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Introduction

Mathematical modeling is a powerful tool in study-
ing fundamental principles of information process-
ing in the brain. Unfortunately, mathematical anal-
ysis of a certain neural model could be of limited
value since the results might depend on particulars
of that model: Various models of the same neural
structure could produce different results. For ex-
ample, if one obtains results studying a Hodgkin-
Huxley-type model (see AXONAL MODELING) and
then augments the model by adding more parame-
ters and variables to take into account more neuro-
physiological data, would similar results hold? A rea-
sonable way to circumvent this problem is to derive
results that are largely independent of the model and
that can be observed in a class or a family of models.

Having understood the importance of considering
families of neural models instead of a single model,
we carry out this task by reducing an entire family
of Hodgkin-Huxley-type models to a canonical model
(for precise definitions see Sect. 4.1 in Hoppensteadt
and Izhikevich 1997). Briefly, a model is canonical for
a family if there is a continuous change of variables
that transforms any other model from the family into
this one, as we illustrate in Figure 1. For example,
the entire family of weakly coupled oscillators of the
form (1) can be converted into the canonical phase
model (6), where Hij depend on the particulars of
the functions fi and gij . The change of variables
does not have to invertible, so the canonical model
is usually lower-dimensional, simple, and tractable.
Yet, it retains many important features of the family.
For example, if the canonical model has multiple at-
tractors, then each member of the family has multiple
attractors.

The major advantage of considering canonical
models is that one can study universal neuro-
computational properties that are shared by all mem-
bers of the family since all such members can be put
into the canonical form by a continuous change of
variables. Moreover, one need not actually present
such a change of variables explicitly, so derivation of
canonical models is possible even when the family is
so broad that most of its members are given implic-
itly, e.g., in the abstract form (1). For example, the
canonical phase model (6) reveals universal computa-
tional abilities (e.g., oscillatory associative memory)
that are shared by all oscillatory systems regardless
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Figure 1: Dynamical system ẏ = g(y), is a canonical
model for the family {f1, f2, f3, f4} of neural mod-
els ẋ = f(x) because each such model can be trans-
formed into the form ẏ = g(y) by the continuous
change of variables hi.

of the nature of each oscillator or the particulars of
the equations that describe it. Thus, the canonical
model approach provides a rigorous way to obtain
results when only partial information about neuron
dynamics is known. Many examples are given below.

The process of deriving canonical neural models
is more an art than a science, since a general algo-
rithm for doing this is not known. However, much
success has been achieved when we consider weakly
connected networks of neurons whose activity is near
a bifurcation, which often occurs when the membrane
potential is near the threshold value, see DYNAMICS
AND BIFURCATION OF NEURAL NETWORKS
and PHASE PLANE ANALYSIS OF NEURAL AC-
TIVITY. We review such bifurcations and corre-
sponding canonical models. Their rigorous deriva-
tion and detailed analysis can be found in the book
by Hoppensteadt and Izhikevich (1997).

Weakly Connected Neural Networks

The assumption of weak neuronal connections is
based on the observation that the typical size of a
postsynaptic potential is less than 1 mV, which is
small in comparison with the mean size necessary to
discharge a cell (around 20 mV) or the averaged size
of the action potential (around 100 mV); see detailed
review of relevant electrophysiological data in Chap-
ter 1 in Hoppensteadt and Izhikevich (1997). From
the mathematical point of view this results in neural
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models of “weakly connected” form

ẋi = f(xi, λi) + ε

n∑

j=1

gij(xi, xj , ε) , (1)

where each vector xi ∈ Rm describes membrane
potential, gating variables, and other electrophys-
iological variables of the i-th neuron (see ION
CHANNELS: KEYS TO NEURONAL SPECIAL-
IZATION). Each vector λi ∈ Rl denotes various bio-
physical parameters of the neuron. The function f
describes the neuron’s dynamics, and the functions
gij describe connections between the neurons. The
dimensionless parameter ε ¿ 1 is small, reflecting
the strength of connections between neurons.

Bistability And Hysteresis

Bistable and hysteretic dynamics are ubiquitous in
neural models, and they may play important roles in
biological neurons. The cusp bifurcation depicted in
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Figure 2: Cusp surface.

