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Abstract

BACKGROUND: Duplications and deletions in the human genome can cause disease or
predispose persons to disease. Advances in technologies to detect these changes allow for
the routine identification of submicroscopic imbalances in large numbers of patients.
METHODS: We tested for the presence of microdeletions and microduplications at a specific
region of chromosome 1g21.1 in two groups of patients with unexplained mental retardation,
autism, or congenital anomalies and in unaffected persons. RESULTS: We identified 25
persons with a recurrent 1.35-Mb deletion within 1g21.1 from screening 5218 patients. The
microdeletions had arisen de novo in eight patients, were inherited from a mildly affected
parent in three patients, were inherited from an apparently unaffected parent in six patients,
and were of unknown inheritance in eight patients. The deletion was absent in a series of
4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of
phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental
retardation, microcephaly, cardiac abnormalities, and cataracts. The [...]
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Abstract

BACKGROUND—Duplications and deletions in the human genome can cause disease or
predispose persons to disease. Advances in technologies to detect these changes allow for the routine
identification of submicroscopic imbalances in large numbers of patients.

METHODS—We tested for the presence of microdeletions and microduplications at a specific
region of chromosome 1g21.1 in two groups of patients with unexplained mental retardation, autism,
or congenital anomalies and in unaffected persons.

RESULTS—We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from
screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from
a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six
patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of
4737 control persons (P = 1.1x1077). We found considerable variability in the level of phenotypic
expression of the microdeletion; phenotypes included mild-to-moderate mental retardation,
microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in the
nine children with mental retardation or autism spectrum disorder and other variable features (P =
0.02). We identified three deletions and three duplications of the 1g21.1 region in an independent
sample of 788 patients with mental retardation and congenital anomalies.

CONCLUSIONS—We have identified recurrent molecular lesions that elude syndromic
classification and whose disease manifestations must be considered in a broader context of
development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with
these lesions may be most readily achieved on the basis of genotype rather than phenotype.

RECENT ADVANCES IN TECHNOLOGIES such as comparative genomic hybridization
(CGH; see Glossary) allow for the routine detection of submicroscopic deletions and
duplications. Several studies of persons with mental retardation or congenital anomalies of
unknown cause have led to the identification of new genomic disorders.!-10 Classically,
criteria that have been applied to determine whether a given rearrangement is causative include
de novo appearance of the deletion or duplication in an affected individual (i.e., it is not present
in unaffected parents), recurrence of the same or an overlapping event in similarly affected
persons, and absence of the deletion or duplication in a control population. Examples of
genomic disorders with these features include the Williams—Beuren syndrome, the 17q21.31
microdeletion syndrome, and the Prader—Willi and Angelman syndromes.

As more patients are identified with a given unbalanced microrearrangement, it has become
clear that some genomic disorders have high penetrance but a wide range of phenotypic
severity. For example, although 90% of persons with the 22q11 deletion syndrome have the
same 3-Mb deletion on chromosome 22, the phenotypic features are highly variable. Congenital
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heart disease is found in most (74%) but not all carriers of the deletion, and cleft palate is found
in 27% of carriers (reviewed in Robin and Shprintzen1 1). More recently, reports of
microdeletions or duplications with apparently incomplete penetrance and variable
expressivity have been identified in mental retardation—multiple congenital anomalies, autism,
and other psychiatric disorders.!2-10 The 1g21.1 microdeletions associated with the
thrombocytopenia—absent radius syndrome are necessary but not sufficient to cause disease.
7 As these reports accumulate, it is becoming clear that the phenotypes associated with
imbalances of some regions of the genome can be variable, and modifiers probably play an
important role. The ascertainment and description of patients with a specific chromosomal
rearrangement critically affects the spectrum of phenotypes associated with it.

Glossary

Comparative genomic hybridization (CGH): An assay in which DNA samples from
patients and from reference genomes are labeled with different fluorescent dyes and
cohybridized to an array containing known DNA sequences. Differences in relative
fluorescence intensities of hybridized DNA on the microarray reflect differences in
copy number between the genome of the patients and reference DNA.

