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Abstract

BACKGROUND—Duplications and deletions in the human genome can cause disease or

predispose persons to disease. Advances in technologies to detect these changes allow for the routine

identification of submicroscopic imbalances in large numbers of patients.

METHODS—We tested for the presence of microdeletions and microduplications at a specific

region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism,

or congenital anomalies and in unaffected persons.

RESULTS—We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from

screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from

a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six

patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of

4737 control persons (P = 1.1×10−7). We found considerable variability in the level of phenotypic

expression of the microdeletion; phenotypes included mild-to-moderate mental retardation,

microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in the

nine children with mental retardation or autism spectrum disorder and other variable features (P =

0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent

sample of 788 patients with mental retardation and congenital anomalies.

CONCLUSIONS—We have identified recurrent molecular lesions that elude syndromic

classification and whose disease manifestations must be considered in a broader context of

development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with

these lesions may be most readily achieved on the basis of genotype rather than phenotype.

RECENT ADVANCES IN TECHNOLOGIES such as comparative genomic hybridization

(CGH; see Glossary) allow for the routine detection of submicroscopic deletions and

duplications. Several studies of persons with mental retardation or congenital anomalies of

unknown cause have led to the identification of new genomic disorders.1-10 Classically,

criteria that have been applied to determine whether a given rearrangement is causative include

de novo appearance of the deletion or duplication in an affected individual (i.e., it is not present

in unaffected parents), recurrence of the same or an overlapping event in similarly affected

persons, and absence of the deletion or duplication in a control population. Examples of

genomic disorders with these features include the Williams–Beuren syndrome, the 17q21.31

microdeletion syndrome, and the Prader–Willi and Angelman syndromes.

As more patients are identified with a given unbalanced microrearrangement, it has become

clear that some genomic disorders have high penetrance but a wide range of phenotypic

severity. For example, although 90% of persons with the 22q11 deletion syndrome have the

same 3-Mb deletion on chromosome 22, the phenotypic features are highly variable. Congenital
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heart disease is found in most (74%) but not all carriers of the deletion, and cleft palate is found

in 27% of carriers (reviewed in Robin and Shprintzen11). More recently, reports of

microdeletions or duplications with apparently incomplete penetrance and variable

expressivity have been identified in mental retardation–multiple congenital anomalies, autism,

and other psychiatric disorders.12-16 The 1q21.1 microdeletions associated with the

thrombocytopenia–absent radius syndrome are necessary but not sufficient to cause disease.
17 As these reports accumulate, it is becoming clear that the phenotypes associated with

imbalances of some regions of the genome can be variable, and modifiers probably play an

important role. The ascertainment and description of patients with a specific chromosomal

rearrangement critically affects the spectrum of phenotypes associated with it.

Glossary

Comparative genomic hybridization (CGH): An assay in which DNA samples from

patients and from reference genomes are labeled with different fluorescent dyes and

cohybridized to an array containing known DNA sequences. Differences in relative

fluorescence intensities of hybridized DNA on the microarray reflect differences in

copy number between the genome of the patients and reference DNA.

Nonallelic homologous recombination: Aberrant meiotic recombination between

nonallelic segmental duplications that are highly homologous but located at different

places on the chromosome. This recombination causes duplication, deletion, or

inversion of the sequence between the homologous blocks of DNA.

Segmental duplications: Large stretches of DNA (>1 kb in length), with more than

90% sequence identity, that are present at two or more places in the genome. These

duplication blocks often include one or more genes and constitute approximately 5%

of the human genome. They are also referred to as low-copy repeats or duplicons.

METHODS

POPULATIONS OF PATIENTS

DNA samples were obtained from the series described in Tables 1A and 1B in the

Supplementary Appendix (available with the full text of this article at www.nejm.org) after

approval by local institutional review boards at each of the participating centers in Europe and

the United States. Series 1 and 2, 4 through 11, 13 through 15, and the Dutch series of 788

patients came from diagnostic referral centers to which the majority of patients (95%) were

referred for mental retardation with or without other features. Series 3 and 12 comprise

probands with a diagnosis of autism according to Autism Diagnostic Interview–Revised (ADI-

R) and Autism Diagnostic Observation Schedule (ADOS) criteria. Written informed consent

was provided by all patients or, if children, by their parent or guardian.

DETERMINING VARIATION IN COPY NUMBER

Affected Persons—The method of screening for changes in copy number for each series is

included in Table 1A in the Supplementary Appendix. The Dutch series of patients was

screened using array-based CGH involving a bacterial artificial chromosome microarray, as

described in Table 1B in the Supplementary Appendix. Rearrangements of 1q21.1 were further

analyzed with the use of custom oligonucleotide arrays (NimbleGen Systems). Details are

given in the Methods section of the Supplementary Appendix.