Figure 2 is one of the simplest bifurcations leading to
such dynamics. For example, the sigmoidal neuron

ẋ = −x + aS(x) , S(x) = 1/(1 + e−x) ,

is at a cusp bifurcation point x = 0.5 when a = 4. It
is bistable when a > 4. If each neuron in the weakly
connected network (1) is near a supercritical cusp bi-
furcation, then the entire network can be transformed
into the canonical form (Hoppensteadt and Izhikevich
1997)

y′i = ri − y3
i +

n∑

j=1

sijyj (2)

where each scalar yi ∈ R describes re-scaled dynam-
ics of the ith neuron. Particulars of the functions f

and gij and the value of the parameters λi do not
affect the form of the canonical model, but only par-
ticulars of the parameters ri and sij . Thus, study-
ing the canonical model (2) one can gain some in-
sight into neuro-computational behavior of any neu-
ral model near a cusp bifurcation, whether it is a
simple sigmoidal neuron or a biophysically detailed
conductance-based (Hodgkin-Huxley-type) neuron.

The canonical model (2) is quite simple: Each
equation has only one non-linear term, namely, y3

i ,
and two internal parameters, ri and sii. Still, the
Cohen-Grossberg-Hopfield convergence theorem ap-
plies, which means that the canonical model has the
same neuro-computational properties as the stan-
dard Hopfield network (see COMPUTING WITH
ATTRACTORS).

Theorem 1 (Cohen-Grossberg-Hopfield Con-
vergence Theorem) If the connection matrix S =
(sij) is symmetric, then the canonical neural network
(2) is a gradient system.

One can easily check that

E(y) = −
n∑

i=1

(riyi − 1
4
y4

i )− 1
2

n∑

i,j=1

sijyiyj

is a potential function for (2) in the sense that
y′i = −∂E/∂yi, see also ENERGY FUNCTIONS
FOR NEURAL NETWORKS.

Small Amplitude Oscillations

Many biophysically detailed neural models can ex-
hibit small-amplitude (damped) oscillations of the
membrane potential, especially when the system is
near transition from rest state to periodic activity.
In the simplest case this corresponds to the super-
critical Andronov-Hopf bifurcation (Figure 3). Many
weakly connected networks (1) of such neurons can
be transformed into the canonical model

z′i = (ri + iωi)zi − zi|zi|2 +
n∑

j=1

cijzj (3)

by a continuous change of variables (Aronson et al.
1990). Here i =

√−1, and each complex variable
zi ∈ C describes oscillatory activity of the ith neuron.
Again, particulars of the form of the functions f and
gij in (1) affect only the values of the parameters ri,
and ωi and the complex-valued synaptic coefficients
cij ∈ C.

Even though the canonical model (3) exhibits os-
cillatory dynamics, one can still prove the following
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Figure 3: Supercritical Andronov-Hopf bifurcation in
ẋ = f(x, λ). Left: The rest state is stable. Mid-
dle: The rest state is losing stability giving birth to a
stable limit cycle corresponding to periodic activity.
Right: The system exhibits periodic activity.

analogue of the Cohen-Grossberg convergence theo-
rem, which implies that the canonical model (3) has
oscillatory associative memory; that is, it can mem-
orize and retrieve complex oscillatory patterns (Hop-
pensteadt and Izhikevich 1996); see Fig. 4.

Theorem 2 (Synchronization Theorem for Os-
cillatory Neural Networks) If in the canonical
neural network (3) all neurons have equal frequencies
ω1 = · · · = ωn and the connection matrix C = (cij)
is self-adjoint, i.e.,

cij = c̄ji for all i and j, (4)

then the network always converges to an oscillatory
phase-locked pattern; that is, the neurons oscillate
with equal frequencies and constant, but not neces-
sarily identical, phases. There could be many such
phase-locked patterns corresponding to many memo-
rized images.

The proof follows from the existence of an orbital
energy function

E(z) = −
n∑

i=1

(ri|zi|2 − 1
2
|zi|4)−

n∑

i,j=1

cij z̄izj

for (3), see ENERGY FUNCTIONS FOR NEURAL
NETWORKS.