Nonallelic homologous recombination: Aberrant meiotic recombination between
nonallelic segmental duplications that are highly homologous but located at different
places on the chromosome. This recombination causes duplication, deletion, or
inversion of the sequence between the homologous blocks of DNA.

Segmental duplications: Large stretches of DNA (>1 kb in length), with more than
90% sequence identity, that are present at two or more places in the genome. These
duplication blocks often include one or more genes and constitute approximately 5%
of the human genome. They are also referred to as low-copy repeats or duplicons.

METHODS
POPULATIONS OF PATIENTS

DNA samples were obtained from the series described in Tables 1A and 1B in the
Supplementary Appendix (available with the full text of this article at www.nejm.org) after
approval by local institutional review boards at each of the participating centers in Europe and
the United States. Series 1 and 2, 4 through 11, 13 through 15, and the Dutch series of 788
patients came from diagnostic referral centers to which the majority of patients (95%) were
referred for mental retardation with or without other features. Series 3 and 12 comprise
probands with a diagnosis of autism according to Autism Diagnostic Interview—Revised (ADI-
R) and Autism Diagnostic Observation Schedule (ADOS) criteria. Written informed consent
was provided by all patients or, if children, by their parent or guardian.

DETERMINING VARIATION IN COPY NUMBER

Affected Persons—The method of screening for changes in copy number for each series is
included in Table 1A in the Supplementary Appendix. The Dutch series of patients was
screened using array-based CGH involving a bacterial artificial chromosome microarray, as
described in Table 1B in the Supplementary Appendix. Rearrangements of 1q21.1 were further
analyzed with the use of custom oligonucleotide arrays (NimbleGen Systems). Details are
given in the Methods section of the Supplementary Appendix.

Unaffected Persons—We evaluated 2063 unaffected persons, using HumanHap 300,
HumanHap 550, or HumanHap 650Y Genotyping BeadChips (Illumina) (Table 2 in the
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Supplementary Appendix; 91, 206, or 212 probes used, respectively, within the critical region).
Hybridization, data analysis, and copy-number analysis, with particular reference to
chromosome 1g21.1 (mapping between genome coordinates 143,500,000 and 145,000,000 on
chromosome 1, according to National Center for Biotechnology Information [NCBI] build 35),
were performed according to published protocols.21 We also evaluated 300 unaffected persons,
using a quantitative real-time polymerase-chain-reaction (PCR) assay for changes in copy
number at five loci within the region of minimal deletion (primer list available on request).
Details about this assay, as well as information about the TagMan quantitative PCR, DNA-
methylation studies, sequence analysis, and fluorescence in situ hybridization (FISH), are given
in the Supplementary Appendix.

CHROMOSOME 1Q21.1 REARRANGEMENTS IN AFFECTED PERSONS

We previously described one person with a deletion of 1q21.1 and another with an overlapping
duplication in a series of 390 persons screened by array-based CGH involving a bacterial
artificial chromosome microarray.2’8 These persons had global delay, growth retardation, and
seizures (Patient 1) (Table 1) and mental retardation, growth retardation, and facial
dysmorphism (Patient 2) (Table 3 in the Supplementary Appendix). In a collaborative study
of 3788 patients from 12 centers in Europe and the United States using array-based CGH (Table
1A in the Supplementary Appendix), we identified an additional 22 probands with deletion
and 8 probands with duplication. Targeted screening of another 1040 persons with unexplained
mental retardation, by means of two TagMan quantitative PCR assays within the commonly
deleted region, resulted in detection of a deletion in two additional patients. Thus, from a total
of 5218 persons with idiopathic mental retardation, autism, or congenital anomalies, we have
a series of 25 unrelated probands with overlapping deletions of 1g21.1 (0.5%) (Fig. 1A) and
9 persons with the apparently reciprocal duplication (0.2%) (Fig. 1B). Five persons (four with
a 1g21.1 deletion and one with a duplication) also carried one or more additional chromosome
abnormalities that could have contributed to their phenotype and were therefore excluded from
further analysis (see Table 4 in the Supplementary Appendix for their phenotypic features).

