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Abstract

We introduce recurrent neural network gram-

mars, probabilistic models of sentences with

explicit phrase structure. We explain efficient

inference procedures that allow application to

both parsing and language modeling. Experi-

ments show that they provide better parsing in

English than any single previously published

supervised generative model and better lan-

guage modeling than state-of-the-art sequen-

tial RNNs in English and Chinese.

1 Introduction

Sequential recurrent neural networks (RNNs) are

remarkably effective models of natural language.

In the last few years, language model results that

substantially improve over long-established state-of-

the-art baselines have been obtained using RNNs

(Zaremba et al., 2015; Mikolov et al., 2010) as well

as in various conditional language modeling tasks

such as machine translation (Bahdanau et al., 2015),

image caption generation (Xu et al., 2015), and dia-

logue generation (Wen et al., 2015). Despite these

impressive results, sequential models are a priori

inappropriate models of natural language, since re-

lationships among words are largely organized in

terms of latent nested structures rather than sequen-

tial surface order (Chomsky, 1957).

In this paper, we introduce recurrent neural net-

work grammars (RNNGs; §2), a new generative

probabilistic model of sentences that explicitly mod-

els nested, hierarchical relationships among words

and phrases. RNNGs operate via a recursive syntac-

tic process reminiscent of probabilistic context-free

grammar generation, but decisions are parameter-

ized using RNNs that condition on the entire syntac-

tic derivation history, greatly relaxing context-free

independence assumptions.

The foundation of this work is a top-down vari-

ant of transition-based parsing (§3). We give two

variants of the algorithm, one for parsing (given an

observed sentence, transform it into a tree), and one

for generation. While several transition-based neu-

ral models of syntactic generation exist (Hender-

son, 2003, 2004; Emami and Jelinek, 2005; Titov

and Henderson, 2007; Buys and Blunsom, 2015b),

these have relied on structure building operations

based on parsing actions in shift-reduce and left-

corner parsers which operate in a largely bottom-

up fashion. While this construction is appealing be-

cause inference is relatively straightforward, it lim-

its the use of top-down grammar information, which

is helpful for generation (Roark, 2001).1 RNNGs

maintain the algorithmic convenience of transition-

based parsing but incorporate top-down (i.e., root-

to-terminal) syntactic information (§4).

The top-down transition set that RNNGs are

based on lends itself to discriminative modeling as

well, where sequences of transitions are modeled

conditional on the full input sentence along with the

incrementally constructed syntactic structures. Sim-

ilar to previously published discriminative bottom-

up transition-based parsers (Henderson, 2004; Sagae

and Lavie, 2005; Zhang and Clark, 2011, inter alia),

greedy prediction with our model yields a linear-

time deterministic parser (provided an upper bound

on the number of actions taken between process-

ing subsequent terminal symbols is imposed); how-

ever, our algorithm generates arbitrary tree struc-

tures directly, without the binarization required by

shift-reduce parsers. The discriminative model also

lets us use ancestor sampling to obtain samples of

parse trees for sentences, and this is used to solve

1The left-corner parsers used by Henderson (2003, 2004)

incorporate limited top-down information, but a complete path

from the root of the tree to a terminal is not generally present

when a terminal is generated. Refer to Henderson (2003, Fig.

1) for an example.
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a second practical challenge with RNNGs: approx-

imating the marginal likelihood and MAP tree of a

sentence under the generative model. We present a

simple importance sampling algorithm which uses

samples from the discriminative parser to solve in-

ference problems in the generative model (§5).

Experiments show that RNNGs are effective for

both language modeling and parsing (§6). Our gen-

erative model obtains (i) the best-known parsing re-

sults using a single supervised generative model and

(ii) better perplexities in language modeling than

state-of-the-art sequential LSTM language models.

Surprisingly—although in line with previous pars-

ing results showing the effectiveness of genera-

tive models (Henderson, 2004; Johnson, 2001)—

parsing with the generative model obtains signifi-

cantly better results than parsing with the discrim-

inative model.

