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Abstract 
 
Global Positioning System (GPS) is a worldwide satellite system that provides navigation, positioning, and 
timing for both military and civilian applications. GPS based time reference provides inexpensive but 
highly-accurate timing and synchronization capability and meets requirements in power system fault location, 
monitoring, and control. In the present era of restructuring and modernization of electric power utilities, the 
applications of GIS/GPS technology in power industry are growing and covering several technical and man-
agement activities. Because of GPS receiver’s error sources are time variant, it is necessary to remove the 
GPS measurement noise. This paper presents novel recurrent neural networks called the Recurrent Pi-Sigma 
Neural Network (RPSNN) and Recurrent Sigma-Pi Neural Network (RSPNN). The proposed NNs have been 
used as predictor in GPS receivers timing errors. The NNs were trained using the dynamic Back Propagation 
(BP) algorithm. The actual data collection was used to test the performance of the proposed NNs. The ex-
perimental results obtained from a Coarse Acquisition (C/A)-code single-frequency GPS receiver strongly 
support the potential of the method using RPSNN to give high accurate timing. The GPS timing RMS error 
reduces from 200 to less than 40 nanoseconds. 
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1.  Introduction 

Most descriptions of Global Positioning System (GPS) 
focus on its use as a system to provide precise latitude, 
longitude and altitude information. Often it is used to 
determine speed as well. GPS is depicted as a dynamic 
positioning system which provides the raw information 
needed to navigate, that is, to find where we are and to 
figure how to get from there to some desired place (or, 
perhaps, to avoid some undesired place). This is a fun-
damental use for GPS but it is far from the only use of 
the system [1]. 

Continuous access to precise time and frequency, at 
low cost and anywhere it is needed, is a revolutionary 
development. It allows, for example, improved synchro- 

 

nization and timing of both wired and wireless commu-
nications systems. Users see higher quality (fewer 
dropped calls), increased capacity (no delays getting on), 
improved data transmission (low error rates) and new 
services (lifetime phone number). Or, consider timing 
electrical transients arriving at substations in a geo-
graphically dispersed power delivery system. A fault (a 
downed line, for instance) can be precisely located and 
crews can be transported to the precise geographic spot 
without delay. Similar statements can be made for 
wide-area computer networks. GPS allows precise trans-
fer of time between the world’s timing centers ensuring 
we all tick on the same clock. In general, wide availabil-
ity of precise time and frequency at low cost will im-
prove many scientific, manufacturing, business, R&D 
and just plain fun activities [2,3]. * Tehran 16846-13114 

Tel.: 0098-21-77240492,3, Fax.: 0098-21-77240490. GPS provides services for two levels of users. These 
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are referred to as the Standard Positioning Service (SPS) 
and the Precise Positioning Service (PPS). The latter is 
reserved, almost entirely, for the exclusive use of the 
DoD. The U.S. DoD states very clearly in the Federal 
Radio navigation Plan (FRP) what SPS and PPS provide: 
(1) SPS is a positioning and timing service which will be 
available to all GPS users on a continuous, worldwide 
basis with no direct charge. SPS will be provided on the 
GPS L1 frequency which contains a Coarse Acquisition 
(C/A) code and a navigation data message. SPS is 
planned to provide, on a daily basis, the capability to 
obtain timing accuracy within 340nsec (95 percent 
probability). The GPS L1 frequency also contains a Pre-
cision (P) code that is reserved for military use and is not 
a part of the SPS. Although available during GPS con-
stellation build-up, the P code will be altered without 
notice and will not be available to users that do not have 
valid cryptographic keys. (2) PPS is a highly accurate 
military positioning, velocity, and timing service which 
will be available on a continuous, worldwide basis to 
users authorized by the DoD. PPS will be the data trans-
mitted on GPS L1 and L2 frequencies. PPS was designed 
primarily for U.S. military use and will be denied to un-
authorized users by use of cryptography. PPS will be 
made available to U.S. Federal and Allied Government 
(civilian and military) users through special agreements 
with the DoD. Limited, non-Federal Government, civil-
ian use of PPS, both domestic and foreign, will be con-
sidered upon request and authorized on a case-by-case 
basis. PPS has timing accuracy with 200nsec [4,5]. 

