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ABSTRACT

efficiently on GPUs using spliced sentence bunch in previeds
search [15]. A training speedup of 27 times was obtainednagai

In recent years recurrent neural network language model§|asss based RNNLMs trained on CPUS.

(RNNLMs) have been successfully applied to a range of tasks

including speech recognition. However, an important isgwg
limits the quantity of data used, and their possible apfiboaareas,
is the computational cost in training. A significant parthubtcost is
associated with the softmax function at the output layethissre-
quires a normalization term to be explicitly calculatedislimpacts
both the training and testing speed, especially when a lauggut
vocabulary is used. To address this problem, noise coivieassti-
mation (NCE), is used in RNNLM training in this paper. It doex
require the above normalization during both training arstirig and
is insensitive to the output layer size. On a large vocagutan-
versational telephone speech recognition task, a doulslitrgining
speed and 56 time speed up in test time evaluation were ebtain

One key factor that limits the scalability of RNNLMs is therno
malization term needs to be explicitly calculated at thepottayer.
This highly expensive operation has a significant impactath the
training and testing speed, especially when a large outmathulary
is used, in particular, in full output based RNNLMs. One t@ghe
that can be used to improve the testing speed introduced din ad
tional variance regularization term to the conventionat@py based
objective function. This has been applied to training ofifeevard
NNLMs, class based [13, 10, 14] and full output RNNLMs [16}. B
minimizing the variance of the normalization term duringining,
the normalization term at the output layer can be ignorethduest-
ing time thus gaining significant improvements in speed. el@w,
the explicit computation of this normalization term is Istdquired

Index Terms— language model, recurrent neural network, in training.

GPU, noise contrastive estimation, speech recognition

1. INTRODUCTION

Statistical language models (LMs) are crucial componantaany

In order to handle this problem, techniques that alleviage t
need for such explicit normalization term computation ithbtoain-
ing and testing time are preferred. One such techniquetigeatsd
in this paper is based on noise contrastive estimation (NCH) By
performing a nonlinear logistic regression to discriméinbetween
the observed data and some artificially generated noise tthetal-

speech and language processing systems designed for ta8ks Sgqrithm presents solution to the both of abovementionedlpros.

as speech recognition, spoken language understanding acttma
translation. Recently, recurrent neural network languagelels

It allows normalized statistical models, for example, NN&Mo
be both estimated in training and used in testing as “unnlizetd

(RNNLMs) have been shown to produce consistent performance  mogels without explicitly computing the normalizationrterwhile

provements across a range of these tasks [1, 2, 3, 4, 5, 69,71@].
One important practical issue associated with RNNLMs isctira-
putational cost incurred in model training. This limits theantity of
data and their possible application areas, and therefarddaavn in-
creasing research interestin recentyears [2, 11, 12, 30134, 15].

retaining the desired sum-to-one constraint of normalizexdiels.
Along this line, NCE was previously used to improve the firagn
and evaluation efficiency of log-bilinear language modéR] [and
feedforward NNLMs [19]. A modified NCE algorithm using nega-
tive sampling was also adopted to deriving distributedesentation

A major part of the computation load is incurred at the out-gf words and phrases [20]. In this paper, NCE is used to imetiog

put layer. One standard approach to handle this problem isédo
class-based outputs, This limits the size of output laydre@om-
puted, thus allowing systems to be trained on CPUs. Howévisr,
approach is sensitive to the underlying word to class assig
scheme used at the output layer, additionally complicdtesir-
plementation of bunch mode training parallelization [5). address
these issues, RNNLMs with a full output layer were used aaidéd
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training and testing speed of RNNLMs for automatic speecbge
nition.

The rest of this paper is organized as follows. In sectioe@r-
rent neural network LMs are reviewed. Noise contrastiveregton
is presented in section 3. The detailed implement of NCHitngi
is presented in section 4. Experiment results on a largebubagy
conversational telephone speech transcription task andl&e One
Billion Words corpus are reported in section 5. Section Gwdrthe
conclusion.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [1] repeat
the full, non-truncated historjt; =< w;—1,...,w1 > for word



w; using the 1-ofk encoding of previous word);_; and a contin-
uous vectomw;_» for the remaining context. For an empty history,
this is initialized, for example, to a vector of all ones. Ttbpology

of the recurrent neural network used to compute LM probidsli
Prnn (wi|wi—1,vi—2) consists of three layers. The full history vec-
tor, obtained by concatenating;_1 andwv;_», is fed into the input
layer. The hidden layer compresses the information of these
inputs and computes a new representation using a sigmoid ac-
tivation to achieve non-linearity. This is then passed ® dhtput
layer to produce normalized RNNLM probabilities using atistatx
activation, as well as recursively fed back into the inpyelaas the
“future” remaining history to compute the LM probability rfthe
following word Prnn (wit1|ws, vi—1). As RNNLMs use a vector
representation of full histories, they are mostly used fepdst list
rescoring. For more efficient lattice rescoring using RNNi, Mp-
propriate approximation schemes, for example, based ateting
among complete histories [21] can be used.