The minimally deleted region spans approximately 1.35 Mb (on chromosome 1, 143.65 to 145
Mb [according to NCBI build 35], or 145 to 146.35 Mb [according to NCBI build 36]) and
includes at least seven genes. The majority of persons studied have deletions with breakpoints
(BP) in segmental-duplication blocks BP3 and BP4 (see Glossary and Fig. 1). Patient 12 has
a larger, atypical deletion approximately 5.5 Mb in size that extends more proximally toward
the centromere than the common deletion (on chromosome 1, 142.5 to 148.0 Mb [NCBI build
36]) (Fig. 1 in the Supplementary Appendix). Of the 21 probands without secondary karyotype
abnormalities, the 1q21.1 deletion was de novo in 7 (3 with maternal origin, 1 with paternal
origin, and 3 with undetermined parental origin), maternally inherited in 3, paternally inherited
in 4, and of unknown inheritance (parents unavailable for study) in 7 (Table 1).

The phenotypes of persons with 1q21.1 deletions are described in Table 1 (21 patients without
additional chromosomal abnormalities) and Table 4 in the Supplementary Appendix (4 patients
with additional chromosomal abnormalities). Pedigrees of eight probands are shown in Figure
2. The majority of persons with a deletion have a history of mild-to-moderate developmental
delay (16 of 21 [76.2%]) and dysmorphic features (17 of 21 [81.0%]), consistent with their
ascertainment criteria. Three parents are also mildly affected; however, five probands had
normal cognitive development, and four apparently unaffected parents have the same deletion.
In addition, 14 of the 21 patients (66.7%) and 2 parents with the deletion have microcephaly
or relative microcephaly. Other phenotypic features noted in more than one patient with the
deletion include ligamentous laxity or joint hypermobility (five patients), congenital heart
abnormality (six patients), hypotonia (five patients), seizures (three patients) and cataracts

N Engl J Med. Author manuscript; available in PMC 2009 June 30.
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(three patients). There are no notable phenotypic differences among carriers of a deletion with
different breakpoints. Consistent with variability of phenotypic outcome, we noted that the
same region was recently described in an adult patient with schizophrenia22 (Table 4 in the
Supplementary Appendix). We obtained DNA from this patient to map the breakpoints; our
results show that the deletion in this patient with adult-onset schizophrenia is apparently
identical to the common 1.35-Mb deletion found in our sample of patients with primarily
childhood-onset phenotypes (Fig. 3).

We also detected the reciprocal 1g21.1 duplication in nine persons (Fig. 1B), one of whom
carried an additional large chromosomal abnormality and was thus excluded from further
analysis (Table 4 in the Supplementary Appendix). Of the remaining eight patients with
duplication, two had inheritance from an unaffected father, two had de novo duplication (not
known to be of parental origin), and four did not have parental DNA available for analysis.
Four of the eight patients with duplication (50.0%) had autism or autistic behaviors (Table 3
in the Supplementary Appendix). Other common phenotypic features of the eight duplication
carriers include mild-to-moderate mental retardation (in five [62.5%]), macrocephaly or
relative macrocephaly (in four [50.0%]), and mild dysmorphic features (in five [62.5%]).

In an independent sample of 788 patients with mental retardation and congenital anomalies
from the Netherlands, we identified deletion in 3 patients (0.4%) and duplication in another 3
patients (0.4%). The phenotypic features and inheritance patterns of these patients are listed
in Table 1B in the Supplementary Appendix.

DELETIONS AND DUPLICATIONS IN UNAFFECTED PERSONS

To assess the frequency of 1q21.1 rearrangements in the general population, we evaluated data
on copy number from three control populations: 2063 persons evaluated by means of single-
nucleotide polymorphism (SNP)—genotyping bead atrrays21 (Itsara A: personal
communication), 300 persons evaluated by means of quantitative PCR performed on specimens
from five different locations within the minimal-deletion region, and 2374 persons from
previously published studies for which the copy-number variation of the 1q21.1 region was
genotyped (Table 2 in the Supplementary Appendix).18’20’23'29 In this series of 4737
controls, we found no deletions of the 1q21.1 minimal-deletion region. Two controls each had
one small duplication (117 kb and 184 kb) at the distal end of the minimal-deletion region, and
only one control had confirmed duplication of the entire minimal 1q21.1 rearrangement
region29 (Feuk L: personal communication). Thus, the frequency of the 1.35-Mb deletion is
clearly enriched in affected persons as compared with controls (25 of 5218 patients vs. 0 of
4737 controls, P = 1.1x1077 by Fisher's exact test). Although detected at a lower frequency in
our series, the reciprocal duplication also appears to be enriched in affected persons (9 of 5218
patients, vs. 1 of 4737 controls; P = 0.02 by Fisher's exact test).