For effective use of GPS timing information in power 
systems, it is essential to model and predict these errors. 
The better the prediction, the smaller the error values 
become. Hence, the efficiency of the predictive system 
depends highly on the predictor. Linear predictors have 
been widely used because of their simple implementation. 
In this case, the predicted value is the linear combination 
of the previous data elements. Nonlinear predictors pro-
vide better results than the linear predictor; however their 
use is limited due to the mathematical complexity of 
such predictor structures. NNs provide an alternative to 
this problem. The nonlinear nature and the simplicity of 
the learning algorithm of the NNs attracted many re-
searchers to use NNs as predictors for GPS receivers 
timing errors [6]. This paper is organized as follows. 
Section 2 presents GPS applications in power systems. 
The proposed prediction methods using Recurrent 
Pi-Sigma Neural Network (RPSNN) and Recurrent 
Sigma-Pi Neural Network (RSPNN) are described in 
Section 3. In Section 4, the experimental tests results are 
reported with collected real data. Conclusions are pre-
sented in Section 5. 

2.  Precise Timing Applications in Power 
Systems 

Precise timing in power systems is one of the key tech-

nologies that will enable the development of new control 
systems and the monitoring required to maintain them. 
Some of these areas of potential development are de-
scribed in the following paragraphs [7-10]. 

2.1.  GPS Traveling Wave Fault Locator  
Systems 

An important monitoring device is a fault locator. A 
short circuit or fault usually can be cleared by momen-
tarily disconnecting the line. Occasionally equipment is 
damaged and repair is required. Automatic fault location 
is much faster and cheaper than patrolling the entire line. 
When a line fault occurs, such as and insulator flashover 
or fallen conductor, the abrupt change in voltage at the 
point of the fault generates a high frequency electro-
magnetic impulse called a traveling wave which propa-
gates along the line in both directions away from the 
fault point at velocities close to that of light (The veloc-
ity is determined by the distributed parameters of the line 
and it varies in the range 295-296m/µs). The fault loca-
tion is determined by accurately time-tagging the arrival 
of the traveling wave at each end of the line, and com-
paring the related time difference  to the total 
propagation time of the line Tp. The equation for calcu-
lating the distance L1 between the fault and the nearest 
terminal is as follows [10]: 

T

 1 0.5( )p
p

L
L T T

T
                  (1) 

where L is total length of the line. Precise detection of 
the arrival time of the traveling wave is critical to the 
accuracy of the fault locator. A specially developed Fault 
Transient Interface Unit (FTIU) is used for this purpose. 
This device couples to the transmission lines by tapping 
off an inductive drain coil that is connected in series to 
the ground lead of a capacitive voltage transformer. The 
FTIU discriminates for a valid traveling wave by meas-
uring the rise time and amplitude of the incoming signal. 
A signal whose rise time falls within two predetermined 
values (0.7-8.3µs, which corresponds to frequencies in 
the range 30-350KHz) and is of sufficient amplitude is 
considered to be a valid traveling wave and will cause 
the FTIU to produce a trigger pulse that is coincident 
with the leading edge of the detected traveling wave. The 
trigger pulse is fed to a GPS time code receiver which 
then timestamps the arrival of the traveling wave. The 
design goal of the fault location system is an accuracy of 
±300 meters (one tower span) which translates to a 
time-tagging accuracy of better than 1µs (assuming that 
the velocity of the traveling wave is about 300m/µs). 
GPS receivers easily fulfill this requirement by providing 
a timestamp to within ±0.3µs of Universal Coordinate 
Time (UTC). 
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The marriage of a stable atomic clock and GPS satel-
lite constellation makes possible an instrument with great 
accuracy and stability. It is possible to discipline a local 
clock with clocks of greater accuracy resident in the GPS 
satellite resulting in both short term and long accuracy 
improvements. The timing generator is a very stable and 
accurate instrument that has been designed to produce an 
accurate time standard with an absolute time accuracy of 
±200nsec [11]. It has the capability of maintaining this 
accuracy for 24 hours after the total loss of the GPS sig-
nal. Each GPS satellite contains four stable atomic clocks 
that are traceable to the National Institute of Standards 
and Technology (NIST). There are two cesium beam 
clocks and two rubidium clocks aboard each satellite. It 
is these atomic clocks which give the GPS satellite the 
accuracy to be used as a continual calibration source for 
the timing generator rubidium clock. 

2.2.  Sources of Synchronization 

Synchronization signal could be distributed over any of 
the traditional communication media currently in use in 
power systems. Most communication systems, such as 
leased lines, microwave, or AM radio broadcasts, place a 
limit on the achievable accuracy of synchronization, 
which is too coarse to be of practical use. Fiberoptic 
links, where available, could be used to provide high 
precision synchronization signals, if a dedicated fiber is 
available for this purpose. If a multiplexed fiber channel 
is used, synchronization errors of the order of 100 mi-
croseconds are possible, and are not acceptable for power 
system measurements. GOES satellite systems have also 
been used for synchronization purposes, but their per-
formance is not sufficiently accurate. 