The self-adjoint synaptic matrix arises naturally
when one considers complex Hebbian learning rules
(Hoppensteadt and Izhikevich 1996)

cij =
1
n

k∑
s=1

ξs
i ξ̄

k
j (5)

where each vector ξs = (ξs
1, . . . , ξ

s
n) ∈ Cn denotes

a pattern of phase relations between neurons to be
memorized, see also HEBBIAN SYNAPTIC PLAS-
TICITY. Notice that the problem of negative (mir-
ror) images does not arise in oscillatory neural net-
works, since both ξk and −ξk result in the same phase
relations.

The key difference between the Hopfield-Grossberg
network and the oscillatory network (3) is that mem-
orized images correspond to equilibrium (point) at-
tractors in the former and to limit cycle attractors in
the latter. Pattern recognition by an oscillatory neu-
ral network involves convergence to the correspond-
ing limit cycle attractor, which results in synchro-
nization of the network activity with an appropriate
phase relation between neurons, as in Fig. 4; see also
COMPUTING WITH ATTRACTORS.

Large Amplitude Oscillations

Suppose that neurons in the weakly connected net-
work (1) exhibit periodic spiking; see Figure 5 and
CHAINS OF COUPLED OSCILLATORS; COL-
LECTIVE BEHAVIOR OF COUPLED OSCILLA-
TORS and PHASE-PLANE ANALYSIS OF NEU-
RAL ACTIVITY. If they have nearly equal frequen-
cies, then the network can be transformed into the
phase canonical model

ϕ′i = ωi +
n∑

j=1

Hij(ϕj − ϕi) (6)

where each ϕi ∈ S1 is a one-dimensional (angle) vari-
able that describes the phase of the ith oscillator
along the limit cycle attractor corresponding to its
periodic spiking(see Figure 5), and each Hij is a func-
tion that depends on f and gij that can be explicitly
computed using Malkin’s Theorem (Theorem 9.2 in
Hoppensteadt and Izhikevich 1997).

The phase canonical model (6) describes frequency
locking, phase locking, and synchronization proper-
ties of the original system (1). Therefore, to un-
derstand these and other non-linear phenomena that
might take place in oscillating neural networks, it
usually suffices to consider the phase model. In par-
ticular, one can glimpse the universal computational
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Figure 4: Pattern recognition via phase locking by the oscillatory canonical model (3). Complex Hebbian
learning rule (5) was used to memorize patterns “1”, “2”, and “3”. When the distorted pattern “1” is
presented as an initial state, the neurons synchronize with the phase relations corresponding to the memorized
pattern “1”.
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Figure 5: Examples of large amplitude limit cycle
attractors corresponding to periodic spiking in two
biophysically detailed neural models (Morris-Lecar
(1981) and Hodgkin-Huxley (1952)).

abilities that are shared by all oscillatory systems re-
gardless of the nature of each oscillator or the par-
ticulars of the equations that describe it. Indeed, one
can prove the following analogue of Theorem 2

Theorem 3 (Synchronization Theorem for Os-
cillatory Neural Networks) If all oscillators in (6)
have equal frequencies; i.e., ω1 = · · · = ωn, and the
connection functions Hij have pairwise odd form; i.e.,

Hij(−ψ) = −Hji(ψ) (7)

for all i and j, then the canonical phase model (6)
converges to a phase-locked pattern ϕi(t) → ω1t + φi

for all i, so the neurons oscillate with equal frequen-
cies (ω1) and constant phase relations (ϕi(t)−ϕj(t) =
φi − φj). In this sense the network dynamic is syn-
chronized. There could be many stable synchronized
patterns corresponding to many memorized images.

The proof is based on the observation that the phase
canonical model (6) has the energy function

E(ϕ) =
1
2

n∑

i,j=1

Rij(ϕj − ϕi)

where Rij is the antiderivative of Hij ; that is, R′ij =
Hij , see Theorem 9.15 in Hoppensteadt and Izhike-
vich 1997, and ENERGY FUNCTIONS FOR NEU-
RAL NETWORKS.

