
 Open access Proceedings Article DOI:10.1109/ICASSP.2013.6639096

Recurrent neural networks for voice activity detection — Source link

Thad Hughes, Keir Banks Mierle

Institutions: Google

Published on: 26 May 2013 - International Conference on Acoustics, Speech, and Signal Processing

Topics: Time delay neural network, Voice activity detection, Recurrent neural network, Word error rate and Mixture model

Related papers:

 A statistical model-based voice activity detection

 Deep Belief Networks Based Voice Activity Detection

 Real-life voice activity detection with LSTM Recurrent Neural Networks and an application to Hollywood movies

 Speech activity detection on youtube using deep neural networks.

 Analyzing convolutional neural networks for speech activity detection in mismatched acoustic conditions

Share this paper:

View more about this paper here: https://typeset.io/papers/recurrent-neural-networks-for-voice-activity-detection-
2zvfxjp8b9

https://typeset.io/
https://www.doi.org/10.1109/ICASSP.2013.6639096
https://typeset.io/papers/recurrent-neural-networks-for-voice-activity-detection-2zvfxjp8b9
https://typeset.io/authors/thad-hughes-1jw6k8do4z
https://typeset.io/authors/keir-banks-mierle-2mck11e0oj
https://typeset.io/institutions/google-356oek4b
https://typeset.io/conferences/international-conference-on-acoustics-speech-and-signal-14bc3mci
https://typeset.io/topics/time-delay-neural-network-1y6lsoju
https://typeset.io/topics/voice-activity-detection-2mvw1wyd
https://typeset.io/topics/recurrent-neural-network-h8eidlb4
https://typeset.io/topics/word-error-rate-3ru296sb
https://typeset.io/topics/mixture-model-23vzt5yw
https://typeset.io/papers/a-statistical-model-based-voice-activity-detection-4lyob06tq7
https://typeset.io/papers/deep-belief-networks-based-voice-activity-detection-18urful45d
https://typeset.io/papers/real-life-voice-activity-detection-with-lstm-recurrent-3espjp8sor
https://typeset.io/papers/speech-activity-detection-on-youtube-using-deep-neural-2t3rzfg2vb
https://typeset.io/papers/analyzing-convolutional-neural-networks-for-speech-activity-4njrmyw4a3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/recurrent-neural-networks-for-voice-activity-detection-2zvfxjp8b9
https://twitter.com/intent/tweet?text=Recurrent%20neural%20networks%20for%20voice%20activity%20detection&url=https://typeset.io/papers/recurrent-neural-networks-for-voice-activity-detection-2zvfxjp8b9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/recurrent-neural-networks-for-voice-activity-detection-2zvfxjp8b9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/recurrent-neural-networks-for-voice-activity-detection-2zvfxjp8b9
https://typeset.io/papers/recurrent-neural-networks-for-voice-activity-detection-2zvfxjp8b9

RECURRENT NEURAL NETWORKS FOR VOICE ACTIVITY DETECTION

Thad Hughes and Keir Mierle∗

Google, Inc.

thadh@google.com, mierle@gmail.com

ABSTRACT

We present a novel recurrent neural network (RNN) model

for voice activity detection. Our multi-layer RNN model, in

which nodes compute quadratic polynomials, outperforms a

much larger baseline system composed of Gaussian mixture

models (GMMs) and a hand-tuned state machine (SM) for

temporal smoothing. All parameters of our RNN model are

optimized together, so that it properly weights its preference

for temporal continuity against the acoustic features in each

frame. Our RNN uses one tenth the parameters and outper-

forms the GMM+SM baseline system by 26% reduction in

false alarms, reducing overall speech recognition computation

time by 17% while reducing word error rate by 1% relative.

Index Terms— Voice activity detection (VAD), endpoint-

ing, recurrent neural networks (RNNs)

1. INTRODUCTION

Speech is a complex audio signal influenced by many fac-

tors, including speaker characteristics and environmental con-

ditions. As a pre-processing step before automatic speech

recognition (ASR), it is useful to determine which portions of

audio contain speech, both to reduce ASR computation and to

guide speech user interfaces. This classification, called voice

activity detection (VAD), is difficult because of the wide vari-

ation of speech and non-speech signals.