2 RNN Grammars

Formally, an RNNG is a triple (N, Σ,Θ) consisting

of a finite set of nonterminal symbols (N ), a finite

set of terminal symbols (Σ) such that N ∩ Σ = ∅,

and a collection of neural network parameters Θ. It

does not explicitly define rules since these are im-

plicitly characterized by Θ. The algorithm that the

grammar uses to generate trees and strings in the lan-

guage is characterized in terms of a transition-based

algorithm, which is outlined in the next section. In

the section after that, the semantics of the param-

eters that are used to turn this into a stochastic al-

gorithm that generates pairs of trees and strings are

discussed.

3 Top-down Parsing and Generation

RNNGs are based on a top-down generation algo-

rithm that relies on a stack data structure of par-

tially completed syntactic constituents. To empha-

size the similarity of our algorithm to more familiar

bottom-up shift-reduce recognition algorithms, we

first present the parsing (rather than generation) ver-

sion of our algorithm (§3.1) and then present modi-

fications to turn it into a generator (§3.2).

3.1 Parser Transitions

The parsing algorithm transforms a sequence of

words x into a parse tree y using two data structures

(a stack and an input buffer). As with the bottom-

up algorithm of Sagae and Lavie (2005), our algo-

rithm begins with the stack (S) empty and the com-

plete sequence of words in the input buffer (B). The

buffer contains unprocessed terminal symbols, and

the stack contains terminal symbols, “open” nonter-

minal symbols, and completed constituents. At each

timestep, one of the following three classes of op-

erations (Fig. 1) is selected by a classifier, based on

the current contents on the stack and buffer:

• NT(X) introduces an “open nonterminal” X onto

the top of the stack. Open nonterminals are

written as a nonterminal symbol preceded by an

open parenthesis, e.g., “(VP”, and they represent

a nonterminal whose child nodes have not yet

been fully constructed. Open nonterminals are

“closed” to form complete constituents by subse-

quent REDUCE operations.

• SHIFT removes the terminal symbol x from the

front of the input buffer, and pushes it onto the

top of the stack.

• REDUCE repeatedly pops completed subtrees or

terminal symbols from the stack until an open

nonterminal is encountered, and then this open

NT is popped and used as the label of a new con-

stituent that has the popped subtrees as its chil-

dren. This new completed constituent is pushed

onto the stack as a single composite item. A single

REDUCE operation can thus create constituents

with an unbounded number of children.

The parsing algorithm terminates when there is a

single completed constituent on the stack and the

buffer is empty. Fig. 2 shows an example parse

using our transition set. Note that in this paper

we do not model preterminal symbols (i.e., part-of-

speech tags) and our examples therefore do not in-

clude them.2

Our transition set is closely related to the op-

erations used in Earley’s algorithm which likewise

introduces nonterminals symbols with its PREDICT

2Preterminal symbols are, from the parsing algorithm’s

point of view, just another kind of nonterminal symbol that re-

quires no special handling. However, leaving them out reduces

the number of transitions by O(n) and also reduces the number

of action types, both of which reduce the runtime. Furthermore,

standard parsing evaluation scores do not depend on preterminal

prediction accuracy.
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operation and later COMPLETEs them after consum-

ing terminal symbols one at a time using SCAN

(Earley, 1970). It is likewise closely related to the

“linearized” parse trees proposed by Vinyals et al.

(2015) and to the top-down, left-to-right decompo-

sitions of trees used in previous generative parsing

and language modeling work (Roark, 2001, 2004;

Charniak, 2010).

A further connection is to LL(∗) parsing which

uses an unbounded lookahead (compactly repre-

sented by a DFA) to distinguish between parse alter-

natives in a top-down parser (Parr and Fisher, 2011);

however, our parser uses an RNN encoding of the

lookahead rather than a DFA.

Constraints on parser transitions. To guarantee

that only well-formed phrase-structure trees are pro-

duced by the parser, we impose the following con-

straints on the transitions that can be applied at each

step which are a function of the parser state (B, S, n)
where n is the number of open nonterminals on the

stack:

• The NT(X) operation can only be applied if B is

not empty and n < 100.3

• The SHIFT operation can only be applied if B is

not empty and n ≥ 1.

• The REDUCE operation can only be applied if the

top of the stack is not an open nonterminal sym-

bol.

• The REDUCE operation can only be applied if n ≥
2 or if the buffer is empty.

