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Abstract

The RepEval 2017 Shared Task aims to

evaluate natural language understanding

models for sentence representation, in

which a sentence is represented as a fixed-

length vector with neural networks and the

quality of the representation is tested with

a natural language inference task. This

paper describes our system (alpha) that is

ranked among the top in the Shared Task,

on both the in-domain test set (obtain-

ing a 74.9% accuracy) and on the cross-

domain test set (also attaining a 74.9%

accuracy), demonstrating that the model

generalizes well to the cross-domain data.

Our model is equipped with intra-sentence

gated-attention composition which helps

achieve a better performance. In addi-

tion to submitting our model to the Shared

Task, we have also tested it on the Stan-

ford Natural Language Inference (SNLI)

dataset. We obtain an accuracy of 85.5%,

which is the best reported result on SNLI

when cross-sentence attention is not al-

lowed, the same condition enforced in

RepEval 2017.

1 Introduction

The RepEval 2017 Shared Task aims to evaluate

language understanding models for sentence rep-

resentation with natural language inference (NLI)

tasks, where a sentence is represented as a fixed-

length vector.

Modeling inference in human language is very

challenging but is a basic problem in natural lan-

guage understanding. Specifically, NLI is con-

cerned with determining whether a hypothesis

sentence h can be inferred from a premise sen-

tence p.

Most previous top-performing neural network

models on NLI use attention models between a

premise and its hypothesis, while how much in-

formation can be encoded in a fixed-length vec-

tor without such cross-sentence attention deserves

some further understanding. In this paper, we

describe the model we submitted to the RepEval

2017 Shared Task (Nangia et al., 2017), which

achieves the top performance on both the in-

domain and cross-domain test set.

2 Related Work

Natural language inference (NLI), also named rec-

ognizing textual entailment (RTE) includes a large

bulk of early work on rather small datasets with

more conventional methods (Dagan et al., 2005;

MacCartney, 2009). More recently, the large

datasets are available, which makes it possible to

train natural language inference models based on

neural networks (Bowman et al., 2015; Williams

et al., 2017).

Natural language inference models based on

neural networks are mainly separated into two

kind of ways, sentence encoder-based models and

cross-sentence attention-based models. Among

them, Enhanced Sequential Inference Model

(ESIM) with cross-sentence attention represents

the state of the art (Chen et al., 2016b). How-

ever, in this paper we principally concentrate on
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sentence encoder-based model. Many researchers

have studied sentence encoder-based model for

natural language inference (Bowman et al., 2015;

Vendrov et al., 2015; Mou et al., 2016; Bowman

et al., 2016; Munkhdalai and Yu, 2016a,b; Liu

et al., 2016; Lin et al., 2017). It is, however, not

very clear if the potential of the sentence encoder-

based model has been well exploited. In this pa-

per, we demonstrate that proposed models based

on gated-attention can achieve a new state-of-the-

art performance for natural language inference.

3 Methods

We present here the proposed natural language in-

ference networks which are composed of the fol-

lowing major components: word embedding, se-

quence encoder, composition layer, and the top-

layer classifier. Figure 1 shows a view of the archi-

tecture of our neural language inference network.

Figure 1: A view of our neural language inference

network.

3.1 Word Embedding

In our notation, a sentence (premise or hypothe-

sis) is indicated as x = (x1, . . . , xl), where l is

the length of the sentence. We concatenate em-

beddings learned at two different levels to rep-

resent each word in the sentence: the character

composition and holistic word-level embedding.

The character composition feeds all characters of

each word into a convolutional neural network

(CNN) with max-pooling (Kim, 2014) to obtain

representations c = (c1, . . . , cl). In addition, we

also use the pre-trained GloVe vectors (Penning-

ton et al., 2014) for each word as holistic word-

level embedding w = (w1, . . . , wl). Therefore,

each word is represented as a concatenation of the

character-composition vector and word-level em-

bedding e = ([c1;w1], . . . , [cl; wl]). This is per-

formed on both the premise and hypothesis, re-

sulting into two matrices: the ep ∈ R
n×dw for a

premise and the eh ∈ R
m×dw for a hypothesis,

where n and m are the length of the premise and

hypothesis respectively, and dw is the embedding

dimension.