The technique of choice at present is the Navstar GPS 
satellite transmissions. This systems is designed primar-
ily for navigational purposes, but it furnishes a com-
mon-access timing pulse, which is accurate to within 1 
microsecond at any location on earth. The system uses 
transmissions from a constellation of satellites in nonsta-
tionary orbits at about 10,000 miles above the earth’s 
surface. For accurate acquisition of the timing pulse, 
only one of the satellites need be visible to the antenna. 
The antenna is small (about the size of a water pitcher), 
and can be easily mounted on roof of a substation control 
house. The experience with the availability and depend-
ability of the GPS satellite transmission has been excep-
tionally good. 

2.3.  Phasor Measuring Units 

Phasor Measuring Units (PMUs) using synchronization 
signals from the GPS satellite system have evolved into 
mature tools and are now being manufactured commer-
cially. The GPS receiver provides the 1 Pulse-Per-Second 
(PPS) signal, and a time tag, which consist of the year, 
day, hour, minute, and second. The time could be the 

local time, or the Universal Time Coordinated (UTC). 
The 1-PPS signal is usually divided by a phase-locked 
oscillator into the required number of pulses per second 
for sampling of the analog signals. In most systems being 
used at present, this is 12 times per cycle of the funda-
mental frequency. The analog signals are derived from 
the voltage and current transformer secondaries, with 
appropriate anti-aliasing and surge filtering. 

The microprocessor determines the positive sequence 
phasors according to the recursive algorithm described 
previously, and the timing message from the GPS, along 
with the sample number at the beginning of a window, is 
assigned to the phasor as its identifying tag. The com-
puted string of phasors, one for each of the positive se-
quence measurements, is assembled in a message stream 
to be communicated to a remote site. The messages are 
transmitted over a dedicated communication line through 
the modems. A 4800-baud communication line can sup-
port the transmission of the phasor stream at the rate of 
about every 2-5 cycles of the fundamental frequency, 
depending upon the number of positive sequence phasors 
being transmitted. 

2.4.  State Estimation 

Modern electric utility centers use state estimators to 
monitor the state of the power system. The state estima-
tor uses various measurements (such as complex powers 
and voltage and current magnitudes) received from dif-
ferent substations, and, through an iterative nonlinear 
estimation procedure, calculates the power system state. 
The sate (vector) is a collection of all the positive se-
quence voltage phasors of network, and, from the time 
the first measurement is taken to the time when the state 
estimate is available, several seconds or minutes may 
have elapsed. Because of the time skew in the data ac-
quisition process, as well as the time it takes to converge 
to a state estimate, the available state vector is at best an 
averaged quasi-steady-state description of the power 
system. Consequently, the state estimators available in 
present-day control centers are restricted to steady-state 
applications only. 

Now, consider the positive sequence voltages meas-
ured by the synchronized phasor measurement units. If 
voltages at all system substations are measured, one 
would have a true simultaneous measurement of the 
power system state. No estimation of the state vector is 
necessary. From a practical point of view, it is sensible to 
use the positive sequence currents also, which provide 
data redundancy. This leads to a linear estimator of the 
power system state, which uses both current and voltage 
measurements. The estimate results from the multiplica-
tion, of a constant matrix by the measurement vector, and 
is extremely fast. 

In addition to a much simplified static state estimator, 
synchronized phasor measurements also provide the first 
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real possibility of providing a dynamic state estimator. 
By maintaining a continuous stream of phasor data from 
the substations to the control center, a state vector that 
can follow the system dynamics can be constructed. With 
normal dedicated communication circuits operating at 
4800 or 9600 baud, a continuous data stream of one 
phasor measurement every 2-5 cycles (33.3-83.33msec) 
can be sustained. Considering that the usual power sys-
tem dynamic phenomena fall in the range of 0-2Hz, it is 
possible to observe in real-time the power system dy-
namic phenomena with high fidelity at the center. 

Another application of directly measured dynamic 
phenomena is to validate power system models used in 
transient stability studies. For the first time in history, 
synchronized phasor measurements have made possible 
the direct observation of system oscillations following 
system disturbances. By trying to simulate these events, 
one can learn a great deal about the models of major 
system components, and correct them as needed until the 
simulations and observed phenomena match well. 