Current VAD techniques typically use a classifier to make

speech/non-speech predictions about each audio frame inde-

pendently, together with a temporal smoothing scheme to re-

duce noise in the classifier’s output. One way to build a VAD

system involves two GMMs, one trained on speech frames

and the other on non-speech frames, to predict the per-frame

likelihood of speech, followed by an ergodic hidden Markov

model (HMM) that penalizes transitions between speech and

non-speech states to give temporal continuity to the predic-

tion [1]. Recent work has investigated both different kinds of

features and more powerful classifiers [2].

A problem inherent to many current VAD techniques is

that the models used for frame classification and temporal

smoothing cannot be easily optimized simultaneously. With

HMM-based smoothing, the Markov assumption postulates

∗The second author performed the work while at Google, Inc.

conditional independence of all observed frames given their

discrete hidden state. Further, common HMM training algo-

rithms like Baum-Welch [3] cannot learn a useful state space

from data; rather, they assume the state space is specified a

priori. In ASR, for example, phonetic lexicons and triphone

units [4] often help define the HMM’s state space. HMM

VAD systems typically have a small number of hidden states,

often just one for speech and one for non-speech. Using

more hidden states is possible, but unlike typical ASR training

where the transcription explicitly specifies a state sequence,

there is no straightforward way to decide which VAD HMM

states to use or how those states should relate to the train-

ing data. This imposes two related limitations on the HMM

VAD model: first, processing each frame independently fails

to account for the lack of temporal conditional independence

of speech frames, and second, the small, discrete HMM state

space implies that the model cannot “remember” much about

the past. As in ASR, these limitations can be mitigated by

providing the classifier with several frames to give it more

temporal context, but this increases the number of parameters

and computational load.

RNNs address these limitations because they can be dis-

criminatively optimized for frame classification while simul-

taneously learning a useful, factored, continuous state space

and its non-linear temporal dynamics.

2. RECURRENT NEURAL NETWORK MODEL

RNNs are parameterizable models representing computation

on data sequences. Like feed-forward neural networks (NNs),

which model stateless functions over Rm
→ R

n, an RNN’s

computation is factored into nodes, each of which evaluates

a simple function mapping its input values to a single scalar

output. Unlike NNs, RNN nodes can receive input from nodes

at previous timesteps, which allows them to store and manip-

ulate state as they iteratively process sequences of inputs and

generate sequences of outputs. RNNs are thus closely related

to digital infinite impulse response (IIR) filters.

2.1. Quadratic nodes

Instead of the traditional weighted sum and non-linear activa-

tion of multi-layer perceptrons (MLPs) [5], our RNN nodes

7378978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

Fig. 1. Our architecture is a feed-forward NN with recur-

rence added at various points. Nodes marked with S have

tanh non-linearities; others achieve non-linearity by evaluat-

ing quadratic polynomial functions of their inputs.

compute quadratic functions of their inputs, followed by an

optional non-linearity:

V (x) = f
�

xTWQx+ wT
Lx+ wB

�

(1)

A node computes its output value V (x) from the vector x

of its inputs using Eq. (1); WQ is an upper-triangular sparse

matrix with weights for quadratic terms, wL is a vector of lin-

ear weights similar to those in MLPs, and wB is a scalar bias.

Motivating this approach is the idea that higher-order Taylor

polynomials can reasonably approximate more functions than

affine functions can. This representation can compute prod-

ucts, similar to the Multiplicative RNNs described in [6], and

such nodes can also evaluate the multidimensional Gaussian

density (and other radial basis functions), since N (x;µ,Σ)
can be written exp(−xT

Σ
−1x + 2µT

Σ
−1x − µT

Σ
−1µ +

ln(z)), where z is the Gaussian normalization constant.

2.2. VAD RNN architecture and initialization

Our RNN VAD architecture, shown in Fig. 1, is different from

the MLP-like RNNs others have applied to VAD [7, 8], speech

de-noising [9], and ASR [10] because it uses quadratic nodes

as described in section 2.1 and because the structure aug-

ments multi-layer feed-forward NNs with recurrent connec-

tions. The connectivity is depicted in Fig. 1, where an arrow

pointing towards a node indicates that the node receives as in-

puts the values of the nodes at the arrow’s tail. For example,

if H1[T] denotes a vector of the outputs of the nodes in layer

H1 at timestep T , then for all nodes n in layer H1, the input

vector xn[T] (when evaluating Eq. 1) is shown in Eq. (2).

