   𝑖𝑓 𝑢 < 𝑢𝑚𝑖𝑛                            (31) 

where 𝑢𝑚𝑎𝑥  and 𝑢𝑚𝑖𝑛 are the bounds for the input  signal and 𝑢 is the control signal, which is designed as  𝑢 = 𝑔𝑥𝑧(𝑔2𝑥𝑧+𝜀) 𝑢0, (32) 

where 𝑢0 will be described below, and 𝜀 is a positive 

parameter. Based on Eq. (21-c) when cos(𝑧1) = 𝑟𝜌,  the 

singularity problem occurs, and in this study, thanks to the 

denominator of Eq. (32), we will rid of the singularity 

problem . A simple calculation yields  𝑔2𝑥𝑧(𝑔2𝑥𝑧 + 𝜀) = 1 − 𝜀(𝑔2𝑥𝑧 + 𝜀).  
(33) 

Substituting Eq. (33) into Eq. (22), Eq. (34) can be 

obtained as �̇�2 = 𝑓𝑥𝑧 + (𝑔𝑥𝑧)(𝑢 + Δ�̅�) + 𝐷(𝑡) = 𝑓𝑥𝑧 + 𝑢0 +𝑔𝑥𝑧Δ�̅� + 𝐷(𝑡) − 𝜀(𝑔2𝑥𝑧+𝜀) 𝑢0 , (34) 

where Δ�̅� = �̅� − 𝑢 and its value is unknown. By considering 

impacts of the nonsymmetric input limitation, the compound 

disturbance can be expressed as   
𝐷𝑡 = 𝑔𝑥𝑧Δ�̅� + 𝐷(𝑡) − 𝜀(𝑔2𝑥𝑧 + 𝜀) 𝑢0, (35) 

in which Actually, the uncertainties and the disturbances are 

assumed to satisfy |𝐷𝑡| < 𝛤. Considering Eq. (35), then, Eq. 

(34) can be written as  �̇�2 = 𝑓𝑥𝑧 + 𝑢0 + 𝐷𝑡  . (36) 

Finally, by considering the singularity problem and control 

input saturation, the RNN-based NSMC is designed as 𝑢0 = −𝛼𝑐(𝑥1 − 𝑥1𝑑) − 𝛿𝑆2 − 𝜓𝑠𝑖𝑔𝑛(𝑆2) − 𝑓𝑥𝑧 −�̂� + �̇�2𝑑 − 𝛼𝑐(𝑥2 − 𝑥2𝑑), 
(37) 

where 𝛿 and 𝜓 are positive parameters and 𝜓 should be a 

large constant to fulfill 𝜓 > |𝜀𝑛|.  
The stability of the closed-loop system based on the 

control laws described in Eqs. (37)-(38) is demonstrated with 

the following theorem. 

 

    Theorem 1. Under the proposed RNN-based NSMC, Eqs. 

(24) an (38), the uncertain spherical robot converges to the 

desired trajectory in the presence of unexpected 

disturbances, singularity, and input saturation. 

 

Proof. Supposing a Lyapunov function candidate as 

𝑉 = 12 𝛼𝑐𝑆12 + 12 𝑆22 + 12 �̃�1𝑇Γ�̃�1 + 12  𝑏1̃2
 , (38) 

where �̃�1 = 𝑊1̂ − 𝑊1and �̃�1 = �̂�1 − 𝑏1, considering �̇�1̃ =�̂̇�1, �̇�1̃ = 𝑊1̇̂  , and the first-time derivative of 𝑉 is �̇� = 𝛼𝑐𝑆1�̇�1 + 𝑆2�̇�2 + �̃�1𝑇Γ𝑊1̇̂ + 𝑏1̃�̂̇�1 =𝛼𝑐𝑆1(𝑆2 − 𝛼𝑐𝑆1) + 𝑆2�̇�2 + �̃�1𝑇Γ𝑊1̇̂ + 𝑏1̃�̂̇�1, 
(39) 

substituting Eqs. (29)-(30) and the proposed control law 

described in Eq. (37) into Eq. (39), yields �̇� = 𝑆2(�̇�2 + 𝛼𝑐𝑆1) − 𝛼𝑐𝑆12 + �̃�1𝑇Γ𝑊1̇̂ + 𝑏1̃�̂̇�1 =𝑆2(𝛼𝑐𝑆1 + �̇�2 − �̇�2𝑑 + 𝛼𝑐(𝑥2 − 𝑥2𝑑) ) − 𝛼𝑐𝑆12 +�̃�1𝑇Γ𝑊1̇̂ + 𝑏1̃�̂̇�1.   