2.5.  Improved Control 

Power system control elements, such as generation exci-
tation systems, HVDC terminals, variable series capaci-
tors, SVCs, etc., use local feedback to achieve the control 
objective. However, often the control objective may be 
defined in terms of a remote occurrence. As an example, 
consider the task of damping power swings between two 
areas by controlling (modulating) the flow on a dc line. 
Such a controller must have a built-in mathematical de-
scription (model), which must relate the dc power to the 
angle between the two regions. To the extent that the 
assumed model is not valid under the prevailing system 
conditions, the controller does not do the job for which it 
was intended. 

With synchronized phasor measurements being 
brought to the controller location, it becomes possible to 
provide direct feed-back from the angular difference 
between the two systems. Studies of this nature have 
shown that improved control performance is achieved 
when a model-based controller is replaced by one based 
upon feedback provided by the phasor measurement sys-
tem. 

2.6.  Quasi-Traveling Wave Schemes 

Quasi-traveling wave schemes compare only the relative 
phase of the charge in impedance at the inception of fault 
at the local end with a signal representing the relative 
change at the remote end. When a fault occurs, the in-
stantaneous voltage will usually fall and the instantane-
ous current will rise; either quantity may be positive or 
negative at that time. The relative change between the 
two represents the change in impedance and the direction 
of the fault. The relay is triggered by a rate of change in 

the voltage and current and sends a directional signal. 
Trip decision times are short but must allow for trans-
mission time of the carrier system, relative end-to-end 
phasing of the voltage/current is not normally critical. 

3.  GPS Receivers Timing Errors Modeling 
Using Neural Network  

The NN concept is used in forecasting, by considering 
historical data to be the input to a black box, which con-
tains hidden layers of neurons. These neurons compare 
and structure the inputs and known outputs by nonlinear 
weightings, which are determined by a continuous learn-
ing process (Back-Propagation (BP)). The learning proc-
ess continues until forecast outputs are reasonably close 
to known actual outputs. The structure of the black box is 
then used for forecasting actual future outputs. For time 
series forecasting the inputs are the past observations of 
the data series and the output is the future value. The 
GPS receiver’s time errors ( )x t

t

 is difference between 

the two sequence time at time , i.e., ( ) ( )x t UTOD t  

- ( 1)UTOD t   [12]. The NNs estimate ( )x t  at future 

time 1t  .  

3.1.  Modeling Using Recurrent Pi-Sigma Neural 
Network  

Similarly to feed-forward PSNN, the RPSNN consists of 
three layers, the input layer, the summing units layer and 
the output layer. In the output layer, the NN calculates 
the product of the weighted sum of the inputs and passes 
the result to a nonlinear transfer function. Then the out-
put of the network is fed back to the inputs. The NN has 
a regular structure and requires a smaller number of 
weights than conventional single-layers, High-Order 
Neural Networks (HONNs). The weights from the sum-
ming units to the product unit are fixed at unity, which 
implies that the summing units layer is not hidden. The 
adoption of the smaller number of weights results in 
faster training. The order of the NN corresponds to the 
number of   units connected to the  unit. Figure 1 
shows the architecture of the proposed RPSNN. 



Let the number of external inputs to the NN to be 
2M   and the number of outputs to be 1. Let ( 1)y n   

be the output of the network at time  and 1n  ( )jx n  

be the j th  input to the NN at time n. The overall 

inputs to the NN are the concatenation of ( )x n  and 

 and is referred to as : ( )y n ( )z n

( ) ; 1

( ) 1 ; 1

( ) ; 2

j

j

x n j

z n j M

y n j M

 


M

  
  

        (2) 
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Figure 1. RPSNN architecture with 2, ,1M K  structure. 

 
The bias is incorporated into the structure of the NN 

by adding an extra input line of value 1. The dynamic 
equations of a  order network are as follows: k th

where ( 1)y n   is the NN output. The transfer function 

of the output is the logistic sigmoid which is defined as 
follows: 

1
( )

1 x
f x

e



                  (6) 2

1
( 1) ( ) ( ) (i ij j

j M

j
h n w n z n n

 


   )i      (3) 

The RPSNN is trained using dynamic BP. This is a 
gradient descent learning algorithm with the assumption 
that the initial state of the NN is independent of the ini-
tial weights. Let ( 1)d n   represent the desired response 

at time n. The error of the NN at time  is defined 
as [13]: 