To designate the set of valid parser transitions, we

write AD(B, S, n).

3.2 Generator Transitions

The parsing algorithm that maps from sequences

of words to parse trees can be adapted with mi-

nor changes to produce an algorithm that stochas-

tically generates trees and terminal symbols. Two

changes are required: (i) there is no input buffer of

3Since our parser allows unary nonterminal productions,

there are an infinite number of valid trees for finite-length sen-

tences. The n < 100 constraint prevents the classifier from

misbehaving and generating excessively large numbers of non-

terminals. Similar constraints have been proposed to deal with

the analogous problem in bottom-up shift-reduce parsers (Sagae

and Lavie, 2005).

unprocessed words, rather there is an output buffer

(T ), and (ii) instead of a SHIFT operation there are

GEN(x) operations which generate terminal symbol

x ∈ Σ and add it to the top of the stack and the out-

put buffer. At each timestep an action is stochasti-

cally selected according to a conditional distribution

that depends on the current contents of B and T .

The algorithm terminates when a single completed

constituent remains on the stack. Fig. 4 shows an

example generation sequence.

Constraints on generator transitions. The gen-

eration algorithm also requires slightly modified

constraints. These are:

• The GEN(x) operation can only be applied if n ≥
1.

• The REDUCE operation can only be applied if the

top of the stack is not an open nonterminal symbol

and n ≥ 1.

To designate the set of valid generator transitions,

we write AG(T, S, n).

This transition set generates trees using nearly the

same structure building actions and stack configura-

tions as the “top-down PDA” construction proposed

by Abney et al. (1999), albeit without the restriction

that the trees be in Chomsky normal form.

3.3 Transition Sequences from Trees

Any parse tree can be converted to a sequence of

transitions via a depth-first, left-to-right traversal of

a parse tree. Since there is a unique depth-first, left-

ro-right traversal of a tree, there is exactly one tran-

sition sequence of each tree. For a tree y and a

sequence of symbols x, we write a(x, y) to indi-

cate the corresponding sequence of generation tran-

sitions, and b(x,y) to indicate the parser transitions.

3.4 Runtime Analysis

A detailed analysis of the algorithmic properties of

our top-down parser is beyond the scope of this pa-

per; however, we briefly state several facts. As-

suming the availability of constant time push and

pop operations, the runtime is linear in the number

of the nodes in the parse tree that is generated by

the parser/generator (intuitively, this is true since al-

though an individual REDUCE operation may require
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Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1
S x | B n SHIFT S | x B n
S | (X | τ1 | . . . | τℓ B n REDUCE S | (X τ1 . . . τℓ) B n − 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents

the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x

is a terminal symbol, X is a nonterminal symbol, and each τ is a completed subtree. The top of the stack is to the right, and the

buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar ( | ).

Input: The hungry cat meows .

Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)

1 (S The | hungry | cat |meows | . NT(NP)

2 (S | (NP The | hungry | cat |meows | . SHIFT

3 (S | (NP |The hungry | cat |meows | . SHIFT

4 (S | (NP |The | hungry cat |meows | . SHIFT

5 (S | (NP |The | hungry | cat meows | . REDUCE

6 (S | (NP The hungry cat) meows | . NT(VP)

7 (S | (NP The hungry cat) | (VP meows | . SHIFT

8 (S | (NP The hungry cat) | (VP meows . REDUCE

9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE

11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1
S T n GEN(x) S | x T | x n
S | (X | τ1 | . . . | τℓ T n REDUCE S | (X τ1 . . . τℓ) T n − 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action

0 NT(S)

1 (S NT(NP)

2 (S | (NP GEN(The)
3 (S | (NP |The The GEN(hungry)
4 (S | (NP |The | hungry The | hungry GEN(cat)
5 (S | (NP |The | hungry | cat The | hungry | cat REDUCE

6 (S | (NP The hungry cat) The | hungry | cat NT(VP)

7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE

9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)
10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE

11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.
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applying a number of pops that is linear in the num-

ber of input symbols, the total number of pop opera-

tions across an entire parse/generation run will also

be linear). Since there is no way to bound the num-

ber of output nodes in a parse tree as a function of

the number of input words, stating the runtime com-

plexity of the parsing algorithm as a function of the

input size requires further assumptions. Assuming

our fixed constraint on maximum depth, it is linear.