Unaffected Persons—We evaluated 2063 unaffected persons, using HumanHap 300,

HumanHap 550, or HumanHap 650Y Genotyping BeadChips (Illumina) (Table 2 in the
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Supplementary Appendix; 91, 206, or 212 probes used, respectively, within the critical region).

Hybridization, data analysis, and copy-number analysis, with particular reference to

chromosome 1q21.1 (mapping between genome coordinates 143,500,000 and 145,000,000 on

chromosome 1, according to National Center for Biotechnology Information [NCBI] build 35),

were performed according to published protocols.21 We also evaluated 300 unaffected persons,

using a quantitative real-time polymerase-chain-reaction (PCR) assay for changes in copy

number at five loci within the region of minimal deletion (primer list available on request).

Details about this assay, as well as information about the TaqMan quantitative PCR, DNA-

methylation studies, sequence analysis, and fluorescence in situ hybridization (FISH), are given

in the Supplementary Appendix.

RESULTS

CHROMOSOME 1Q21.1 REARRANGEMENTS IN AFFECTED PERSONS

We previously described one person with a deletion of 1q21.1 and another with an overlapping

duplication in a series of 390 persons screened by array-based CGH involving a bacterial

artificial chromosome microarray.2,8 These persons had global delay, growth retardation, and

seizures (Patient 1) (Table 1) and mental retardation, growth retardation, and facial

dysmorphism (Patient 2) (Table 3 in the Supplementary Appendix). In a collaborative study

of 3788 patients from 12 centers in Europe and the United States using array-based CGH (Table

1A in the Supplementary Appendix), we identified an additional 22 probands with deletion

and 8 probands with duplication. Targeted screening of another 1040 persons with unexplained

mental retardation, by means of two TaqMan quantitative PCR assays within the commonly

deleted region, resulted in detection of a deletion in two additional patients. Thus, from a total

of 5218 persons with idiopathic mental retardation, autism, or congenital anomalies, we have

a series of 25 unrelated probands with overlapping deletions of 1q21.1 (0.5%) (Fig. 1A) and

9 persons with the apparently reciprocal duplication (0.2%) (Fig. 1B). Five persons (four with

a 1q21.1 deletion and one with a duplication) also carried one or more additional chromosome

abnormalities that could have contributed to their phenotype and were therefore excluded from

further analysis (see Table 4 in the Supplementary Appendix for their phenotypic features).

The minimally deleted region spans approximately 1.35 Mb (on chromosome 1, 143.65 to 145

Mb [according to NCBI build 35], or 145 to 146.35 Mb [according to NCBI build 36]) and

includes at least seven genes. The majority of persons studied have deletions with breakpoints

(BP) in segmental-duplication blocks BP3 and BP4 (see Glossary and Fig. 1). Patient 12 has

a larger, atypical deletion approximately 5.5 Mb in size that extends more proximally toward

the centromere than the common deletion (on chromosome 1, 142.5 to 148.0 Mb [NCBI build

36]) (Fig. 1 in the Supplementary Appendix). Of the 21 probands without secondary karyotype

abnormalities, the 1q21.1 deletion was de novo in 7 (3 with maternal origin, 1 with paternal

origin, and 3 with undetermined parental origin), maternally inherited in 3, paternally inherited

in 4, and of unknown inheritance (parents unavailable for study) in 7 (Table 1).

The phenotypes of persons with 1q21.1 deletions are described in Table 1 (21 patients without

additional chromosomal abnormalities) and Table 4 in the Supplementary Appendix (4 patients

with additional chromosomal abnormalities). Pedigrees of eight probands are shown in Figure

2. The majority of persons with a deletion have a history of mild-to-moderate developmental

delay (16 of 21 [76.2%]) and dysmorphic features (17 of 21 [81.0%]), consistent with their

ascertainment criteria. Three parents are also mildly affected; however, five probands had

normal cognitive development, and four apparently unaffected parents have the same deletion.

In addition, 14 of the 21 patients (66.7%) and 2 parents with the deletion have microcephaly

or relative microcephaly. Other phenotypic features noted in more than one patient with the

deletion include ligamentous laxity or joint hypermobility (five patients), congenital heart

abnormality (six patients), hypotonia (five patients), seizures (three patients) and cataracts
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(three patients). There are no notable phenotypic differences among carriers of a deletion with

different breakpoints. Consistent with variability of phenotypic outcome, we noted that the

same region was recently described in an adult patient with schizophrenia22 (Table 4 in the

Supplementary Appendix). We obtained DNA from this patient to map the breakpoints; our

results show that the deletion in this patient with adult-onset schizophrenia is apparently

identical to the common 1.35-Mb deletion found in our sample of patients with primarily

childhood-onset phenotypes (Fig. 3).

