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ABSTRACT

In recent years recurrent neural network language models
(RNNLMs) have been successfully applied to a range of tasks
including speech recognition. However, an important issuethat
limits the quantity of data used, and their possible application areas,
is the computational cost in training. A significant part of this cost is
associated with the softmax function at the output layer, asthis re-
quires a normalization term to be explicitly calculated. This impacts
both the training and testing speed, especially when a largeoutput
vocabulary is used. To address this problem, noise contrastive esti-
mation (NCE), is used in RNNLM training in this paper. It doesnot
require the above normalization during both training and testing and
is insensitive to the output layer size. On a large vocabulary con-
versational telephone speech recognition task, a doublingin training
speed and 56 time speed up in test time evaluation were obtained.

Index Terms— language model, recurrent neural network,
GPU, noise contrastive estimation, speech recognition

1. INTRODUCTION

Statistical language models (LMs) are crucial components in many
speech and language processing systems designed for tasks such
as speech recognition, spoken language understanding and machine
translation. Recently, recurrent neural network languagemodels
(RNNLMs) have been shown to produce consistent performanceim-
provements across a range of these tasks [1, 2, 3, 4, 5, 6, 7, 8,9, 10].
One important practical issue associated with RNNLMs is thecom-
putational cost incurred in model training. This limits thequantity of
data and their possible application areas, and therefore has drawn in-
creasing research interest in recent years [2, 11, 12, 5, 13,10, 14, 15].

A major part of the computation load is incurred at the out-
put layer. One standard approach to handle this problem is touse
class-based outputs, This limits the size of output layer tobe com-
puted, thus allowing systems to be trained on CPUs. However,this
approach is sensitive to the underlying word to class assignment
scheme used at the output layer, additionally complicates the im-
plementation of bunch mode training parallelization [5]. To address
these issues, RNNLMs with a full output layer were used and trained
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efficiently on GPUs using spliced sentence bunch in previousre-
search [15]. A training speedup of 27 times was obtained against
classs based RNNLMs trained on CPUs.

One key factor that limits the scalability of RNNLMs is the nor-
malization term needs to be explicitly calculated at the output layer.
This highly expensive operation has a significant impact on both the
training and testing speed, especially when a large output vocabulary
is used, in particular, in full output based RNNLMs. One technique
that can be used to improve the testing speed introduced an addi-
tional variance regularization term to the conventional entropy based
objective function. This has been applied to training of feedforward
NNLMs, class based [13, 10, 14] and full output RNNLMs [16]. By
minimizing the variance of the normalization term during training,
the normalization term at the output layer can be ignored during test-
ing time thus gaining significant improvements in speed. However,
the explicit computation of this normalization term is still required
in training.

In order to handle this problem, techniques that alleviate the
need for such explicit normalization term computation in both train-
ing and testing time are preferred. One such technique investigated
in this paper is based on noise contrastive estimation (NCE)[17]. By
performing a nonlinear logistic regression to discriminate between
the observed data and some artificially generated noise data, the al-
gorithm presents solution to the both of abovementioned problems.
It allows normalized statistical models, for example, NNLMs, to
be both estimated in training and used in testing as “unnormalized”
models without explicitly computing the normalization term, while
retaining the desired sum-to-one constraint of normalizedmodels.
Along this line, NCE was previously used to improve the training
and evaluation efficiency of log-bilinear language models [18] and
feedforward NNLMs [19]. A modified NCE algorithm using nega-
tive sampling was also adopted to deriving distributed representation
of words and phrases [20]. In this paper, NCE is used to improve the
training and testing speed of RNNLMs for automatic speech recog-
nition.

The rest of this paper is organized as follows. In section 2, recur-
rent neural network LMs are reviewed. Noise contrastive estimation
is presented in section 3. The detailed implement of NCE training
is presented in section 4. Experiment results on a large vocabulary
conversational telephone speech transcription task and Google’s One
Billion Words corpus are reported in section 5. Section 6 draws the
conclusion.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [1] represent
the full, non-truncated historyhi =< wi−1, . . ., w1 > for word



wi using the 1-of-k encoding of previous wordwi−1 and a contin-
uous vectorvi−2 for the remaining context. For an empty history,
this is initialized, for example, to a vector of all ones. Thetopology
of the recurrent neural network used to compute LM probabilities
PRNN(wi|wi−1, vi−2) consists of three layers. The full history vec-
tor, obtained by concatenatingwi−1 andvi−2, is fed into the input
layer. The hidden layer compresses the information of thesetwo
inputs and computes a new representationvi−1 using a sigmoid ac-
tivation to achieve non-linearity. This is then passed to the output
layer to produce normalized RNNLM probabilities using a softmax
activation, as well as recursively fed back into the input layer as the
“future” remaining history to compute the LM probability for the
following word PRNN(wi+1|wi, vi−1). As RNNLMs use a vector
representation of full histories, they are mostly used for N-best list
rescoring. For more efficient lattice rescoring using RNNLMs, ap-
propriate approximation schemes, for example, based on clustering
among complete histories [21] can be used.
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OOV input node
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...