3.2 Sequence Encoder

To represent words and their context in a premise

and hypothesis, sentence pairs are fed into sen-

tence encoders to obtain hidden vectors (hp and

hh). We use stacked bidirectional LSTMs (BiL-

STM) as the encoders. Shortcut connections are

applied, which concatenate word embeddings and

input hidden states at each layer in the stacked

BiLSTM except for the bottom layer.

hp = BiLSTM(ep) ∈ R
n×2d (1)

hh = BiLSTM(eh) ∈ R
m×2d (2)

where d is the dimension of hidden states of

LSTMs. A BiLSTM concatenate a forward and

backward LSTM on a sequence ht = [
−→
ht ;
←−
ht ],

starting from the left and the right end, respec-

tively. Hidden states of unidirectional LSTM (
−→
ht

or
←−
ht) are calculated as follows,
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(Wxt + Uht−1 + b) (3)

ct = ft ⊙ ct−1 + it ⊙ ut (4)

ht = ot ⊙ tanh(ct) (5)

where σ is the sigmoid function, ⊙ is the element-

wise multiplication of two vectors, and W ∈
R

4d×dw , U ∈ R
4d×d, b ∈ R

4d×1 are weight matri-

ces to be learned. For each input vector xt at time

step t, LSTM applies a set of gating functions—

the input gate it, forget gate ft, and output gate ot,

together with a memory cell ct, to control message

flow and track long-distance information (Hochre-

iter and Schmidhuber, 1997) and generate a hid-

den state ht at each time step.

3.3 Composition Layer

To transform sentences into fixed-length vector

representations and reason using those representa-

tions, we need to compose the hidden vectors ob-

tained by the sequence encoder layer (hp and hh).
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We propose intra-sentence gated-attention to ob-

tain a fixed-length vector. Illustrated by the case

of hidden states of premise hp,

vp
g =

n
∑

t=1

‖it‖2
∑n

j=1
‖ij‖2

h
p
t (6)

or vp
g =

n
∑

t=1

‖1− ft‖2
∑n

j=1
‖1− fj‖2

h
p
t (7)

or vp
g =

n
∑

t=1

‖ot‖2
∑n

j=1
‖oj‖2

h
p
t (8)

where it, ft, ot are the input gate, forget gate,

and output gate in the BiLSTM of the top layer.

Note that the gates are concatenated by forward

and backward LSTM, i.e., it = [
−→
it ;
←−
it ], ft =

[
−→
ft ;
←−
ft ], ot = [−→ot ;

←−ot ]. ‖∗‖2 indicates l2-norm,

which converts vectors to scalars. The idea of

gated-attention is inspired by the fact that human

only remember important parts after they read sen-

tences. (Liu et al., 2016; Lin et al., 2017) proposed

a similar “inner-attention” mechanism but it’s cal-

culated by an extra MLP layer which would re-

quire more computation than us.

We also use average-pooling and max-pooling

to obtain fixed-length vectors va and vm as in Chen

et al. (2016b). Then, the final fixed-length vector

representation of premise is vp = [vp
g ; v

p
a; v

p
m]. As

for hidden states of hypothesis hh, we can obtain

vh through similar calculation procedure. Conse-

quently, both the premise and hypothesis are fed

into the composition layer to obtain fixed-length

vector representations respectively (vp, vh).

3.4 Top-layer Classifier

Our inference model feeds the resulting vectors

obtained above to the final classifier to determine

the overall inference relationship. In our mod-

els, we compute the absolute difference and the

element-wise product for the tuple [vp, vh]. The

absolute difference and element-wise product are

then concatenated with the original vectors vp and

vh (Mou et al., 2016).

vinp = [vp; vh; |vp − vh|; vp ⊙ vh] (9)

We then put the vector vinp into a final multi-

layer perceptron (MLP) classifier. The MLP has

2 hidden layers with ReLu activation with short-

cut connections and a softmax output layer in our

experiments. The entire model (all four compo-

nents described above) is trained end-to-end, and

the cross-entropy loss of the training set is mini-

mized.

4 Experimental Setup

Data RepEval 2017 use Multi-Genre NLI cor-

pus (MultiNLI) (Williams et al., 2017), which

focuses on three basic relationships between a

premise and a potential hypothesis: the premise

entails the hypothesis (entailment), they contradict

each other (contradiction), or they are not related

(neutral). The corpus has ten genres, such as fic-

tion, letters, telephone speech and so on. Training

set only has five genres of them, therefore there

are in-domain and cross-domain development/test

sets. SNLI (Bowman et al., 2015) corpus can

be used as an additional training/development set,

which includes content from the single genre of

image captions. However, we don’t use SNLI as

an additional training/development data in our ex-

periments.

Training We use the in-domain development

set to select models for testing. To help replicate

our results, we publish our code at https:

//github.com/lukecq1231/enc_nli

(the core code is also used or adapted for

a summarization (Chen et al., 2016a) and a

question-answering task (Zhang et al., 2017)).

We use the Adam (Kingma and Ba, 2014) for

optimization. Stacked BiLSTM has 3 layers, and

all hidden states of BiLSTMs and MLP have 600

dimensions. The character embedding has 15

dimensions, and CNN filters length is [1,3,5],

each of those is 100 dimensions. We use pre-

trained GloVe-840B-300D vectors (Pennington

et al., 2014) as our word-level embeddings and

fix these embeddings during the training process.