3.5 Comparison to Other Models

Our generation algorithm algorithm differs from

previous stack-based parsing/generation algorithms

in two ways. First, it constructs rooted tree struc-

tures top down (rather than bottom up), and sec-

ond, the transition operators are capable of directly

generating arbitrary tree structures rather than, e.g.,

assuming binarized trees, as is the case in much

prior work that has used transition-based algorithms

to produce phrase-structure trees (Sagae and Lavie,

2005; Zhang and Clark, 2011; Zhu et al., 2013).

4 Generative Model

RNNGs use the generator transition set just pre-

sented to define a joint distribution on syntax trees

(y) and words (x). This distribution is defined as a

sequence model over generator transitions that is pa-

rameterized using a continuous space embedding of

the algorithm state at each time step (ut); i.e.,

p(x,y) =

|a(x,y)|
∏

t=1

p(at | a<t)

=

|a(x,y)|
∏

t=1

exp r
⊤
at
ut + bat

∑

a′∈AG(Tt,St,nt)
exp r⊤a′ut + ba′

,

and where action-specific embeddings ra and bias

vector b are parameters in Θ.

The representation of the algorithm state at time

t, ut, is computed by combining the representation

of the generator’s three data structures: the output

buffer (Tt), represented by an embedding ot, the

stack (St), represented by an embedding st, and the

history of actions (a<t) taken by the generator, rep-

resented by an embedding ht,

ut = tanh (W[ot; st;ht] + c) ,

where W and c are parameters. Refer to Figure 5

for an illustration of the architecture.

The output buffer, stack, and history are se-

quences that grow unboundedly, and to obtain rep-

resentations of them we use recurrent neural net-

works to “encode” their contents (Cho et al., 2014).

Since the output buffer and history of actions are

only appended to and only contain symbols from a

finite alphabet, it is straightforward to apply a stan-

dard RNN encoding architecture. The stack (S) is

more complicated for two reasons. First, the ele-

ments of the stack are more complicated objects than

symbols from a discrete alphabet: open nontermi-

nals, terminals, and full trees, are all present on the

stack. Second, it is manipulated using both push and

pop operations. To efficiently obtain representations

of S under push and pop operations, we use stack

LSTMs (Dyer et al., 2015).

4.1 Syntactic Composition Function

When a REDUCE operation is executed, the parser

pops a sequence of completed subtrees and/or to-

kens (together with their vector embeddings) from

the stack and makes them children of the most recent

open nonterminal on the stack, “completing” the

constituent. To compute an embedding of this new

subtree, we use a composition function based on

bidirectional LSTMs, which is illustrated in Fig. 6.

The first vector read by the LSTM in both the for-

ward and reverse directions is an embedding of the

label on the constituent being constructed (in the fig-

ure, NP). This is followed by the embeddings of the

child subtrees (or tokens) in forward or reverse or-

der. Intuitively, this order serves to “notify” each

LSTM what sort of head it should be looking for as it

processes the child node embeddings. The final state

of the forward and reverse LSTMs are concatenated,

passed through an affine transformation and a tanh
nonlinearity to become the subtree embedding.4 Be-

cause each of the child node embeddings (u, v, w in

Fig. 6) is computed similarly (if it corresponds to an

4We found the many previously proposed syntactic compo-

sition functions inadequate for our purposes. First, we must

contend with an unbounded number of children, and many

previously proposed functions are limited to binary branching

nodes (Socher et al., 2013b; Dyer et al., 2015). Second, those

that could deal with n-ary nodes made poor use of nonterminal

information (Tai et al., 2015), which is crucial for our task.
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The hungry cat
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P
)

N
T
(V
P
)

…

cat hungry The
a<t

p(at)

ut

Tt

z } | {

St

z } | {

Figure 5: Neural architecture for defining a distribution over at given representations of the stack (St), output buffer (Tt) and

history of actions (a<t). Details of the composition architecture of the NP, the action history LSTM, and the other elements of the

stack are not shown. This architecture corresponds to the generator state at line 7 of Figure 4.