(40) 

Then, using Eq.  (36), Eq. (40) can be written as follows  �̇� = 𝑆2(𝛼𝑐𝑆1 + 𝑓𝑥𝑧 + 𝑢0 + 𝐷𝑡 − �̇�2𝑑 +𝛼𝑐(𝑥2 − 𝑥2𝑑) ) − 𝛼𝑐𝑆12 + �̃�1𝑇Γ𝑊1̇̂ + 𝑏1̃�̂̇�1.  

(41) 

Considering Eqs. (41) and (37),  Eq. (41) can be expressed 

as   �̇� = 𝑆2(−𝛿𝑆2 − 𝜓𝑠𝑖𝑔𝑛(𝑆2) − �̂� + 𝐷𝑡  ) − 𝛼𝑐𝑆12 +�̃�1𝑇Γ𝑊1̇̂ + 𝑏1̃�̂̇�1.   (42) 

    According Eqs. (24) and (27), we have: �̇� = 𝑆2(−𝛿𝑆2 − 𝜓𝑠𝑖𝑔𝑛(𝑆2) − Γ𝑓(𝑊1̂ 𝑇𝜁 + �̂�1) −𝜀𝑛 + Γ𝑓(𝑊1𝑇𝜁 + 𝑏1) ) − 𝛼𝑐𝑆12 + �̃�1𝑇Γ𝑊1̇̂ +𝑏1̃�̂̇�1. 

(43) 

 

Using Taylor expansion of 𝑓(𝑊1𝑇𝜁 + 𝑏1) about 𝑊1̂𝑇𝜁 +�̂�1, we have 𝑓(𝑊1𝑇𝜁 + 𝑏1) =  𝑓 (𝑊1̂𝑇𝜁 + �̂�1) + 𝑓̇ (𝑊1̂𝑇𝜁 + �̂�1) (�̃�1𝑇𝜁 + 𝑏1̃),  
(44) 

in which, 𝑓(𝑊1𝑇𝜁 + 𝑏1) is linearized by employing the 

mathematical Taylor polynomial. By substituting Eq. (44) 

into Eq. (43) yields   �̇� = 𝑆2 (−𝛿𝑆2 − 𝜓𝑠𝑖𝑔𝑛(𝑆2) − Γ𝑓(𝑊1̂ 𝑇𝜁 + �̂�1) −𝜀𝑛 + Γ𝑓 (𝑊1̂𝑇𝜁 + �̂�1) + Γ 𝑓̇ (𝑊1̂𝑇𝜁 +�̂�1) (�̃�1𝑇𝜁 + 𝑏1̃) ) − 𝛼𝑐𝑆12 + �̃�1𝑇Γ𝑊1̇̂ + 𝑏1̃�̂̇�1.  (45) 

Finally, considering the updating rules described in Eqs. 

(25) and (26), we have 
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�̇� = 𝑆2 (−𝛿𝑆2 − 𝜓𝑠𝑖𝑔𝑛(𝑆2) − Γ𝑓(𝑊1̂ 𝑇𝜁 + �̂�1) −𝜀𝑛 + Γ𝑓 (𝑊1̂𝑇𝜁 + �̂�1) + Γ 𝑓̇ (𝑊1̂𝑇𝜁 +�̂�1) (�̃�1𝑇𝜁 + 𝑏1̃) ) − 𝛼𝑐𝑆12 − �̃�1𝑇Γ𝑆2 𝑓̇ (𝑊1̂𝑇𝜁 +�̂�1) 𝜁 − 𝑏1̃Γ𝑆2𝑓̇ (𝑊1̂𝑇𝜁 + �̂�1) = 𝑆2(−𝛿𝑆2 −𝜓𝑠𝑖𝑔𝑛(𝑆2) − 𝜀𝑛) − 𝛼𝑐𝑆12 ,  

(46) 

and having in mind that  𝝍 > |𝜺𝒏|, the following inequality 

is obtained �̇� ≤ −𝛿𝑆22 − 𝛼𝑐𝑆12 . (47) 

At the present stage, the proof is completed, and the states of 

the system converge to the commanded values, even when 

there exist external disturbances, unknown input saturation, 

and the singularity problem. 