GENOMIC STRUCTURE OF THE 1Q21.1 REGION

The genomic structure of the 1g21.1 breakpoint regions is extremely complex, with at least
four large segmental-duplication blocks ranging in size from 270 kb to 2.2 Mb (Fig. 1, and Fig.
1 in the Supplementarg Appendix), most of which exhibit copy-number polymorphism in the
general population25 27 (see also the Database of Genomic Variants,
http://projects.tcag.ca/variation/). A large inversion polymorphism that spans the recurrent
deletion—duplication region, a feature associated with many other recurrent genomic disorders,
has also been described.27-30 The complexity of 1g21.1 is underscored by the fact that there
are still 15 assembly gaps, representing approximately 700 kb of missing sequence, in the most
recent NCBI genome build (build 36). Of the 5.4 Mb of sequence within 1q21.1, only 25%
represents unique (i.e., nonduplicated) sequence.

N Engl J Med. Author manuscript; available in PMC 2009 June 30.
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Although the complexity of the region complicates mapping efforts, our high-density array-
based CGH results show that the proximal and distal breakpoints of the deletion—duplication
events map within large segmental-duplication blocks. Our analysis reveals four possible
breakpoint regions, BP1 and BP4 (Fig. 1, and Fig. 1 in the Supplementary Appendix), as well
as BP2 and BP3, which correspond to the previously described breakpoints associated with
the thrombocytopenia—absent radius syndrome. 17 Breakpoints of the most common 1.35-Mb
deletion map to BP3 and BP4, which share 281 kb of sequence with more than 99.9% identity
(Table 5 in the Supplementary Appendix). The structure of the 1q21.1 region (with multiple
large blocks of highly homologous segmental duplication), the frequency of recurrent deletions
or duplications, and the additional observation of reciprocal deletion and duplication events
strongly suggest nonallelic homologous recombination as the mechanism that generates the
deletion and duplication.

The presence of numerous assembly gaps in the 1q21.1 region hinders precise mapping of the
chromosomal breakpoints that flank each duplication or deletion. Moreover, these gaps may
contain genes that are absent from the current reference sequence and could potentially
contribute to phenotypic differences between deletion carriers. One example is a partially
duplicated copy of the hydrocephalus-inducing homologue (mouse) 2 gene HYDIN2, recently
mapped to 1q21.1.31 We confirmed the presence of a HYDIN homologue within 1q21.1 by
using FISH analysis involving two chromosome 16q22 fosmids containing the chromosome-16
HYDIN sequence (Fig. 2 in the Supplementary Appendix). Analysis of two deletion carriers
(Patient 7 and her unaffected mother) revealed that the HYDIN2 locus lies within the commonly
deleted region and therefore may reside in one of the gaps between BP3 and BP4. Because
probes designed to detect HYDIN also hybridize with HYDIN?2 sequence, data obtained through
CGH studies, involving a whole-genome array, of persons with the 1q21.1 deletion suggest
the existence of an approximately 35-kb deletion at 16q22 (Fig. 2 in the Supplementary
Appendix) — that is, a false positive for the 16q22 deletion. FISH studies revealed only the
1g21.1 deletion and did not confirm the apparent 16q22 deletion.

ANALYSIS OF POTENTIAL MODIFIERS OF PHENOTYPE

Given associations between GJAS5 (the gene encoding connexin 40) and cardiac
}S)henotypessz'3 S and between GJAS (the gene encoding connexin 50) and eye phenotypes,

6-38 e hypothesized that coding variants on the remaining GJA5 or GJAS allele of deletion
carriers may contribute to the cardiac or eye phenotypes, respectively, seen in some patients.
However, we sequenced the coding and upstream regions of both genes in 11 deletion carriers
and found no mutations (Table 6 in the Supplementary Appendix). We also investigated the
possibility that epigenetic differences on the single remaining 1q21.1 allele might underlie the
variable phenotype of those with 1q21.1 deletions. We analyzed the CpG (cytidine—phosphate—
guanosine) methylation status within the deletion region in an affected 1q21.1 deletion carrier
(Patient 7) and in her mother, who also carries the deletion but is unaffected. We found no
significant differences between them (data not shown).