Input layer

Hidden layer Output layer

softmax
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| —— Prun (wi|wi—1, vi—2)

Fig. 1. An example RNNLM with OOS nodes.
An RNNLM architecture with an unclustered, full output laye

is shown in Figure 1. RNNLMs can be trained using an extended

form of the standard back propagation algorithm, back pyapan
through time (BPTT) [22], where the error is propagated tlto
recurrent connections back for a specific number of timesstp

is the probability of wordwv; given historyh;, 8; is the weight vector
associate word in output layer and hidden neurornw,_; is the
vector for the output of hidden neurdW| is the size of output layer.
The gradient used in conventional CE training for RNNLMs is
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The denominator term in equation (2) requires normalinagimong
the whole output layer. As discussed in section 1, this djmera
is computationally highly expensive when computing the RINN
probabilities during both test time and CE based trainingnvtne
gradient information of equation (3) is calculated.

In state-of-the-art ASR systems, NNLMs are often lineanly i
terpolated withn-gram LMs to obtain both a good context coverage
and strong generalisation [1, 5, 23, 24, 25, 26]. The intatpd LM
probability is given by

P(w1|h1) = )\PNG(’M),’”LZ') + (1 — )\)PRNN(wi|hi) (4)
where is the weight of thex-gram LM Pye(+), and kept fixed as
0.5 in all experiments of this paper. In the above interpofatthe
probability mass of OOS words assigned by the RNNLM compbnen
needs to be re-distributed among all OOS words [25, 26].

3. NOISE CONTRASTIVE ESTIMATION

As discussed in section 1, the explicit computation of tleatbrmal-
ization term required at the output layer significantly irisaboth
the training and testing speed of RNNLMs. A general solutmn
this problem is to use techniques that can remove the neeshte c
pute such normalization term in both training and testinipng this
time, one such technique investigated in this paper is basenise
contrastive estimation (NCE) [17].

NCE based training provides an alternative solution tovestte
normalized statistical models when the exact computatigheore-
quired normalization term is either computationally imgibte or
highly expensive to perform, for example, in feedforwardl ae-

example, 4 or 5 [2]. This allows RNNLMs to record information . rrent NNLMs, when a large output layer vocabulary is usite
for several time steps in the hidden layer. To reduce the G@Rp  central idea of NCE is to perform a nonlinear logistic regies to
tional cost, a shortlist [23, 24] based output layer vocat;ullml_ted _discriminate between the observed data and some artificjatier-
to the most frequent words can be used. To reduce the bias 10 iBeq noise data. It allows normalized statistical modeis gkam-

shortlist words during RNNLM training and improve robusteagan
additional node is added at the output layer to model thegtitiby
mass of out-of-shortlist (OOS) words [25, 26, 21].

Conventional RNNLM training aims to maximise the log-
likelihood, or equivalently minimize the cross entropy (GEeasure
of the training data sequence containing a totaNaf words. The
objective function is given by
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ple, NNLMs, to be both estimated in training and used in bests
“unnormalized” models without explicitly computing themualiza-
tion term, while retaining the desired sum-to-one prolistixl con-
straint of normalized models. The NCE algorithm therefarspnts
a unique dual purpose solution to improve both the trainnmyeval-
uation efficiency for RNNLMs.

In NCE training it is assumed that for a given full history eon
text h;, data samples are generated from a mixture of two distri-
butions: the NCE estimated RNNLM distributid®}y; (-|%;), and
some noise distributiod®, (-|k;) that satisfying a desired sum-to-
one constraint. Assuming the noise sampleskatienes more fre-
guent than true RNNLM data samples, the distribution of datdd
be described agiy PR (i) + 77 Pa(-|hi). The posterior prob-
abilities of some word samplé is generated from the RNNLM, or



noise distribution are

P (@] hi)
P(CR™ = 1|w,h;) = RN
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where CENN and C are the binary labels indicating which of the
two distributions that wordo is generated from. The following ob-
jective function is minimized during NCE based training,

(mP(Cff,'jN = 1jwi, hi)

k
+> InP(C, = 1|w¢,j,m>> (6)

j=1

where a total ofc noise samplegw; ;} are drawn from the noise
distribution P, (-|h;) for the current training word sample; and its
history context;. The gradient of the above NCE objective function
in equation (6) is then computed as

1w

,mz

9JNE (@)
00

kP, (w;|h;
NCE ) 3 In Pli\lr\fr\f(wi‘hi)
Pigy (wilhi) + EPp (wi|hi) 00

k

- Z PNCE

j=17RNN

P (3,51 ha) ﬂlnPNcs(m_ 1ol
(Wi,5|hi) 4+ kP (W4, j|hi) 00 RNN AT 1

where the NCE trained RNNLM distribution is given by

NCE

picE exp (OiTvi_l)

Z

and constrained during NCE training to learn a constariphjigon-
text independent normalization ter# in contrast to the standard
CE training based RNNLM distribution given in equation'(2Jhis
crucial feature not only allows the resulting RNNLM to ledhe
desired sum-to-one constraint of standard CE estimated LRRININ
but also to be efficiently computed during both training aest time
without requiring explicitly computing the normalizatiterm at the
output layer.