NP

u v w

NP u v w NP

x
x

Figure 6: Syntactic composition function based on bidirec-

tional LSTMs that is executed during a REDUCE operation; the

network on the right models the structure on the left.

internal node), this composition function is a kind of

recursive neural network.

4.2 Word Generation

To reduce the size of AG(S, T, n), word genera-

tion is broken into two parts. First, the decision to

generate is made (by predicting GEN as an action),

and then choosing the word, conditional on the cur-

rent parser state. To further reduce the computa-

tional complexity of modeling the generation of a

word, we use a class-factored softmax (Baltescu and

Blunsom, 2015; Goodman, 2001). By using
√

|Σ|
classes for a vocabulary of size |Σ|, this prediction

step runs in time O(
√

|Σ|) rather than the O(|Σ|) of

the full-vocabulary softmax. To obtain clusters, we

use the greedy agglomerative clustering algorithm

of Brown et al. (1992).

4.3 Training

The parameters in the model are learned to maxi-

mize the likelihood of a corpus of trees.

4.4 Discriminative Parsing Model

A discriminative parsing model can be obtained by

replacing the embedding of Tt at each time step with

an embedding of the input buffer Bt. To train this

model, the conditional likelihood of each sequence

of actions given the input string is maximized.5

5 Inference via Importance Sampling

Our generative model p(x, y) defines a joint dis-

tribution on trees (y) and sequences of words (x).

To evaluate this as a language model, it is neces-

sary to compute the marginal probability p(x) =
∑

y′∈Y(x) p(x,y′). And, to evaluate the model as

a parser, we need to be able to find the MAP parse

tree, i.e., the tree y ∈ Y(x) that maximizes p(x, y).
However, because of the unbounded dependencies

across the sequence of parsing actions in our model,

exactly solving either of these inference problems

is intractable. To obtain estimates of these, we use

a variant of importance sampling (Doucet and Jo-

hansen, 2011).

Our importance sampling algorithm uses a condi-

tional proposal distribution q(y | x) with the fol-

lowing properties: (i) p(x,y) > 0 =⇒ q(y |
x) > 0; (ii) samples y ∼ q(y | x) can be ob-

tained efficiently; and (iii) the conditional probabil-

ities q(y | x) of these samples are known. While

many such distributions are available, the discrim-

5For the discriminative parser, the POS tags are processed

similarly as in (Dyer et al., 2015); they are predicted for English

with the Stanford Tagger (Toutanova et al., 2003) and Chinese

with Marmot (Mueller et al., 2013).
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inatively trained variant of our parser (§4.4) ful-

fills these requirements: sequences of actions can

be sampled using a simple ancestral sampling ap-

proach, and, since parse trees and action sequences

exist in a one-to-one relationship, the product of the

action probabilities is the conditional probability of

the parse tree under q. We therefore use our discrim-

inative parser as our proposal distribution.

Importance sampling uses importance weights,

which we define as w(x,y) = p(x,y)/q(y | x), to

compute this estimate. Under this definition, we can

derive the estimator as follows:

p(x) =
∑

y∈Y(x)

p(x,y) =
∑

y∈Y(x)

q(y | x)w(x,y)

= Eq(y|x)w(x,y).

We now replace this expectation with its Monte

Carlo estimate as follows, using N samples from q:

y(i) ∼ q(y | x) for i ∈ {1, 2, . . . , N}

Eq(y|x)w(x,y)
MC
≈

1

N

N
∑

i=1

w(x, y(i))

To obtain an estimate of the MAP tree ŷ, we choose

the sampled tree with the highest probability under

the joint model p(x, y).

6 Experiments

We present results of our two models both on parsing

(discriminative and generative) and as a language

model (generative only) in English and Chinese.

Data. For English, §2–21 of the Penn Treebank

are used as training corpus for both, with §24 held

out as validation, and §23 used for evaluation. Sin-

gleton words in the training corpus with unknown

word classes using the the Berkeley parser’s map-

ping rules.6 Orthographic case distinctions are pre-

served, and numbers (beyond singletons) are not

normalized. For Chinese, we use the Penn Chinese

Treebank Version 5.1 (CTB) (Xue et al., 2005).7 For

6http://github.com/slavpetrov/

berkeleyparser
7§001–270 and 440–1151 for training, §301–325 develop-

ment data, and §271–300 for evaluation.

the Chinese experiments, we use a single unknown

word class. Corpus statistics are given in Table 1.8

Table 1: Corpus statistics.