The arrows in Fig. 1 describe the connectivity of the net-

work but not its parameterization, which is defined by each

node’s weights: WQ, wL, and wB . A dense WQ can rep-

resent a more flexible network, but we choose to use spar-

sity based on our intuition that the product of a node’s output

at the current and previous timesteps would be most useful,

since those values are highly correlated. The sparsity pattern

of WQ for all nodes in layer H1 is also shown in Eq. (2); other

layers follow the same pattern:

xn[T]=

0

@

H0[T]
H0[T−1]
H1[T−1]

1

A, sparsity(WQ)=

I3x3 I3x3 0
0 I3x3 0
0 0 0

!

(2)

Thus each node has quadratic weights in WQ for the

squares of its vertical and diagonal input nodes, and the

products of pairs of the same input nodes from the current

(vertical) and previous (diagonal) timesteps. Each node also

has linear weights wL for all its inputs, a bias wB , and a

trainable parameter for its initial value at timestep T − 1.

Our model is initialized as a feedforward NN, where the

linear weights in wL for vertical inputs are randomly initial-

ized with zero mean and small variance, and horizontal and

diagonal linear weights in wL and all weights in WQ and wB

are initialized to zero. However, the linear weights wL asso-

ciated with the nodes in the tapped delay layer are initialized

with 0s and 1s so that these nodes function as a “shift regis-

ter,” as described in [11]. This allows the final output node to

use 5 timesteps of recent history when computing its value,

similar to the baseline GMM VAD’s state machine smooth-

ing. However, the network is free to adjust the tap weights

(making it no longer a delay line) to improve the final error.

We compute the RNN’s error at each timestep by running

it on training data. For each timestep T , we set the RNN’s

input nodes with the input features, compute each node’s out-

put using Eq. (1), and compute the difference of the RNN’s

output node NOutput[T] with a slightly delayed target output:

Error[T] = NOutput[T]− Target[T −∆] (3)

The fixed delay ∆ allows the RNN to process input frames

up to T + ∆ before outputting its decision about frame T ,

giving it both extra context and extra timesteps to compute.

Unless otherwise noted, we use ∆ = 10.

3. TRAINING PROCEDURE

We train our RNNs using supervised pairs of input and tar-

get output sequences. Unless otherwise noted, the inputs are

13-dimensional PLP features, without deltas or double-deltas.

The target output at each timestep is a single value indicating

whether the frame ∆ timesteps ago is speech or non-speech,

and is generated by forced alignment of the audio with a hu-

man transcription using a monophone acoustic model.

7379

3.1. Ceres Solver

RNN training involves searching for parameter values that

make the RNN’s predicted outputs match the supervised

target outputs for the given input sequences. This is a

non-convex problem, but given a reasonable initialization,

a gradient-based approach often finds a good solution. We

use Ceres Solver [12], an open-source C++ non-linear least-

squares minimizer to perform this optimization. Similar

to [13], Ceres Solver is a Levenberg–Marquardt optimizer

that only requires the Jacobian matrix containing the partial

derivatives of each residual (error term) with respect to each

parameter. Ceres attempts to minimize the sum of the squares

of all errors from Eq. (3) over all utterances in the training

set, plus a scaled L2-norm of the RNN’s parameters.

3.2. Automatic differentiation

In addition to the residuals, Ceres also requires a Jacobian

matrix containing the first partial derivative of each residual

with respect to each parameter. Eq. (2) is recurrent because

node outputs are fed back as inputs, making Eq. (3) incon-

venient and error-prone to differentiate symbolically, so we

use forward automatic differentiation (autodiff) [14] to com-

pute these derivatives. Forward autodiff is beyond the scope

of this paper, but it allows us to re-use, literally in place, the

same C++ code that calculates the residuals in Eq. (3) to also

compute their exact first derivatives, which greatly simpli-

fies experimentation. The computation is equivalent to back-

propagation through time [5] (itself an instance of reverse au-

todiff), but forward autodiff is simpler to implement and more

efficient when the number of parameters is much smaller than

the number of residuals (which scales with the duration of the

training data).