IV. NUMERICAL SIMULATIONS 

Herein, the performance and effectiveness of the proposed 

RNN-based NSMC are demonstrated.  The design 

parameters of the controller were chosen as 𝛼𝑐 = 𝜓 = 20,𝛿 = 10, and the initial weights in the RNN were considered 

as uniform random functions in the range (0,10). The 

system’s parameters were supposed as 𝑚𝑝 = 0.639 𝑘𝑔,𝑀 = 1.139 𝑘𝑔, 𝜌 = 0.2 𝑚,  𝑟𝐺 = 0.101 𝑚, and  𝐼𝑐 =0.05 𝑚4. Also, to investigate the robust performance of the 

suggested control, the external disturbance was assumed as 𝑑(𝑡) = 5 cos(𝑡2) 𝑟𝑎𝑑2𝑠  (By considering 𝑑𝑚𝑎𝑥 = 5 𝑟𝑎𝑑2𝑠 ) and 

initial conditions for the system were [𝑋1(0), 𝑋2(0), 𝑍1(0), 𝑍2(0)] = [0.1,0,0,0]. The sampling 

time for simulations were chosen to be 0.01 second. 

A. Tracking control 

In this section, the performance of the RNN-based NSMC on 

position tracking is illustrated.  For this purpose, the slope of 

the plane was varying by 𝜶(𝒕) = 𝝅𝟖 + 𝝅𝟏𝟐 𝒔𝒊𝒏 ( 𝝅𝟒𝟎 𝒕)  𝒓𝒂𝒅 and 

the control input was limited to the values 𝒖𝒎𝒂𝒙 =𝟔 𝑵.𝒎, 𝒂𝒏𝒅 𝒖𝒎𝒊𝒏 = −𝟓 𝑵.𝒎. Then, Fig. 3 presents the 

simulation results. It can be easily observed that the proposed 

RNN-based NSMC can track the desired reference signal in 

the presence of disturbances, input saturation, and dynamic 

uncertainties. The maximum absolute angle of the pendulum 

is less than 0.4 rad. Therefore, it can be verified that the angle 

of the pendulum does not exceed 
𝝅𝟐 rad, which shows that 

these results are appropriate for a practical system. 

On the other hand, Fig. 4 demonstrates that the RNN-based 

disturbance observer can identify disturbances and 

uncertainties precisely. In fact, Fig. 4(a) depicts the torque 

input, which implies that the proposed RNN-based NSMC 

has been saturated, and Fig 4. (b) shows the estimated 

disturbance. 

To show more extensively the capacity of the RNN-based 

approximation and the proposed control scheme in tracking 

control, the designed controller has been used for another 

trajectory target. Thus, Figs. 5 and 6 depict the state of the 

system, control signal, and the estimated disturbances for a 

ramp input signal. The numerical results conspicuously 

demonstrate that, using the proposed RNN-based NSMC, the 

spherical robot can track the desired trajectories, even when 

there exist uncertainties and external disturbances. 

B. Comparison between the proposed method and 
Fuzzy-PID controller  

To illustrate the benefits of the proposed control scheme, its 

performance has been compared with a Fuzzy-PID 

controller. This algorithm was mainly selected by two 

reasons. On the one hand, many previous works have proven 

that neural network-based disturbance estimators 

considerably improves the performance of many controllers 

[75]. On the other hand, Fuzzy control has been suggested as 

suitable for complex robots, whose models cannot be easily 

established from a mathematical point of view [76]. 

Moreover, a Fuzzy-PID controller has been recently 

proposed to control a spherical robot with excellent 

performance [47].  

Consequently, the method developed by Roozegar et al. [77] 

has been implemented and analyzed in the present work. 

Although all details for this controller can be found in [47], it 

should be noted that the gains for the control scheme are 

given in Table 1. Moreover, input is divided into 7 Fuzzy 

logic values, including zero (ZO), positive small (PS), 

positive medium (PM), positive big (PB), negative big (NB), 

negative medium (NM), and negative small (NS). The degree 

of error and its time derivative are expressed by these  

linguistic variables. Then, membership functions are depicted 

in Fig. 7 and the fuzzy rule table is listed in Table 2. 

Figure 8 depicts the time history of the system with the 

proposed RNN-based control scheme as well as the 

implemented Fuzzy-PID controller used for comparison. In 

this simulation, both controllers have been applied to the 

robot after 0.2 seconds. As can be seen, both algorithms 

converge to the desired position. Nonetheless, it is 

noteworthy that when we have tried to consider the same 

input saturation for the Fuzzy PID controller, we could not 

obtain a proper result. Hence, we inevitably applied the fuzzy 

PID controller without control saturation, which means a 

great drawback for practical, real-world applications. As can 

also be observed in Figs. 8(a) and (b), the proposed RNN-

based NSMC was faster than the Fuzzy-PID controller. 

Moreover, the simulation also confirmed that the proposed 

RNN-based controller was able to overcome the external 

disturbance and uncertainties better than the Fuzzy-PID. 

