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Somatic mutations in the H3F3A and HIST1H3B genes 

encoding the histone H3 variants H3.3 and H3.1, respec-

tively, are important genetic drivers of diffuse gliomas in 

both children and adults. The recurrent p.K27M mutation in 

either H3F3A or HIST1H3B genes is found in the majority of 

diffuse gliomas centered in midline structures of the central 

nervous system including the thalamus, brainstem, and spi-

nal cord where it is associated with poor prognosis irrespec-

tive of histologic grade [9–11]. “Diffuse midline glioma, H3 

K27M-mutant” was thus classified as a grade IV entity in the 

revised 2016 WHO Classification of Tumors of the Central 

Nervous System. In contrast, p.G34R or p.G34V mutation in 

the H3F3A gene is found in a subset of glioblastomas located 

in the cerebral hemispheres of adolescents and young adults 

and is associated with a more favorable prognosis [6, 8–10]. 

While the genetic landscape of supratentorial and brainstem 

gliomas has now been extensively characterized [9, 11], 

the genetic drivers of spinal cord diffuse gliomas are less 

understood [1]. Here we report genomic characterization 

of 13 spinal cord diffuse gliomas that identified recurrent 
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non-canonical histone H3 mutations including H3F3A 

p.G34W and H3F3B p.K27I variants.

The thirteen patients (10 male, 3 female) ranged in age 

from 4 to 71 years at time of diagnosis (Supplementary 

Table 1 [Online Resource 1]). All tumors were expansile, 

intramedullary masses centered in the thoracic (8), cervi-

cal (4), and lumbar (1) spinal cord. All patients underwent 

biopsies or subtotal resections. Microscopic evaluation dem-

onstrated diffuse astrocytic gliomas with histologic features 

of diffuse astrocytoma (4), anaplastic astrocytoma (4), or 

glioblastoma (5). Histopathologic features are summarized 

in Supplementary Table 2 [Online Resource 1]. Adjuvant 

therapy and clinical outcomes are summarized in Supple-

mentary Table 1 [Online Resource 1].

Targeted next-generation sequencing was performed on 

the 13 tumors using the UCSF500 Cancer Panel as pre-

viously described [Ref. [7] and Supplementary Table 3 

(Online Resource 1)]. In total, 11 of the 13 cases harbored 

mutations in one of the histone H3 genes. Nine tumors har-

bored the recurrent p.K27M mutation in the H3F3A gene 

that defines the majority of “diffuse midline glioma, H3 

K27M-mutant” (Fig. 1a and Supplementary Table 4 [Online 

Resource 1]). Additionally, two tumors harbored p.G34W 

mutation in the H3F3A gene, a variant that has not been 

previously described in CNS tumors but is the defining 

genetic alteration in giant cell tumor of bone [2, 3, 5]. One of 

these p.G34W mutations was present in a histone H3 p.K27 

wild-type tumor, while the other was present in cis (on the 

same allele) as the co-occurring H3F3A p.K27M mutation 

(Fig. 1b and Supplementary Fig. 1 [Online Resource 2]). 

One H3F3A wild-type tumor instead harbored a p.K27I 

mutation in the H3F3B gene, which encodes the histone H3 

variant H3.3 that is identical in amino acid sequence to the 

protein product encoded by the H3F3A gene. To the best 

of our knowledge, somatic mutations in the H3F3B gene 

have not been previously reported in CNS tumors. Notably, 

p.K36M mutation in the H3F3B gene is found in the vast 

majority of chondroblastomas [3, 5]. Additionally, this is the 

first example of a diffuse midline glioma harboring p.K27I 

mutation in a histone H3 gene instead of the more common 

p.K27M. The known functional consequence of the p.K27M 

mutation in the histone H3 genes is to block the methyla-

tion that occurs at this residue on the histone H3 tail, thus 

preventing this critical post-translational modification essen-

tial for promoting the transcriptional program that speci-

fies glial differentiation [4]. As isoleucine is incapable of 

being methylated, this non-canonical mutation would also be 

expected to block methylation at this residue. To investigate 

the effect of this H3F3B p.K27I mutation, we performed 

immunohistochemical staining for histone H3 lysine 27 tri-

methylation (H3K27me3) and found loss in the majority of 

tumor nuclei (Fig. 1b).