We also detected the reciprocal 1q21.1 duplication in nine persons (Fig. 1B), one of whom

carried an additional large chromosomal abnormality and was thus excluded from further

analysis (Table 4 in the Supplementary Appendix). Of the remaining eight patients with

duplication, two had inheritance from an unaffected father, two had de novo duplication (not

known to be of parental origin), and four did not have parental DNA available for analysis.

Four of the eight patients with duplication (50.0%) had autism or autistic behaviors (Table 3

in the Supplementary Appendix). Other common phenotypic features of the eight duplication

carriers include mild-to-moderate mental retardation (in five [62.5%]), macrocephaly or

relative macrocephaly (in four [50.0%]), and mild dysmorphic features (in five [62.5%]).

In an independent sample of 788 patients with mental retardation and congenital anomalies

from the Netherlands, we identified deletion in 3 patients (0.4%) and duplication in another 3

patients (0.4%). The phenotypic features and inheritance patterns of these patients are listed

in Table 1B in the Supplementary Appendix.

DELETIONS AND DUPLICATIONS IN UNAFFECTED PERSONS

To assess the frequency of 1q21.1 rearrangements in the general population, we evaluated data

on copy number from three control populations: 2063 persons evaluated by means of single-

nucleotide polymorphism (SNP)–genotyping bead arrays21 (Itsara A: personal

communication), 300 persons evaluated by means of quantitative PCR performed on specimens

from five different locations within the minimal-deletion region, and 2374 persons from

previously published studies for which the copy-number variation of the 1q21.1 region was

genotyped (Table 2 in the Supplementary Appendix).18,20,23-29 In this series of 4737

controls, we found no deletions of the 1q21.1 minimal-deletion region. Two controls each had

one small duplication (117 kb and 184 kb) at the distal end of the minimal-deletion region, and

only one control had confirmed duplication of the entire minimal 1q21.1 rearrangement

region29 (Feuk L: personal communication). Thus, the frequency of the 1.35-Mb deletion is

clearly enriched in affected persons as compared with controls (25 of 5218 patients vs. 0 of

4737 controls, P = 1.1×10−7 by Fisher's exact test). Although detected at a lower frequency in

our series, the reciprocal duplication also appears to be enriched in affected persons (9 of 5218

patients, vs. 1 of 4737 controls; P = 0.02 by Fisher's exact test).

GENOMIC STRUCTURE OF THE 1Q21.1 REGION

The genomic structure of the 1q21.1 breakpoint regions is extremely complex, with at least

four large segmental-duplication blocks ranging in size from 270 kb to 2.2 Mb (Fig. 1, and Fig.

1 in the Supplementary Appendix), most of which exhibit copy-number polymorphism in the

general population25,27 (see also the Database of Genomic Variants,

http://projects.tcag.ca/variation/). A large inversion polymorphism that spans the recurrent

deletion–duplication region, a feature associated with many other recurrent genomic disorders,

has also been described.27,30 The complexity of 1q21.1 is underscored by the fact that there

are still 15 assembly gaps, representing approximately 700 kb of missing sequence, in the most

recent NCBI genome build (build 36). Of the 5.4 Mb of sequence within 1q21.1, only 25%

represents unique (i.e., nonduplicated) sequence.
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Although the complexity of the region complicates mapping efforts, our high-density array-

based CGH results show that the proximal and distal breakpoints of the deletion–duplication

events map within large segmental-duplication blocks. Our analysis reveals four possible

breakpoint regions, BP1 and BP4 (Fig. 1, and Fig. 1 in the Supplementary Appendix), as well

as BP2 and BP3, which correspond to the previously described breakpoints associated with

the thrombocytopenia–absent radius syndrome.17 Breakpoints of the most common 1.35-Mb

deletion map to BP3 and BP4, which share 281 kb of sequence with more than 99.9% identity

(Table 5 in the Supplementary Appendix). The structure of the 1q21.1 region (with multiple

large blocks of highly homologous segmental duplication), the frequency of recurrent deletions

or duplications, and the additional observation of reciprocal deletion and duplication events

strongly suggest nonallelic homologous recombination as the mechanism that generates the

deletion and duplication.