(wilhi) = (8)

4. RNNLM TRAINING WITH NCE

In this paper, NCE training of RNNLMs is implemented on GPU
using a spliced sentence bunch mode [15]. A bunch size of B33 w
used in all experiments. CUBLAS is used for matrix operatibne
NCE objective function shown in equation (7) is optimizedtba
training set. The cross entropy measure on the validatibis sised

to control the learning rate.

During NCE training, a number parameters need to be appro-

priately set. First, a noise distribution is required in N@&in-
ing to provide a valid sum-to-one constraint for the NCEreated
RNNLM to learn. As suggested in earlier research present§th,
19], a context indenpendent unigram LM distribution is usedraw
the noise samples during NCE training in this paper. Sectira,

setting ofk controls the bias towards the characteristics of the nois

distribution and balances the trade-off between trainiffigiency
and performance. In this paper, for each target word total of

1A more general case of NCE training also allows the normidinaerm
to vary across different histories, thus incurring the saos as in conven-
tional CE based training [17].

k = 10 noise samples are sampled independently from the noise
distribution. It is worth noting that the noise sample cohklthe
predicted word and same noise sample may appear more than onc
Finally, NCE training also requires a constant normal@atermZ
in equation (8) to be set. In previous research on NCE trgioin
log-bilinear LMs [18] and feedforward NNLMs [19], the comst
normalization term was set &sZ = 0. In this paper for RNNLMs
an empirically adjusted setting bf Z = 9, close to the mean of the
log scale normalization term computed using a randomlyalized
RNNLM. This setting was found to give a good balance between
convergence speed and performance and used in all expésimen
The main advantages of RNNLMs training with NCE is sum-
marized below. First, the computation on output layer iuced
dramatically as it only needs to considemoise samples and tar-
get word, instead of the whole output layer. Compared with th
CE based training gradient given in equation (3), the coatprt
of NCE grandient in equation ( 7) gives a total speed ugl—‘é%
times at the output layer. Second, the train speed is insensd
output layer size, which allows RNNLMs with larger vocabyléo
be trained. Finally, the normalization term is constrainede a
constant during NCE training. This can avoid the re-contpureof
the normalization term for different histories, therefa@ows the
normalized RNNLM probabilities to calculate in test timethvthe
same efficiency as unnormalized probabilities VA times speed up
at the output layer during test time can thus be achieved.

5. EXPERIMENTS

5.1. Experiments on 20M CTS task

In this section, RNNLMs are evaluated on the CU-HTK LVCSR
system for conversational telephone speech (CTS) usea in0d4
DARPA EARS evaluation. The acoustic models were trainedmn a
proximately 2000 hours of Fisher conversational speedaseld by
the LDC. A 59k recognition word list was used in decoding. The
system used a multi-pass recognition framework. A detaiéstrip-
tion of the baseline system can be found in [27]. The 3 hmu04
data, which includes 72 Fisher conversations, was usedest set.
The baseline 4-gram LM was trained using a total of 545 nmillio
words from 2 text sources: the LDC Fisher acoustic trangorip,
Fisher, of 20 million words (weight 0.75), and the University Wash-
ington conversational web data [28]\WWWeb, of 525 million words
(weight 0.25). This baseline LM gave a PPL of 51.8 and WER of
16.7% ondevO4measured using lattice rescoring.

The 20M Fisher data, containing on average 12.7 words per
sentence, is used to train RNNLMs. A 32k shortlist is usedhput
layer and 20k shortlist used in output layer. RNNLMs arenedi
with sentence independent. The size of hidden layer is 5B
step is 5 and bunch size is set to 128. The learning rate i40.01
per sample for NCE training and 0.0156 per sample for CE train
ing. Whenk is larger than 10, NCE training is stable. In this paper,
10 noise samples are generated from unigram distributipedoh
predicted word. The weights of RNNLMs are randomly iniZaki
between -0.1 and 0.1. RNNLMs were interpolated with the lbzse
4-gram LM using a fixed weight 0.5. 100 best rescoring is used t

._evaluate the performance of RNNLMs for ASR system. The CPU
%sed in this paper is dual Intel Xeon E5-2670 2.6GHz proassso

with a total of 16 physical cores, and Nvidia GeForce GTX TINTA
GPU is used. A more detailed description of system with RNNLM
could be found in [15].