OOS output node

softmaxwi−1

vi−2

vi−1

vi−1 PRNN(wi|wi−1, vi−2)

Fig. 1. An example RNNLM with OOS nodes.
An RNNLM architecture with an unclustered, full output layer

is shown in Figure 1. RNNLMs can be trained using an extended
form of the standard back propagation algorithm, back propagation
through time (BPTT) [22], where the error is propagated through
recurrent connections back for a specific number of time steps, for
example, 4 or 5 [2]. This allows RNNLMs to record information
for several time steps in the hidden layer. To reduce the computa-
tional cost, a shortlist [23, 24] based output layer vocabulary limited
to the most frequent words can be used. To reduce the bias to in-
shortlist words during RNNLM training and improve robustness, an
additional node is added at the output layer to model the probability
mass of out-of-shortlist (OOS) words [25, 26, 21].

Conventional RNNLM training aims to maximise the log-
likelihood, or equivalently minimize the cross entropy (CE) measure
of the training data sequence containing a total ofNw words. The
objective function is given by
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is the probability of wordwi given historyhi, θi is the weight vector
associate wordi in output layer and hidden neuron.vi−1 is the
vector for the output of hidden neuron.|V | is the size of output layer.
The gradient used in conventional CE training for RNNLMs is
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The denominator term in equation (2) requires normalization among
the whole output layer. As discussed in section 1, this operation
is computationally highly expensive when computing the RNNLM
probabilities during both test time and CE based training when the
gradient information of equation (3) is calculated.

In state-of-the-art ASR systems, NNLMs are often linearly in-
terpolated withn-gram LMs to obtain both a good context coverage
and strong generalisation [1, 5, 23, 24, 25, 26]. The interpolated LM
probability is given by

P (wi|hi) = λPNG(wi|hi) + (1− λ)PRNN(wi|hi) (4)

whereλ is the weight of then-gram LMPNG(·), and kept fixed as
0.5 in all experiments of this paper. In the above interpolation, the
probability mass of OOS words assigned by the RNNLM component
needs to be re-distributed among all OOS words [25, 26].

3. NOISE CONTRASTIVE ESTIMATION

As discussed in section 1, the explicit computation of the the normal-
ization term required at the output layer significantly impacts both
the training and testing speed of RNNLMs. A general solutionto
this problem is to use techniques that can remove the need to com-
pute such normalization term in both training and testing. Along this
time, one such technique investigated in this paper is basedon noise
contrastive estimation (NCE) [17].

NCE based training provides an alternative solution to estimate
normalized statistical models when the exact computation of the re-
quired normalization term is either computationally impossible or
highly expensive to perform, for example, in feedforward and re-
current NNLMs, when a large output layer vocabulary is used.The
central idea of NCE is to perform a nonlinear logistic regression to
discriminate between the observed data and some artificially gener-
ated noise data. It allows normalized statistical models, for exam-
ple, NNLMs, to be both estimated in training and used in testing as
“unnormalized” models without explicitly computing the normaliza-
tion term, while retaining the desired sum-to-one probabilistic con-
straint of normalized models. The NCE algorithm therefore presents
a unique dual purpose solution to improve both the training and eval-
uation efficiency for RNNLMs.

In NCE training it is assumed that for a given full history con-
text hi, data samples are generated from a mixture of two distri-
butions: the NCE estimated RNNLM distributionPNCE

RNN(·|hi), and
some noise distributionPn(·|hi) that satisfying a desired sum-to-
one constraint. Assuming the noise samples arek times more fre-
quent than true RNNLM data samples, the distribution of datacould
be described as1

k+1
PNCE

RNN(·|hi)+
k

k+1
Pn(·|hi). The posterior prob-

abilities of some word samplẽw is generated from the RNNLM, or



noise distribution are

P (CRNN

w̃ = 1|w̃, hi) =
PNCE

RNN(w̃|hi)

PNCE

RNN
(w̃|hi) + kPn(w̃|hi)

P (Cn
w̃ = 1|w̃, hi) =

kPn(w̃|hi)

PNCE

RNN
(w̃|hi) + kPn(w̃|hi)

(5)

whereCRNN

w̃ andCn
w̃ are the binary labels indicating which of the

two distributions that word̃w is generated from. The following ob-
jective function is minimized during NCE based training,
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where a total ofk noise samples{w̌i,j} are drawn from the noise
distributionPn(·|hi) for the current training word samplewi and its
history contexthi. The gradient of the above NCE objective function
in equation (6) is then computed as
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where the NCE trained RNNLM distribution is given by

P
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and constrained during NCE training to learn a constant, history con-
text independent normalization termZ, in contrast to the standard
CE training based RNNLM distribution given in equation (2)1. This
crucial feature not only allows the resulting RNNLM to learnthe
desired sum-to-one constraint of standard CE estimated RNNLMs,
but also to be efficiently computed during both training and test time
without requiring explicitly computing the normalizationterm at the
output layer.