PTB-train PTB-test CTB-train CTB-test

Sequences 39,831 2,416 50,734 348

Tokens 950,012 56,684 1,184,532 8,008

Types 23,815 6,823 31,358 1,637

UNK-Types 49 42 1 1

Model and training parameters. For the dis-

criminative model, we used hidden dimensions of

128 and 2-layer LSTMs (larger numbers of dimen-

sions reduced validation set performance). For the

generative model, we used 256 dimensions and 2-

layer LSTMs. For both models, we tuned the

dropout rate to maximize validation set likelihood,

obtaining optimal rates of 0.2 (discriminative) and

0.3 (generative). For the sequential LSTM baseline

for the language model, we also found an optimal

dropout rate of 0.3. For training we used stochas-

tic gradient descent with a learning rate of 0.1. All

parameters were initialized according to recommen-

dations given by Glorot and Bengio (2010).

English parsing results. Table 2 (last two rows)

gives the performance of our parser on Section 23,

as well as the performance of several representa-

tive models. For the discriminative model, we used

a greedy decoding rule as opposed to beam search

in some shift-reduce baselines. For the generative

model, we obtained 100 independent samples from

a flattened distribution of the discriminative parser

(by exponentiating each probability by α = 0.8 and

renormalizing) and reranked them according to the

generative model.9

Chinese parsing results. Chinese parsing results

were obtained with the same methodology as in En-

glish and show the same pattern (Table 6).

Language model results. We report held-out per-

word perplexities of three language models, both se-

quential and syntactic. Log probabilities are normal-

ized by the number of words (excluding the stop

8This preprocessing scheme is more similar to what is stan-

dard in parsing than what is standard in language modeling.

However, since our model is both a parser and a language

model, we opted for the parser normalization.
9The value α = 0.8 was chosen based on the diversity of

the samples generated on the development set.
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Table 2: Parsing results on PTB §23 (D=discriminative,

G=generative, S=semisupervised).

Model type F1

Henderson (2004) D 89.4

Socher et al. (2013a) D 90.4

Zhu et al. (2013) D 90.4

Vinyals et al. (2015) – WSJ only D 90.5

Petrov and Klein (2007) G 90.1

Bod (2003) G 90.7

Shindo et al. (2012) – single G 91.1

Shindo et al. (2012) – ensemble G 92.4

Zhu et al. (2013) S 91.3

McClosky et al. (2006) S 92.1

Vinyals et al. (2015) – single S 92.5

Vinyals et al. (2015) – ensemble S 92.8

Discriminative, q(y | x) D 89.8

Generative, p̂(y | x) G 92.4

Table 3: Parsing results on CTB 5.1.

Model type F1

Zhu et al. (2013) D 82.6

Wang et al. (2015) D 83.2

Huang and Harper (2009) D 84.2

Charniak (2000) G 80.8

Bikel (2004) G 80.6

Petrov and Klein (2007) G 83.3

Zhu et al. (2013) S 85.6

Wang and Xue (2014) S 86.3

Wang et al. (2015) S 86.6

Discriminative, q(y | x) D 80.7

Generative, p̂(y | x) G 82.7

symbol), inverted, and exponentiated to yield the

perplexity. Results are summarized in Table 4.

7 Discussion

It is clear from our experiments that the proposed

generative model is quite effective both as a parser

and as a language model. This is the result of

(i) relaxing conventional independence assumptions

(e.g., context-freeness) and (ii) inferring continu-

ous representations of symbols alongside non-linear

models of their syntactic relationships. The most

significant question that remains is why the dis-

criminative model—which has more information

available to it than the generative model—performs

Table 4: Language model perplexity results.