The first experiment is to see how the variance of log norraaliz
tion (LogNorm) term changes with different amount of tramdata



in NCE training. The variance of LogNorm on validation darin
training is shown in Figure 2. For RNNLMs with random initizd-
tion , the variance of LogNorm is small (0.035). It remainsafiand
constraint during NCE training. The variance of LogNorm ¢Z B
training ends with 0.043.
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Fig. 2. The change of variance of LogNorm on validation set in NCE
training.

Table 1 gives the WER and PPL results for NCE based RNNLM
Both of NCE and CE based training take 12 epoches for conve

gence. The PPLs in the table are normalized. WER with noz@dli
RNNLM probability is reported for CE training, while RNNLM
trained with NCE uses unnormalized RNNLM probability. Tlog |
of normalization termZ in Equation 8 is fixed with 9 in this work

mentioned before, the RNNLM trained with CE need to be normal
ized in output layer. While for NCE training, the normalipet is
avoided. According to the results shown in Table 3, the atan
speed of RNNLMs trained with NCE is 56 times faster than that
trained with CE on CPUs.

Table 3. Evaluation speed for CE and NCE trained RNNLM on CPU
[ Train Crit [ Eval speed|]

CE 0.14k

NCE 7.9k

5.2. Experiments on Google’s One Billion Word Benchmark

A new benchmark corpus was released by Google for measuring
performance of statistical language models in [29]. Twegaties

of normalization are provided. One is for machine translation
(StatMT) and the other one is for ASR (normalized by Cantab Re
search). The later one is chosen for training of LMs in thisgralt
contains 0.8 billion words in train set and 160k words (afetdifrom

the first split from heldout dat) are used for evaluation. Vbeab-
Jlary consists of 60k most frequent words and used in inpérla
20k word list is used in output layer. RNNLMs with 1000 hidden
layer nodes are trained with bunch size 128. The other caatiigm

of RNNLMs are the same as 20M fisher corpus in the above sec-
tion. Modified KN 5-gram LM is trained by SRI toolkit [30] withut
prunning, containing 1.0 Billion ngrams. RNNLMs are traingith

2. The PPL and WER of NCE trained model are slightly worse tharNCE and CE criterion respectively.

CE trained model. However, it doubles train speed, and oalfydi
training time is required. It is as expected since the tinresamed
on output layer is about half of the training time for CE tiam
While for NCE training, the time on output layer could be reed
significantly.

Table 1. Experiments on CTS task

LM Train train traintime | PPL | WER

Type Crit | speed(w/s)| (hours)
NG4 - 51.8| 16.7
+RNNLM | CE 10.1k 7.4 46.3 | 15.22
NCE 19.7k 3.8 46.8 | 15.37

The next experiment is to investigate the train speed witlrdi
ent output layer size. The experimental results are showWalbie 2.
CE training slows down quickly with increase of output lagére,
while that of NCE training is invariable with output layersi The
RNNLMs trained with CE and NCE using different output layizes
give comparable PPL and WER performance.

Table 2. Train speed with different size of output layer

#output | train speed (w/s)
layer CE | NCE
20k 10.1k | 19.7k
25k 9.1k | 19.7k
30k 8.0k | 19.7k

The results are shown in Table 4. The interpolation of 5-gram
and RNNLM (with weight 0.5) gives significant PPL reductiop u
to 24% relatively. NCE and CE trained RNNLM gives comparable
PPLs after interpolating with the 5-gram LM.

It is also worth mentioning there are some differences fer th
corpus and RNNLM between this work and [29]. [29] used statsM
which is a corpus for machine translation, for LM trainingesiles,
MaxEnt was adopted in [29] for the training of RNNLMSs.

Table 4. PPL results on Google’s One Billion Word on 60k vocabu-
lary

[ LMs [ TrainCrit | PPL |
NG5 - 83.7

CE 65.8

+RNNLM NCE 66.0

6. CONCLUSION

Noise contrastive estimation (NCE) training was invesgdafor
RNNLMs in this paper. Experimental results on a large voeabu
lary conversational telephone speech recognition tasigesighe
proposed technique can effectively alleviate the needrianalicit
normalization term computation at the output layer in bo#tining
and testing time. A doubling in training speed and 56 timesdpe
up in test time evaluation were obtained. The requireditrgitime

is also insensitive to the output layer size. Experiment§&ongle
One Billion Word corpus also shows that it scale well to murigér

Another experiment is carried out to compare the evaluatioryata.
speed for the RNNLMs trained with CE and NCE using CPUs. As

3All sources are available in https:/code.google.comlpllion-word-
language-modeling-benchmark/

2WER is much worse for CE trained RNNLMs without normalizatio
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