1n 

where hi(n + 1) represents the net sum of the i th  
sigma unit and  is the interconnection weight be-

tween the  hidden neuron and the  input 

node. The size of the weights matrix is . 

ijw

hi t j th
K M ( 2 )

( )i n  is an adjustable threshold of the  summing 

unit. 

i th ( 1) ( 1) ( 1e n d n y n )              (7) 

The cost function of the NN is the squared total error 
where: 

1
( 1) ( 1i

i K

i
v n h n




   )

]

           (4) 
2

1
( 1) [ ( 1)]

2
J n e n               (8) 

where  is activation function for the output neuron. ( )v n The aim of the dynamic BP learning algorithm is to 
minimize the total error by a gradient descent procedure. 
Therefore, the change for any specified weight  is 

determined as follows: 
ijw

1
( 1) [ ( 1)] [ ( 1)i

i K

i
y n f v n f h n




         (5) 
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( 1)
( 1) (ij ij

ij

J n
w n w n

w
  

     


)      (9) 

where   is a positive real number representing the 

learning rate and   is the momentum term. 

( 1) ( 1) ( 1)
( 1) ( 1)

ij ij ij

J n e n y n
e n e n

w w

     
    

  w
  (10) 

In this case, 
( 1)

ij

y n

w

 


 is found by using the chain rule: 

( 1)( 1) ( 1)
.

( 1)
i

ij i ij

h ny n y n

w h n w

    


   
      (11) 

By differentiating the dynamic equations of the NN, 
( 1)

( 1)i

y n

h n

 
 

 can be obtained as follows: 

1 1 ; #

( 1) '[ ( 1)].[ (
( 1) l l

i

l K l K

l l l i

y n
f h n h n

h n

 

 

 
1)]   

 
 (12) 

and the value 
( 1)i

ij

h n

w

 


 is calculated as follows: 

( )
2

( 1)
( )i

j
ijij

y n
iM w

h n
z n w

w


 
 

 


        (13) 

Let 
( 1)

( 1)ij
ij

y n
P n

w

 
 


, then weights updating rule is: 

( 1) ( 1) ( 1) (ij ij ijw n e n P n w n)          (14) 

With: 

( )
2

1 1 ; #

'( 1) [ ( 1)].[ ( 1)].[ ( )ij l l j

l K l K
P n

iM ij
l l l i

P n f h n h n z n w
 


 

      ]                (15) 

 

where ' (.)f  is the derivative of the nonlinear transfer 

function and is determined as follows: 

' ( ) ( )[1 ( )]f x f x f x              (16) 

The change for any specified weight i  is determined 

using BP learning algorithm as follows: 

( 1)
( 1) (i i

i

J n
n n  


 

     


)       (17) 

where 
( 1)

i

J n


 


 is obtained as:   

( 1) ( 1)
( 1)

( 1)
( 1)

i

i

J n e n
e n

y n
e n

 



   
 

 
 

  


( 1)

i

y n


 


 is found by using the chain rule: 

( 1)( 1) ( 1)
.

( 1)
i

i i i

h ny n y n

h n 
    


   

        (19) 

The value 
( 1)i

i

h n


 


 is calculated as follows: 

( )
2

( 1)
1i

i

y n
iM

i

h n
w




 

 
 


         (20) 

Let 
( 1)

( 1)
i

i

y n
Q n


 

 


, then weights updating rule 

is: 

( 1) ( 1) ( 1) ( )i in e n Q n i n            (21) i          (18) 

With: 

( )
2

'( 1) [ ( 1)].[ ( 1)].[1
1 1 ; #

i l l Q niiM

l K l K
Q n f h n h n w

l l l i


 
     

 
]               (22) 

 
3.2.  Modeling Using Recurrent Sigma-Pi Neural 

Network  

The architecture of a RSPNN with 2M   inputs and 
one output is shown in Figure 2. In this network, hidden 

layer neurons output is the product of the input terms and 
the network output is the sum of these products. It also 
has a single layer of adaptive weights in the second layer. 

The RSPNN learning procedure using the BP method 
can be summarized as follows: 



M. R. MOSAVI         101 

Copyright © 2009 SciRes.                                                    Wireless Sensor Network, 2009, 2, 61-121 

 

 

Figure 2. RSPNN architecture with 2, ,1M K  structure. 

 
Step1: Weight Vector Initialization  
Set all of the weights and thresholds of the network to 

small random numbers that are uniformly distributed. 
 
Step2: Forward Calculations 
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Step3: Learning Process  
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Step4: Iteration 
Increment time n by one unit and go back to Step2. 