DISCUSSION

Our data show that 1q21.1 deletions are associated with a broad array of pediatric
developmental abnormalities. There is considerable phenotypic diversity associated with
haploinsufficiency of 1q21.1, consistent with previous reports of apparently identical 1q21.1
deletions in patients with different phenotypes, including isolated heart defects,”” cataracts,
7 mullerian aplasia, 0 autism, ™" and schizophrenia. 13,14,22 ye identified several unaffected
deletion carriers; however, it is possible that apparently unaffected parents who have a 1q21.1
deletion could also have subtle phenotypic features consistent with the deletion that would
become evident on further clinical evaluation. In one of our patients (Patient 2), for example,

N Engl J Med. Author manuscript; available in PMC 2009 June 30.
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subtle cataracts and a patent ductus arteriosus were detected only after directed studies were
performed after discovery of the 1q21 deletion (Table 1A in the Supplementary Appendix).

The reciprocal duplication was detected less frequently in our series, a finding that is consistent
with recent studies showing that rates of deletion mediated by nonallelic homologous
recombination are higher than that for duplications in the male germ line.#2 Nonetheless, the
duplication is also enriched in affected persons as compared with controls (P=0.02). Seven of
the eight duplication carriers have learning or developmental delay or mental retardation. Four
of the eight duplication carriers have autistic behaviors or autism, consistent with previously
reported 1q21.1 duplications in patients with autism.*! Two patients were initially identified
among 141 patients with autism, a finding that suggests even greater enrichment in this
population (vs. 1 of 4737 controls, P=0.002 by Fisher's exact test). Other phenotypes described
in the majority of patients for whom data are available include macrocephaly or relative
macrocephaly. However, because of the small number of patients with a duplication event in
our series, identification of additional carriers will be required to determine whether these
clinical manifestations are consistent with the presence of the duplication.

Several possibilities may account for the phenotypic variability we found among carriers of
1g21.1 rearrangements, including variation in genetic background, epigenetic phenomena such
as imprinting, expression or regulatory variation among genes in the rearrangement region,
and (in the case of deletions) the unmasking of recessive variants residing on the single
remaining allele. It is known, for example, that coding variants on the nondeleted allele in
carriers of the velocardiofacial syndrome deletion can modify the phenotypes of patients.43’
44 Sequence analysis of GJAS5 and GJAS (the genes previously implicated in cardiac and eye
phenotypes, respectively) in 11 deletion carriers yielded no data to support the unmasking of
recessive variants as a cause of phenotypic variability. Likewise, preliminary data from
methylation analyses of an affected deletion carrier and her mother, who also carried the
deletion but was unaffected, suggest that differences in the methylation status of the nondeleted
1g21.1 locus does not contribute to the variability in phenotype. Finally, parent-of-origin
studies reveal both maternal and paternal transmission of the deletion, making it unlikely that
imprinting plays a role in phenotypic variability.

Our results emphasize the importance of rare structural variants in human disease; they also
demonstrate some of the challenges. First, large samples of patients and controls are required
to show that a specific variant is pathogenic. Although there have been several reports of
patients with 1q21.1 deletions in studies of specific diseases,zz’3 9-41 our study shows that
recurrent 1g21.1 microdeletions are significantly associated with pediatric disease, through
systematic comparison of the frequency of rearrangements in affected and unaffected persons.
Second, detailed clinical evaluations of affected persons disclosed a much broader spectrum
of phenotypes than anticipated, dispelling any notion of syndromic disease. While this article
was being reviewed before publication, two groups reported enrichment of 1q21.1 deletions
in persons with schizophrenia13’ 14; they report deletions in 0.26% of patients with
schizophrenia, as compared with our finding of deletions in 0.5% of persons with
developmental abnormalities. These results confirm the association of 1q21.1 rearrangements
with a broad spectrum of phenotypes but also further dispel the notion that rare copy-number
variants will necessarily follow the one gene (or one rearrangement)—one disease model.