4. RNNLM TRAINING WITH NCE

In this paper, NCE training of RNNLMs is implemented on GPU
using a spliced sentence bunch mode [15]. A bunch size of 128 was
used in all experiments. CUBLAS is used for matrix operation. The
NCE objective function shown in equation (7) is optimized onthe
training set. The cross entropy measure on the validation set is used
to control the learning rate.

During NCE training, a number parameters need to be appro-
priately set. First, a noise distribution is required in NCEtrain-
ing to provide a valid sum-to-one constraint for the NCE estimated
RNNLM to learn. As suggested in earlier research presented in [18,
19], a context indenpendent unigram LM distribution is usedto draw
the noise samples during NCE training in this paper. Second,the
setting ofk controls the bias towards the characteristics of the noise
distribution and balances the trade-off between training efficiency
and performance. In this paper, for each target wordw, a total of

1A more general case of NCE training also allows the normalization term
to vary across different histories, thus incurring the samecost as in conven-
tional CE based training [17].

k = 10 noise samples are sampled independently from the noise
distribution. It is worth noting that the noise sample couldbe the
predicted word and same noise sample may appear more than once.
Finally, NCE training also requires a constant normalization termZ

in equation (8) to be set. In previous research on NCE training of
log-bilinear LMs [18] and feedforward NNLMs [19], the constant
normalization term was set aslnZ = 0. In this paper for RNNLMs
an empirically adjusted setting oflnZ = 9, close to the mean of the
log scale normalization term computed using a randomly initialized
RNNLM. This setting was found to give a good balance between
convergence speed and performance and used in all experiments.

The main advantages of RNNLMs training with NCE is sum-
marized below. First, the computation on output layer is reduced
dramatically as it only needs to considerk noise samples and tar-
get word, instead of the whole output layer. Compared with the
CE based training gradient given in equation (3), the computation
of NCE grandient in equation ( 7) gives a total speed up of|V |

k+1

times at the output layer. Second, the train speed is insensitive to
output layer size, which allows RNNLMs with larger vocabulary to
be trained. Finally, the normalization term is constrainedto be a
constant during NCE training. This can avoid the re-computation of
the normalization term for different histories, thereforeallows the
normalized RNNLM probabilities to calculate in test time with the
same efficiency as unnormalized probabilities. A|V | times speed up
at the output layer during test time can thus be achieved.

5. EXPERIMENTS

5.1. Experiments on 20M CTS task

In this section, RNNLMs are evaluated on the CU-HTK LVCSR
system for conversational telephone speech (CTS) used in the 2004
DARPA EARS evaluation. The acoustic models were trained on ap-
proximately 2000 hours of Fisher conversational speech released by
the LDC. A 59k recognition word list was used in decoding. The
system used a multi-pass recognition framework. A detaileddescrip-
tion of the baseline system can be found in [27]. The 3 hourdev04
data, which includes 72 Fisher conversations, was used as a test set.
The baseline 4-gram LM was trained using a total of 545 million
words from 2 text sources: the LDC Fisher acoustic transcriptions,
Fisher, of 20 million words (weight 0.75), and the University Wash-
ington conversational web data [28],UWWeb, of 525 million words
(weight 0.25). This baseline LM gave a PPL of 51.8 and WER of
16.7% ondev04measured using lattice rescoring.

The 20M Fisher data, containing on average 12.7 words per
sentence, is used to train RNNLMs. A 32k shortlist is used in input
layer and 20k shortlist used in output layer. RNNLMs are trained
with sentence independent. The size of hidden layer is 512, BPTT
step is 5 and bunch size is set to 128. The learning rate is 0.0117
per sample for NCE training and 0.0156 per sample for CE train-
ing. Whenk is larger than 10, NCE training is stable. In this paper,
10 noise samples are generated from unigram distribution for each
predicted word. The weights of RNNLMs are randomly initialized
between -0.1 and 0.1. RNNLMs were interpolated with the baseline
4-gram LM using a fixed weight 0.5. 100 best rescoring is used to
evaluate the performance of RNNLMs for ASR system. The CPU
used in this paper is dual Intel Xeon E5-2670 2.6GHz processors
with a total of 16 physical cores, and Nvidia GeForce GTX TITAN
GPU is used. A more detailed description of system with RNNLMs
could be found in [15].