Out-of-vocabulary (OOV) words are initialized

randomly with Gaussian samples.

5 Results

Table 1 shows the results of different models. The

first group of models are copied from Williams

et al. (2017). The first sentence encoder is based

on continuous bag of words (CBOW), the second

is based on BiLSTM, and the third model is En-

hanced Sequential Inference Model (ESIM) (Chen

et al., 2016b) reimplemented by Williams et al.

(2017), which represents the state of the art on

SNLI dataset. However, ESIM uses attention be-

tween sentence pairs, which is not a sentence-

encoder based model.
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Model In Cross

CBOW 64.8 64.5
BiLSTM 66.9 66.9
ESIM 72.3 72.1

TALP-UPC∗ 67.9 68.2
LCT-MALTA∗ 70.7 70.8
Rivercorners∗ 72.1 72.1
Rivercorners (ensemble)∗ 72.2 72.8
YixinNie-UNC-NLP∗ 74.5 73.5

Our ESIM 76.8 75.8
Single∗ 73.5 73.6
Ensembled∗ 74.9 74.9

Single (Input Gate)∗ 73.5 73.6
Single (Forget Gate) 72.9 73.1
Single (Output Gate) 73.7 73.4

Single - Gated-Att 72.8 73.6
Single - CharCNN 72.9 73.5
Single - Word Embedding 65.6 66.0
Single - AbsDiff/Product 69.7 69.2

Table 1: Accuracies of the models on MultiNLI.

Note that ∗ indicates that the model participate in

the competition on June 15th, 2017.

The second group of models are the results of

other teams which participate the RepEval 2017

Share Task competition (Nangia et al., 2017).

In addition, we also use our implementation of

ESIM, which achieves an accuracy of 76.8% in the

in-domain test set, and 75.8% in the cross-domain

test set, which presents the state-of-the-art results.

After removing the cross-sentence attention and

adding our gated-attention model, we achieve ac-

curacies of 73.5% and 73.6%, which ranks first

in the cross-domain test set and ranks second in

the in-domain test set among the single models.

When ensembling our models, we obtain accura-

cies 74.9% and 74.9%, which ranks first in both

test sets. Our ensembling is performed by averag-

ing the five models trained with different parame-

ter initialization.

We compare the performance of using different

gate in gate-attention in the fourth group of Ta-

ble 1. Note that we use attention based on input

gate on all other experiments.

To understand the importance of the different

elements of the proposed model, we remove some

crucial elements from our single model. If we

remove the gated-attention, the accuracies drop

to 72.8% and 73.6%. If we remove character-

composition vector, the accuracies drop to 72.9%

and 73.5%. If we remove word-level embedding,

the accuracies drop to 65.6% and 66.0%. If we re-

Model Test

LSTM (Bowman et al., 2015) 80.6
GRU (Vendrov et al., 2015) 81.4
Tree CNN (Mou et al., 2016) 82.1
SPINN-PI (Bowman et al., 2016) 83.2
NTI (Munkhdalai and Yu, 2016b) 83.4
Intra-Att BiLSTM (Liu et al., 2016) 84.2
Self-Att BiLSTM (Lin et al., 2017) 84.2
NSE (Munkhdalai and Yu, 2016a) 84.6

Gated-Att BiLSTM 85.5

Table 2: Accuracies of the models on SNLI.

move absolute difference and element-wise prod-

uct of the sentence representation vectors, the ac-

curacies drop to 69.7% and 69.2%.

In addition to testing on this shared task, we

have also applied our best single system (with-

out ensembling) on the SNLI dataset; our model

achieve an accuracy of 85.5%, which is best re-

sult reported on SNLI, outperforming all pre-

vious models when cross-sentence attention is

not allowed. The previous state-of-the-art sen-

tence encoder-based model (Munkhdalai and Yu,

2016b), called neural semantic encoders (NSE),

only achieved an accuracy of 84.6% on SNLI. Ta-

ble 2 shows the results of previous models and pro-

posed model.

6 Summary and Future Work

We describe our system that encodes a sentence

to a fixed-length vector for natural language in-

ference, which achieves the top performances on

both the RepEval-2017 and the SNLI dataset. The

model is equipped with a novel intra-sentence

gated-attention component. The model only uses

a common stacked BiLSTM as the building block

together with the intra-sentence gated-attention in

order to compose the fixed-length representations.

Our model could be used on other sentence encod-

ing tasks. Future work on NLI includes exploring

the usefulness of external resources such as Word-

Net and contrasting-meaning embedding (Chen

et al., 2015).
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