TABLE I 

PARAMETERS OF THE FUZZY-PID CONTROL SCHEME. 

OBJECTIVE 𝐾𝑝 𝐾𝑑 𝐾𝑖 
Minimum 35 0.005 0.0008 

Maximum 45 0.02 0.002 
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Furthermore, the Fuzzy-PID produced a high-frequency 

oscillation in the response of the system.   

On the other hand, it should also be noted that conventional 

SMC generates chattering for uncertain systems due to the 

existence of the sign function in the control input. This 

phenomenon then causes vibration in the system, because it 

takes time to converge the sliding surface to zero. However, 

Fig. 8 shows that the proposed RNN-based NSMC is able to 

substantially minimize this problem. Actually, one of the 

major issues that causes chattering in a conventional SMC is 

the existence of the uncertainties and disturbances. However, 

, as it is shown in Fig. 4 (b) and 6 (b), the controller proposed 

in the present study is able to estimate quickly and accurately 

the uncertainties and disturbances. Actually, our numerical 

results confirm that after 3 second the estimation errors for 

ramp and step input respectively are less than 9% and 2% in 

which the estimation errors (𝒅𝒆) is calculated as  

𝑑𝑒 = |ACTUAL DISTURBANCE − ESTIMATED DISTURBANCE|MAX(ACTUAL DISTURBANCE)   (48) 

Therefore, the vibrations in the response of the system will 

be significantly decreased in comparison with a conventional 

SMC. 

The control input signals for both control schemes are 

depicted in Fig. 9. As can be seen, in both cases the input 

signals dropped to zero with some oscillation. Nonetheless, it 

can be noticed that, when the target changed, the control 

input for the Fuzzy-PID controller had a big overshoot. 

Otherwise, the control input for the proposed RNN-based 

controller presented a smaller overshoot and quicker 

convergence time. Thus, this figure corroborates that the 

proposed control approach needed less control effort 

compared to the Fuzzy-PID controller. To summarize, the 

proposed control method had smaller oscillations, faster 

response, and less control effort. Hence, the numerical 

simulations have confirmed the superiority of the proposed 

RNN-based NSMC over the Fuzzy-PID controller. 
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(a) (b) 

  

(c) (d) 
FIGURE 3.  Time history of the closed-loop system for a step input signal. 

 

  

(a) (b) 

FIGURE 4.  (a) Time history of the control input when there are input saturation (b) Actual and estimated values of the disturbance d(t). 

 

TABE 2 

FUZZY RULE TABLE FOR THE FUZZ-PID CONTROLLER USED FOR COMPARISON ė 

e NB NM NS ZO PS PM 

NB NB NB NB NB NM NS 

NM NB NB NB NM NS ZO 

NS NB NB NM NS ZO PS 

ZO NB NM NS ZO PS PM 

PS NM NS ZO PS PM PB 

PM NS ZO PS PM PB PB 

PB ZO PS PM PB PB 
PB 
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(a) (b) 

  
(c) (d) 

FIGURE 5.  Time history of the closed-loop system’s response for a ramp input signal. 
 

  

(a) (b) 

FIGURE 6.  (a) Control input with input saturation for a ramp input signal (b) Actual and estimated values of the disturbance d(t). 

 

 

FIGURE 7.  Membership functions for the Fuzzy-PID controller used for comparison. 
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(a) 

 
(b) 

FIGURE 8.  Comparison of the (a) angular position and (b) 
angular velocity reached by a spherical robot with the proposed 
controller and the Fuzzy-PID one sued for comparison. 

 

 
FIGURE 9.  Comparison of the control inputs obtained by the 
proposed RNN-based controller and the Fuzzy-PID one.  

  

V.  CONCLUSION 

 In the present study, an RNN-based NSMC has been  

designed to control the motion of a spherical robot. Unknown 

uncertainties, including external disturbances and the control 

input saturation, have been quickly and accurately 

approximated by the approach, thus leading to successful 

control. Also, the prevention of the singularity problem has 

been taken into consideration for the control scheme. In fact, 

using the Lyapunov stability theorem and employing Taylor 

series method, stability, and robustness of the controller 

against uncertainties, disturbances, control input saturation, 

and singularity have been guaranteed. Finally, the proposed 

controller has been compared with a Fuzzy-PID control 

scheme. The obtained simulation results have shown that the 

response of the system is smoother when the proposed RNN-

based controller was used. Nonetheless, as a future 

suggestion, updating control gains of the proposed control 

scheme in a Fuzzy environment can improve the output 

response of the system. Moreover, an extension of the 

proposed controller could also be used for fractional-order 

systems. 
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