For example, Kuramoto’s model (1984)

ϕ′i = ωi +
n∑

j=1

sij sin(ϕj + ψij − ϕi) (8)

has such an oscillatory associative memory when
ω1 = · · · = ωn

sij = sji and ψij = −ψji ,

for all i and j. If we denote cij = sije
iψij , then these

conditions have the form (4). The energy function
for Kuramoto’s model is

E(ϕ) = −1
2

n∑

i,j=1

sij cos(ϕj + ψij − ϕi) .
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Figure 6: Neural excitability in Morris-Lecar (1981)
neuron having fast Ca2+ and slow K+ voltage-gated
currents. The rest state (black circle) is stable, but
small perturbations can push the voltage beyond the
threshold (white circle) thereby causing a large ampli-
tude excursion – action potential. The voltage vari-
able changes slowly near the rest states, but fast dur-
ing the generation of action potentials.

There are various estimates of the storage capacity
of the network, as discussed by Vicente et al. (1996).
In particular, those authors found a time scale dur-
ing which oscillatory networks can have better perfor-
mance than Cohen-Grossberg-Hopfield-type attrac-
tor neural networks.

Since neither the form of the functions f and gij ,
nor the dimension of each oscillator in (1) were spec-
ified, one could take the above result to the extreme
and claim that anything that can oscillate can also be
used for computing, as for associative pattern recog-
nition, etc. The only problem is how to couple the
oscillators so that (7) is satisfied.

Neural Excitability

An interesting intermediate case between rest and pe-
riodic spiking behavior is when a neural system is ex-
citable; that is, it is at rest, but can generate a large-
amplitude spike in response to a small perturbation;
see Figure 6 and PHASE-PLANE ANALYSIS OF
NEURAL ACTIVITY and OSCILLATORY AND
BURSTING PROPERTIES OF NEURONS. A sim-
ple but useful criterion for classifying neural excitabil-
ity was suggested by Hodgkin (1948), who stimulated
cells by applying currents of various strengths. When
the current is weak the cell is quiet. When the current
is strong enough, the cell starts to fire repeatedly. He
suggested the following classification according to the
emerging frequency of firing (see Figure 7)

• Class 1 neural excitability. Action potentials
can be generated with arbitrarily low frequency.
The frequency increases with increasing the ap-
plied current.

SaddleNode

Saddle-Node on Invariant
Circle Bifurcation Repetitive SpikingExcitable

Limit Cycle

Figure 8: Class 1 neural excitability via saddle-node
on invariant circle bifurcation: The threshold state
(saddle) approaches the rest state (node), they co-
alesce and annihilate each other leaving only limit
cycle attractor. The oscillation on the attractor has
two time scales: slow transition through the “ghost”
of the saddle-node bifurcation and fast rotation along
the rest of the limit cycle.

• Class 2 neural excitability. Action potentials
are generated in a certain frequency band that is
relatively insensitive to changes in the strength
of the applied current.

Their class of excitability influences neuro-
computational properties of cells (see review by
Izhikevich 2000). For example, Class 1 neural
systems have a well-defined threshold manifold for
their state variables, beyond which they generate a
large amplitude spike. They generate an all-or-none
response, and they act as integrators, meaning that
the higher the frequency of the incoming pulses,
the sooner they fire. In contrast, Class 2 neural
systems do not have a threshold manifold. They can
generate spikes of arbitrary intermediate amplitude,
and they act as resonators. That is, they respond to
certain resonant frequencies of the incoming pulses.
Increasing the incoming frequency may delay or even
terminate their response.

A canonical model for Class 1 excitable systems is
described below, while the canonical model for Class
2 systems has yet to be found.

Class 1 Excitable Systems

Class 1 excitable systems are understood relatively
well (Rinzel and Ermentrout 1989, Ermentrout 1996,
Hoppensteadt and Izhikevich 1997, Izhikevich 2000).
The transition from rest to periodic spiking in such
systems occurs via a saddle-node on invariant cir-
cle bifurcation, as we depict in Figure 8, see also
DYNAMICS AND BIFURCATION OF NEURAL
NETWORKS and OSCILLATORY AND BURST-
ING PROPERTIES OF NEURONS. A weakly con-
nected network of such neurons can be transformed
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Figure 7: Transition from rest to repetitive spiking in two biophysical models when the strength of applied
current, I, increases. The neural excitability is classified according to the frequency of emerging spiking.