3.3. Two-stage training

We perform two stages of training. In the first stage, we fix all

recurrent parameters and only train the feedforward parame-

ters (those associated with vertical arrows in Fig. 1). In this

stage, the RNN’s only memory is provided by the tapped de-

lay line’s fixed parameters. In the second stage, we optimize

all the parameters together, including the wL weights control-

ling the tapped delay line. Like [10, 11], we found that this

scheme prevents the recurrent parameters from settling into

an irremediably poor local optimum early in the training.

4. EXPERIMENTS

We trained and evaluated several variations on our RNN ar-

chitecture, described in Table 1. The best variation, called

RNNA, is exactly as described in Section 2.2. RNNB is iden-

tical to RNNA, but trained with ∆ = 5, so RNNB outputs

its decision after processing only 5 frames of future context

instead of the default 10. RNNC is like RNNA, except that

Fig. 2. RNNs A-C, with quadratic nodes and multiple

layers, converge faster and better than RNND, with non-

quadratic nodes (yellow). Vertical lines mark the transition

from the first optimization stage (training only feed-forward

non-recurrent parameters) to the second stage (training all pa-

rameters together), and show the large benefit provided by the

recurrent parameters.

it omits the tapped delay line portion of the RNN, turning the

pre-output node into the final output and thus reducing the

number of parameters. RNND uses a completely different,

more traditional MLP-like RNN architecture. The input layer

is expanded to 39 nodes by adding delta and double-delta fea-

tures (since the hidden layer cannot compute them in an obvi-

ous way), and there are 9 hidden nodes in a single layer, each

one computing an affine weighted sum of all current inputs

and all hidden nodes at the previous timestep (WQ = 0 for

Name Params FA% Description

RNNA 354 11.2 See Section 2.2.

RNNB 354 12.5 Same as RNNA, but with ∆ = 5.

RNNC 302 12.2 Same as RNNA, but without tapped

delay line.

RNND 402 29 Traditional non-quadratic RNN;

single hidden layer of 9 recurrent

nodes with tanh non-linearity; no

delay line.

39 PLP+delta+double-delta inputs.

GMM

+SM

4740 15.1 2x30-component diagonal GMMs

with 39 PLP+delta+double-delta

features, plus SM with 15-40

timesteps of memory.

Table 1. RNN architectures, with number of parameters and

false accept rate (lower is better) when false reject is 2%.

7380

Fig. 3. Quadratic, multi-layer RNNs A-C beat the GMM+SM

baseline (red) at our typical operating point of 2% FR (points

closer to the origin are better).

all nodes). Fig. 2 shows the training convergence for each of

these models when trained on 1000 utterances and tested on

another 1000 utterances, where approximately half the frames

are labeled as speech. The multithreaded training was done

using a single 12-core 2.67GHz CPU.

We compare the performance of the RNN systems against

a strong baseline: our GMM+SM system, which uses 13-

dimensional PLP features and their deltas and double-deltas,

combined with a hand-tuned state machine (SM) that per-

forms temporal smoothing by identifying regions where many

frames exceed a threshold, and emitting its decision with a 19

frame delay. The GMM portion of the baseline uses two 30-

component diagonal-covariance GMMs, trained using maxi-

mum likelihood estimation on speech and non-speech frames.

Fig. 3 shows that most of the RNN systems dominate the

GMM+SM baseline at almost all operating points. Since an

ASR system can recover more easily from false accept (FA)

errors than false reject (FR) errors, we target FR rate to around

2%.

Interestingly, RNND, the traditional MLP-like RNN sim-

ilar to [7], performs conspicuously more poorly than the

other RNNs, which have multiple layers and quadratic nodes,

suggesting that these features may help the performance of

RNNs.

Finally, we evaluated the real-life performance of RNNA

by embedding it in the ASR system described in [15] and test-

ing it on 27,000 utterances averaging 4.4 seconds in duration.

The RNN’s lower computational load and lower false accept

rate reduce overall ASR computation time by 17% (relative)

while modestly improving the word error rate (WER) by 1%

(relative).

Fig. 4 reveals how the RNN improves on the GMM+SM

baseline. The GMM speech posterior, shown at the top,

Fig. 4. GMM vs. RNNA activations for an utterance con-

taining the speech “hello world” show that RNNA’s output

at higher levels becomes more stable and accurate than the

GMM’s speech posterior.

contains many spurious peaks that should not be labeled as

speech, whereas the RNN is able to eliminate many of them.