4.  Experimental Results 

To test the proposed NNs for GPS receivers timing errors 
prediction a system was built. The test setup was imple-
mented and installed on the building of Computer Con-
trol and Fuzzy Logic Research Lab in the Iran University 
of and Technology. The observation data received by a 
low cost and single frequency GPS receiver manufac-
tured by Rockwell Company. The collected data were 
processed with developed programs by the paper author. 
Figure 3 shows the data collection system adopted in this 
research. 

In preparing the training data, all input and output 
variables are normalized in the range [0,1] to reduce the 
training time [14]. Observation at time t is applied to 
NNs inputs and the networks must predict the value of 
instant 1t  . The choice of the order for the NNs is very 
important in on-line prediction. It is more difficult to 
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formulate the order of a nonlinear model. In this paper, 
the order selection is based on the experimental results. 
For optimizing NNs structure, various combinations of 
input variables were tried. The proposed methods were 
implemented and developed by author of this paper using 
Microsoft Visual Basic6. These models were validated 
using a set of data points. 

The RPSNN and RSPNN benefit from both the ad-
vantages of feed-forward HONNs and RNNs. The in-
corporation of higher order terms allows the networks to 
make use of nonlinear interactions between the inputs, 
thus functionally expanding the input space into a 
higher-dimensional space, where linear separability, or 
reduction in the dimension of the nonlinearity is possible. 
Furthermore, the adaptation of the small number of 
weights allows the NNs to be trained faster than HONNs 
which suffer from the combinational explosion of the 
high-order terms and demonstrate slow learning, when 
the order of the NNs becomes excessively high. In con-
trast to fully RNNs that are trained using the RTRL algo-
rithm, the small structure of the RPSNN and RSPNN 
accelerates the learning of the NNs using the dynamic 
BP. 

To evaluate the performance of the presented training 
algorithms, they were tested by collected data sets. Six 
statistical measures (maximum, minimum, RMS, average, 
variance, standard deviation), are used to evaluate pre-
diction results. Table 1 presents statistical measures on 
500 test data by using the proposed NNs. In order to 
evaluate the prediction accuracy, we used RMS as a 
measure of closeness between predicted and observed 
values [15]. From Table 1 can be seen that time accuracy 
has improved by factor of about 5. 

Table 2 shows the comparison of test results of differ-
ent models for GPS timing errors prediction. The simula-
tion results demonstrated that RPSNN and RSPNN are 
efficient than PSNN,RNN and SPNN,RNN, respectively. 

5.  Conclusions 

Accurate timing using GPS can revolutionize the field of 
monitoring, protection, and control of power systems. It 
is with great excitement that we look for other applica-
tions, not yet thought of, that can advance the state of the 
art in electric power engineering. The past few years 
have witnessed increasing interest in synchronized accu-
rate timing and how they may be used for various power 
system applications. The development of new types of 
computer-based hardware and the completion of the GPS 
of satellites provide the components needed for true 
synchronized monitoring systems. GPS time synchroni-
zation enables the accurate time tag of each recorded 
data sample to better than 1 microsecond accuracy. In 
this paper, a RPSNN and RSPNN were implemented and 
used as predictor in GPS system. The proposed NNs 
were trained using the dynamic BP, which is a gradient 
descent learning algorithm. The actual data collection 
was used to train the networks. The trained weights of 
the NNs were fixed and used to predict GPS receivers 
timing errors. Extensive tests have shown that third order 
NNs provide the most promising results. The tests results 
using the RPSNN predictor have shown an improvement 
in the GPS timing accuracy over the linear predictor, 
multilayer perceptorns, HONNs, RNNs. The GPS timing 
RMS error reduced from 200 to less than 40 nanosec-
onds. 

 

 
Figure 3. Data collection and processing system. 
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Table 1. Performance evaluation of the proposed NNs. 

Parameters 

Error Values [nsec] 
(using RPSNN with 
(3,3,1) Structure) 

Error Values [nsec] 
(using RSPNN with (3,4,1) 

Structure) 

Max 90.364 101.643 

Min -41.784 -20.944 

Average -0.224 0.836 

Variance 3.137 3.870 

Standard Deviation 1.771 1.967 

RMS 39.562 43.955 
 

Table 2. Comparison of test results of different models for GPS timing errors prediction. 

Model Name RMS 

RNN 57.2 

PSNN 45.8 

RPSNN 39.6 

SPNN 50.0 

RSPNN 43.9 
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