The first experiment is to see how the variance of log normaliza-
tion (LogNorm) term changes with different amount of training data



in NCE training. The variance of LogNorm on validation during
training is shown in Figure 2. For RNNLMs with random initializa-
tion , the variance of LogNorm is small (0.035). It remains small and
constraint during NCE training. The variance of LogNorm of NCE
training ends with 0.043.
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Fig. 2. The change of variance of LogNorm on validation set in NCE
training.

Table 1 gives the WER and PPL results for NCE based RNNLMs.
Both of NCE and CE based training take 12 epoches for conver-
gence. The PPLs in the table are normalized. WER with normalized
RNNLM probability is reported for CE training, while RNNLM
trained with NCE uses unnormalized RNNLM probability. The log
of normalization termZ in Equation 8 is fixed with 9 in this work
2. The PPL and WER of NCE trained model are slightly worse than
CE trained model. However, it doubles train speed, and only half of
training time is required. It is as expected since the time consumed
on output layer is about half of the training time for CE training.
While for NCE training, the time on output layer could be reduced
significantly.

Table 1. Experiments on CTS task
LM Train train train time PPL WER
Type Crit speed(w/s) (hours)

NG4 - 51.8 16.7
+RNNLM CE 10.1k 7.4 46.3 15.22

NCE 19.7k 3.8 46.8 15.37

The next experiment is to investigate the train speed with differ-
ent output layer size. The experimental results are shows inTable 2.
CE training slows down quickly with increase of output layersize,
while that of NCE training is invariable with output layer size. The
RNNLMs trained with CE and NCE using different output layer size
give comparable PPL and WER performance.

Table 2. Train speed with different size of output layer
#output train speed (w/s)
layer CE NCE

20k 10.1k 19.7k
25k 9.1k 19.7k
30k 8.0k 19.7k

Another experiment is carried out to compare the evaluation
speed for the RNNLMs trained with CE and NCE using CPUs. As

2WER is much worse for CE trained RNNLMs without normalization

mentioned before, the RNNLM trained with CE need to be normal-
ized in output layer. While for NCE training, the normalization is
avoided. According to the results shown in Table 3, the evaluation
speed of RNNLMs trained with NCE is 56 times faster than that
trained with CE on CPUs.

Table 3. Evaluation speed for CE and NCE trained RNNLM on CPU
Train Crit Eval speed

CE 0.14k
NCE 7.9k

5.2. Experiments on Google’s One Billion Word Benchmark

A new benchmark corpus was released by Google for measuring
performance of statistical language models in [29]. Two categories
of normalization are provided3. One is for machine translation
(StatMT) and the other one is for ASR (normalized by Cantab Re-
search). The later one is chosen for training of LMs in this paper. It
contains 0.8 billion words in train set and 160k words (obtained from
the first split from heldout dat) are used for evaluation. Thevocab-
ulary consists of 60k most frequent words and used in input layer.
20k word list is used in output layer. RNNLMs with 1000 hidden
layer nodes are trained with bunch size 128. The other configuration
of RNNLMs are the same as 20M fisher corpus in the above sec-
tion. Modified KN 5-gram LM is trained by SRI toolkit [30] without
prunning, containing 1.0 Billion ngrams. RNNLMs are trained with
NCE and CE criterion respectively.

The results are shown in Table 4. The interpolation of 5-gram
and RNNLM (with weight 0.5) gives significant PPL reduction up
to 24% relatively. NCE and CE trained RNNLM gives comparable
PPLs after interpolating with the 5-gram LM.

It is also worth mentioning there are some differences for the
corpus and RNNLM between this work and [29]. [29] used statsMT,
which is a corpus for machine translation, for LM training. Besides,
MaxEnt was adopted in [29] for the training of RNNLMs.

Table 4. PPL results on Google’s One Billion Word on 60k vocabu-
lary

LMs Train Crit PPL

NG5 - 83.7

+RNNLM
CE 65.8

NCE 66.0

6. CONCLUSION

Noise contrastive estimation (NCE) training was investigated for
RNNLMs in this paper. Experimental results on a large vocabu-
lary conversational telephone speech recognition task suggest the
proposed technique can effectively alleviate the need for an explicit
normalization term computation at the output layer in both training
and testing time. A doubling in training speed and 56 time speed
up in test time evaluation were obtained. The required training time
is also insensitive to the output layer size. Experiments onGoogle
One Billion Word corpus also shows that it scale well to much larger
data.

3All sources are available in https://code.google.com/p/1-billion-word-
language-modeling-benchmark/
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