The phenotypic diversity, incomplete penetrance, and lack of distinct syndromic features
associated with 1q21 rearrangements will complicate genetic diagnosis and counseling. For
clinicians caring for patients with developmental abnormalities, the identification of a 1g21
rearrangement by means of diagnostic array-based CGH should be considered a clinically
significant finding and probably an influential genetic factor contributing to the phenotype.
Evaluation of family members may reveal apparently unaffected (or mildly affected) persons

N Engl J Med. Author manuscript; available in PMC 2009 June 30.
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carrying the same rearrangement. Given the spectrum of possible outcomes associated with
1921 rearrangements, such persons should be monitored in the long term for learning
disabilities, autism, or schizophrenia or other neuropsychiatric disorders. Counseling in the
prenatal setting will present the greatest challenge: although the likelihood of an abnormal
outcome is high in a person with a 1g21.1 rearrangement, current knowledge does not allow
us to predict which abnormalities will occur in any given person. Further investigation of
genetic and environmental modifiers may explain such variable expressivity but requires
characterization of an even larger number of patients with a 1q21 deletion. Data on rare, de
novo structural variants are collectively beginning to explain an increasingly greater fraction
(approximately 15%) of patients with developmental delay, autism, schizophrenia, or other
neuropsychiatric disorders, and our study adds 1q21.1 as a locus to include in screening panels
for such patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. High-Density Oligonucleotide-Array Mapping of Chromosome 1q21.1 Rearrangements
in the Study Patients

Sixteen 1g21.1 deletions (Panel A) and seven 1g21.1 duplications (Panel B) from patients
without other chromosomal abnormalities were identified on chromosome 1g21.1. The region
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of minimal rearrangement is located from approximately 143,650,000 to 145,000,000 bp (pink
shading) and contains two assembly gaps and eight genes in the National Center for
Biotechnology Information Reference Sequence (RefSeq) collection. In Panel B, a patient with
a microdeletion (Patient 1) is shown for comparison with the duplication carriers (Patients 1
through 7 shown). Segmental-duplication blocks are shown, with the approximate breakpoint
(BP) regions indicated with green shading. The microdeletion associated with the
thrombocytopenia-absent radius (TAR) syndrome17 is shaded in blue. For each patient,
deviations from 0 of probe log) ratios are depicted by vertical bars, with those exceeding a
threshold of 1.5 SD from the mean probe ratio shown in green or red to represent relative gains
or losses, respectively; bars below this threshold are black (gains) or gray (losses). Segmental
duplications of increasing similarity are also shown, as horizontal bars highlighted with green
shading: 90 to 98% (gray bars), >98 to 99% (yellow bars), and >99% (orange bars). Results
for Patients 17 through 20 with deletions and Patient 8 with a duplication are shown in Figure
3 in the Supplementary Appendix. Patient 21 with a deletion and Patient 6 with a duplication
were evaluated only by means of the screening platform listed in Table 1 A in the Supplementary
Appendix, because of insufficient DNA for additional oligonucleotide-array analysis (data not
shown).
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Figure 2. Pedigrees of Eight Probands with a 1q21.1 Deletion
Squares indicate males, and circles females. Additional phenotypic information is available in
Table 1. CHD denotes coronary heart disease, DD developmental delay, and MR mental

retardation.
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Figure 3. High-Density Oligonucleotide-Array Comparative Genomic Hybridization of
Chromosome 1q21.1 Deletions in Three Study Patients

There were nearly identical breakpoints in the three patients, with the minimal 1.35-Mb
deletion in chromosome 1 in the region of 142,000,000 to 146,500,000 bp (according to
National Center for Biotechnology Information build 35). For each patient, deviations from O
of probe log, ratios are depicted by vertical bars, with those exceeding a threshold of 1.5 SD
from the mean probe ratio shown in red to represent relative losses; bars below this threshold
are black (gains) or gray (losses). Additional phenotypic information is available in Table 1
(for Patients 7 and 9) and in Table 4 in the Supplementary Appendix (available with the full
text of this article at www.nejm.org) (for Patient S5).
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