Accompanying alterations in the 11 histone H3-mutant 

tumors included inactivating TP53 mutations (5) or trun-

cating mutations in exon 6 of PPM1D (5) that were mutu-

ally exclusive (Fig. 1a). Two tumors harbored focal PDG-

FRA amplification, while two others had hotspot missense 

mutations in the kinase domain of FGFR1 (Supplementary 

Table 5 [Online Resource 1]). Four tumors harbored inac-

tivating mutations in NF1, another had focal RRAS2 ampli-

fication, and another had an activating PTPN11 mutation. 

Interestingly, two tumors harbored truncating frameshift 

mutations in the SOX10 gene, which encodes a transcrip-

tion factor important for specifying glial differentiation. 

While SOX10 has not been previously described as a 

recurrently mutated gene in gliomas, the presence of mul-

tiple tumors in this cohort harboring truncating mutations 

in this gene is intriguing and warrants further investigation 

as to the possible role of SOX10 mutations in gliomagen-

esis. While ATRX mutations or deletions are frequent in 

thalamic diffuse gliomas with H3 K27M mutation and in 

cerebral glioblastomas with H3 G34R/V mutation [8, 9], 

only 1 of the 11 histone H3-mutant spinal cord diffuse 

gliomas in this cohort harbored ATRX mutation and all 

were TERT promoter wild type.

Two of the spinal cord diffuse gliomas were histone H3 

wild-type including the H3F3A, HIST1H3B, HIST1H3C, 

and H3F3B genes. One of these tumors had an activating 

FGFR1 kinase domain mutation along with focal MDM2 

and CDK4 amplifications, while the other harbored multi-

ple pathogenic alterations including CDKN2A/B and RB1 

homozygous deletions, focal high-level IGF1R amplifica-

tion, and TP53, NF1, TERT promoter, and PTEN muta-

tions. Notably, none of the 13 spinal cord diffuse gliomas 

in this cohort were found to harbor pathogenic variants or 

rearrangements involving the IDH1, IDH2, BRAF, RAF1, 

CIC, FUBP1, SETD2, MYB, or MYBL1 genes.

In summary, we report a series of 13 spinal cord diffuse 

gliomas that harbor recurrent non-canonical histone H3 

mutations in a subset of cases, including H3F3A p.G34W 

and H3F3B p.K27I. The effect of these non-canonical 

histone H3 mutations on clinical outcomes has yet to be 

determined. Based on these findings, lack of immunoreac-

tivity for H3 K27M-mutant protein is not sufficient to clas-

sify a diffuse glioma of the spinal cord as histone H3 wild 

type, and additional molecular evaluation for alternative 

histone H3 mutations should be considered in such cases.
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Fig. 1  Recurrent non-canonical 

histone H3 mutations in spinal 

cord diffuse gliomas. a Onco-

print summary table showing 

the clinicopathologic features 

and likely pathogenic genetic 

alterations identified in the 13 

patients. b Radiographic and 

histologic features of the three 

spinal cord diffuse gliomas 

with non-canonical histone H3 

mutations. Case SC-9 harbor-

ing dual H3F3A p.K27M and 

p.G34W mutations demon-

strated immunopositivity with 

antibodies against both histone 

H3 K27M-mutant protein and 

histone H3.3 G34W-mutant pro-

tein in virtually all tumor cells. 

Case SC-10 harboring H3F3A 

p.G34W mutation demonstrated 

immunopositivity for histone 

H3.3 G34W-mutant protein but 

not histone H3 K27M-mutant 

protein. Case SC-11 harboring 

H3F3B p.K27I mutation was 

immunonegative for histone 

H3 K27M-mutant protein but 

demonstrated loss of histone 

H3 lysine 27 trimethylation 

(H3K27me3) in the vast major-

ity of tumor nuclei
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