into a canonical model, which can be approximated
by

ϑ′i = 1− cos ϑi +(1+cos ϑi)


ri +

n∑

j=1

sijδ(ϑj − π)




(9)
where ϑi ∈ S1 is the phase of the ith neuron along
the limit cycle corresponding to the spiking solution.
Again, particulars of the functions f and gij in (1)
do not affect the form of the canonical model above,
but only affect the values of the parameters ri and sij ,
which can be computed explicitly (Hoppensteadt and
Izhikevich 1997, Chapter 8). Notice that the canon-
ical model (9) is pulse-coupled, whereas the original
weakly coupled network (1) is not. The qualitative
reason for pulse coupling is that the voltage changes
are extremely slow most of the time because of the
proximity to the rest state, but they are relatively in-
stantaneous during the generation of an action poten-
tial. Hence the duration of coupling looks infinitesi-
mal on the slow time scale.

The neuron is quiescent when ri < 0 (Fig. 8, left)
and fires periodically when ri > 0 (Fig. 8, right).
It fires a spike exactly when ϑi crosses the value π,
which results in a step-like increase in the phases of
other neurons. Hence, the canonical model (9) is a
pulse coupled neural network (Izhikevich 1999). It
has many important physiological features including
absolute and relative refractory periods; see Figure 9.
Indeed, the effect of every incoming pulse depends on
the internal state of the neuron since it is multiplied
by the function (1 + cos ϑi). The effect is maximal

0πSpike

Rest
Potential

Threshold
Potential

Absolute
Refractory

Relative Refractory

Excited
(Regenerative)

S1

Figure 9: Diagram of the canonical model (9) for
class 1 neural excitability (From Hoppensteadt and
Izhikevich 1997).

when the neuron is near rest since (1 + cos ϑi) ≈ 2
when ϑi ≈ 0. It is minimal when the neuron is gen-
erating a spike since (1 + cos ϑi) ≈ 0 when ϑi ≈ π.

A canonical model for slowly connected Class 1 ex-
citable neurons with spike frequency adaptation has
the form (Izhikevich 2000)

ϑ′i = 1− cos ϑi + (1 + cos ϑi)


ri +

n∑

j=1

sijwj




w′i = δ(ϑi − π)− ηwi

where wi describes slow synaptic processes. The term
siiwi denotes not a self-synapse, but a slow spike fre-
quency adaptation (sii < 0) or facilitation (sii > 0)
process.
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Discussion

The canonical model approach to computational neu-
roscience provides a rigorous way to derive simple yet
accurate models that describe single cell or network
dynamics (see also SINGLE-CELL MODELS). Such
a derivation is possible even when no assumptions
are made regarding the detailed form of equations
describing neural activity. Indeed, we specify nei-
ther f nor gij in (1). The only assumptions we make
are those concerning the dynamics of each neuron –
whether it is quiescent, excitable, periodic spiking,
etc. Nevertheless, any such neural system can be
transformed into a canonical model by a piece-wise
continuous change of variables.

Derivation of canonical models can be a daunting
mathematical task. However, once found, the canoni-
cal models provide invaluable information about uni-
versal neuro-computational properties shared by a
large family of neural systems. For example, study-
ing the canonical model (9) sheds light on behavior
of all Class 1 excitable systems and their networks
regardless of the details of equations describing their
dynamics.

Road Map: BIOLOGICAL NEURONS AND NET-
WORKS; COOPERATIVE PHENOMENA; DY-
NAMIC SYSTEMS AND OPTIMIZATION
Background: DYNAMICS AND BIFURCATION
OF NEURAL NETWORKS; PHASE PLANE
ANALYSIS OF NEURAL ACTIVITY
Related Reading: CHAINS OF COUPLED
OSCILLATORS; COLLECTIVE BEHAVIOR OF
COUPLED OSCILLATORS; COMPUTING WITH
ATTRACTORS; COOPERATIVE PHENOMENA;
ENERGY FUNCTIONS FOR NEURAL NET-
WORKS; PATTERN FORMATION, BIOLOGICAL
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