Model test ppl (PTB) test ppl (CTB)

IKN 5-gram 169.3 255.2

LSTM LM 113.4 207.3

RNNG 102.4 171.9

worse than the generative model. This pattern has

been observed before in neural parsing by Hender-

son (2004), who hypothesized that larger, unstruc-

tured conditioning contexts are harder to learn from,

and provide opportunities to overfit. Our discrimi-

native model conditions on the entire history, stack,

and buffer, while our generative model only ac-

cesses the history and stack. The fully discrimina-

tive model of Vinyals et al. (2015) was able to obtain

results similar to those of our generative model (al-

beit using much larger training sets obtained through

semisupervision) but similar results to those of our

discriminative parser using the same data. In light of

their results, we believe Henderson’s hypothesis is

correct, and that generative models should be con-

sidered as a more statistically efficient method for

learning neural networks from small data.

8 Related Work

Our language model combines work from two mod-

eling traditions: (i) recurrent neural network lan-

guage models and (ii) syntactic language model-

ing. Recurrent neural network language models

use RNNs to compute representations of an un-

bounded history of words in a left-to-right language

model (Zaremba et al., 2015; Mikolov et al., 2010;

Elman, 1990). Syntactic language models jointly

generate a syntactic structure and a sequence of

words (Baker, 1979; Jelinek and Lafferty, 1991).

There is an extensive literature here, but one strand

of work has emphasized a bottom-up generation of

the tree, using variants of shift-reduce parser ac-

tions to define the probability space (Chelba and

Jelinek, 2000; Emami and Jelinek, 2005). The

neural-network–based model of Henderson (2004)

is particularly similar to ours in using an unbounded

history in a neural network architecture to param-

eterize generative parsing based on a left-corner

model. Dependency-only language models have

also been explored (Titov and Henderson, 2007;
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Buys and Blunsom, 2015a,b). Modeling generation

top-down as a rooted branching process that recur-

sively rewrites nonterminals has been explored by

Charniak (2000) and Roark (2001). Of particular

note is the work of Charniak (2010), which uses ran-

dom forests and hand-engineered features over the

entire syntactic derivation history to make decisions

over the next action to take.

The neural networks we use to model sentences

are structured according to the syntax of the sen-

tence being generated. Syntactically structured neu-

ral architectures have been explored in a num-

ber of applications, including discriminative pars-

ing (Socher et al., 2013a; Kiperwasser and Gold-

berg, 2016), sentiment analysis (Tai et al., 2015;

Socher et al., 2013b), and sentence representa-

tion (Socher et al., 2011; Bowman et al., 2006).

However, these models have been, without excep-

tion, discriminative; this is the first work to use syn-

tactically structured neural models to generate lan-

guage. Earlier work has demonstrated that sequen-

tial RNNs have the capacity to recognize context-

free (and beyond) languages (Sun et al., 1998;

Siegelmann and Sontag, 1995). In contrast, our

work may be understood as a way of incorporating a

context-free inductive bias into the model structure.

9 Outlook

RNNGs can be combined with a particle filter infer-

ence scheme (rather than the importance sampling

method based on a discriminative parser, §5) to pro-

duce a left-to-right marginalization algorithm that

runs in expected linear time. Thus, they could be

used in applications that require language models.

A second possibility is to replace the sequential

generation architectures found in many neural net-

work transduction problems that produce sentences

conditioned on some input. Previous work in ma-

chine translation has showed that conditional syn-

tactic models can function quite well without the

computationally expensive marginalization process

at decoding time (Galley et al., 2006; Gimpel and

Smith, 2014).

A third consideration regarding how RNNGs, hu-

man sentence processing takes place in a left-to-

right, incremental order. While an RNNG is not a

processing model (it is a grammar), the fact that it is

left-to-right opens up several possibilities for devel-

oping new sentence processing models based on an

explicit grammars, similar to the processing model

of Charniak (2010).

Finally, although we considered only the super-

vised learning scenario, RNNGs are joint models

that could be trained without trees, for example, us-

ing expectation maximization.

10 Conclusion

We introduced recurrent neural network grammars,

a probabilistic model of phrase-structure trees that

can be trained generatively and used as a language

model or a parser, and a corresponding discrimina-

tive model that can be used as a parser. Apart from

out-of-vocabulary preprocessing, the approach re-

quires no feature design or transformations to tree-

bank data. The generative model outperforms ev-

ery previously published parser built on a single su-

pervised generative model in English, and a bit be-

hind the best-reported generative model in Chinese.

As language models, RNNGs outperform the best

single-sentence language models.
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