Note that the RNN’s pre-output still shows some of these

errors, but they are removed by the tapped delay line. In this

case the GMM+SM was also able to recover from the GMM’s

errors, but in other cases it cannot.

5. CONCLUSION

We have shown that our RNN architecture can outperform

considerably larger GMM-based systems on VAD tasks, re-

ducing the per-frame false alarm rate by 26% and thus in-

creasing overall recognition speed by 17%, with a modest 1%

relative decrease in the word error rate. Our RNN architec-

ture, with multiple layers and quadratic nodes, also seems to

outperform traditional MLP-like RNNs, which suggests ap-

plying it to other ASR-related tasks such as feature compu-

tation and acoustic modeling. The non-convexity of RNN

optimization also leaves open the possibility that combining

gradient-based optimization with less localized search tech-

niques such as genetic algorithms may find even better solu-

tions.

6. ACKNOWLEDGEMENTS

Thad Hughes would like to thank these people: Christopher

Manning and Daniel Jurafsky for introducing me to ASR and

factored graphical models, Stephen Boyd for teaching me dy-

namical systems and convex optimization, my colleagues at

Google, especially Sameer Agarwal, and my wife Carolina

Tropini for inspiring me every day!

7381

7. REFERENCES

[1] J. Sohn, N.S. Kim, and W. Sung, “A Statistical Model-

based Voice Activity Detection,” Signal Processing Let-

ters, IEEE, vol. 6, no. 1, pp. 1–3, 1999.

[2] Ananya Misra, “Speech/Nonspeech Segmentation in

Web Videos,” in Proceedings of InterSpeech 2012,

2012.

[3] L.E. Baum, T. Petrie, G. Soules, and N. Weiss, “A max-

imization technique occurring in the statistical analysis

of probabilistic functions of Markov chains,” The annals

of mathematical statistics, pp. 164–171, 1970.

[4] Steve J. Young, J.J. Odell, and P.C. Woodland, “Tree-

based state tying for high accuracy acoustic modelling,”

in Proceedings of the workshop on Human Language

Technology. Association for Computational Linguistics,

1994, pp. 307–312.

[5] D.E. Rumelhart, G.E. Hinton, and R.J. Williams,

“Learning representations by back-propagating errors,”

Cognitive modeling, vol. 1, pp. 213, 2002.

[6] Ilya Sutskever, James Martens, and Geoffrey Hinton,

“Generating Text with Recurrent Neural Networks,” in

28th International Conference on Machine Learning

(ICML), 2011.

[7] R. Gemello, F. Mana, and R. De Mori, “Non-linear es-

timation of voice activity to improve automatic recog-

nition of noisy speech,” in Proceedings of Interspeech

2005, 2005.

[8] G.D. Wu and C.T. Lin, “A recurrent neural fuzzy net-

work for word boundary detection in variable noise-

level environments,” Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, vol. 31, no.

1, pp. 84–97, 2001.

[9] A. Maas, Q. Le, T. O’Neil, O. Vinyals, P. Nguyen, and

A. Ng, “Recurrent Neural Networks for Noise Re-

duction in Robust ASR,” in Proceedings of INTER-

SPEECH, 2012.

[10] O. Vinyals, S.V. Ravuri, and D. Povey, “Revisiting Re-

current Neural Networks for Robust ASR,” in Acoustics,

Speech and Signal Processing (ICASSP), 2012 IEEE In-

ternational Conference on. IEEE, 2012, pp. 4085–4088.

[11] Oliver Obst and Martin Riedmiller, “Taming the Reser-

voir: Feedforward Training for Recurrent Neural Net-

works,” in Accepted at IJCNN 2012, 2012.

[12] Sameer Agarwal and Keir Mierle, Ceres Solver: Tuto-

rial & Reference, Google Inc.

[13] James Martens and Ilya Sutskever, “Learning Recur-

rent Neural Networks with Hessian-Free Optimization,”

in 28th International Conference on Machine Learning

(ICML), 2011.

[14] L.B. Rall, “Automatic differentiation: Techniques and

applications,” 1981.

[15] Navdeep Jaitly, Patrick Nguyen, Andrew Senior, and

Vincent Vanhoucke, “Application Of Pretrained Deep

Neural Networks To Large Vocabulary Speech Recog-

nition,” in Proceedings of Interspeech 2012, 2012.

7382