The presence of numerous assembly gaps in the 1q21.1 region hinders precise mapping of the

chromosomal breakpoints that flank each duplication or deletion. Moreover, these gaps may

contain genes that are absent from the current reference sequence and could potentially

contribute to phenotypic differences between deletion carriers. One example is a partially

duplicated copy of the hydrocephalus-inducing homologue (mouse) 2 gene HYDIN2, recently

mapped to 1q21.1.31 We confirmed the presence of a HYDIN homologue within 1q21.1 by

using FISH analysis involving two chromosome 16q22 fosmids containing the chromosome-16

HYDIN sequence (Fig. 2 in the Supplementary Appendix). Analysis of two deletion carriers

(Patient 7 and her unaffected mother) revealed that the HYDIN2 locus lies within the commonly

deleted region and therefore may reside in one of the gaps between BP3 and BP4. Because

probes designed to detect HYDIN also hybridize with HYDIN2 sequence, data obtained through

CGH studies, involving a whole-genome array, of persons with the 1q21.1 deletion suggest

the existence of an approximately 35-kb deletion at 16q22 (Fig. 2 in the Supplementary

Appendix) — that is, a false positive for the 16q22 deletion. FISH studies revealed only the

1q21.1 deletion and did not confirm the apparent 16q22 deletion.

ANALYSIS OF POTENTIAL MODIFIERS OF PHENOTYPE

Given associations between GJA5 (the gene encoding connexin 40) and cardiac

phenotypes32-35 and between GJA8 (the gene encoding connexin 50) and eye phenotypes,
36-38 we hypothesized that coding variants on the remaining GJA5 or GJA8 allele of deletion

carriers may contribute to the cardiac or eye phenotypes, respectively, seen in some patients.

However, we sequenced the coding and upstream regions of both genes in 11 deletion carriers

and found no mutations (Table 6 in the Supplementary Appendix). We also investigated the

possibility that epigenetic differences on the single remaining 1q21.1 allele might underlie the

variable phenotype of those with 1q21.1 deletions. We analyzed the CpG (cytidine–phosphate–

guanosine) methylation status within the deletion region in an affected 1q21.1 deletion carrier

(Patient 7) and in her mother, who also carries the deletion but is unaffected. We found no

significant differences between them (data not shown).

DISCUSSION

Our data show that 1q21.1 deletions are associated with a broad array of pediatric

developmental abnormalities. There is considerable phenotypic diversity associated with

haploinsufficiency of 1q21.1, consistent with previous reports of apparently identical 1q21.1

deletions in patients with different phenotypes, including isolated heart defects,39 cataracts,
27 mullerian aplasia,40 autism,41 and schizophrenia.13,14,22 We identified several unaffected

deletion carriers; however, it is possible that apparently unaffected parents who have a 1q21.1

deletion could also have subtle phenotypic features consistent with the deletion that would

become evident on further clinical evaluation. In one of our patients (Patient 2), for example,
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subtle cataracts and a patent ductus arteriosus were detected only after directed studies were

performed after discovery of the 1q21 deletion (Table 1A in the Supplementary Appendix).

The reciprocal duplication was detected less frequently in our series, a finding that is consistent

with recent studies showing that rates of deletion mediated by nonallelic homologous

recombination are higher than that for duplications in the male germ line.42 Nonetheless, the

duplication is also enriched in affected persons as compared with controls (P=0.02). Seven of

the eight duplication carriers have learning or developmental delay or mental retardation. Four

of the eight duplication carriers have autistic behaviors or autism, consistent with previously

reported 1q21.1 duplications in patients with autism.41 Two patients were initially identified

among 141 patients with autism, a finding that suggests even greater enrichment in this

population (vs. 1 of 4737 controls, P=0.002 by Fisher's exact test). Other phenotypes described

in the majority of patients for whom data are available include macrocephaly or relative

macrocephaly. However, because of the small number of patients with a duplication event in

our series, identification of additional carriers will be required to determine whether these

clinical manifestations are consistent with the presence of the duplication.

Several possibilities may account for the phenotypic variability we found among carriers of

1q21.1 rearrangements, including variation in genetic background, epigenetic phenomena such

as imprinting, expression or regulatory variation among genes in the rearrangement region,

and (in the case of deletions) the unmasking of recessive variants residing on the single

remaining allele. It is known, for example, that coding variants on the nondeleted allele in

carriers of the velocardiofacial syndrome deletion can modify the phenotypes of patients.43,

44 Sequence analysis of GJA5 and GJA8 (the genes previously implicated in cardiac and eye

phenotypes, respectively) in 11 deletion carriers yielded no data to support the unmasking of

recessive variants as a cause of phenotypic variability. Likewise, preliminary data from

methylation analyses of an affected deletion carrier and her mother, who also carried the

deletion but was unaffected, suggest that differences in the methylation status of the nondeleted

1q21.1 locus does not contribute to the variability in phenotype. Finally, parent-of-origin

studies reveal both maternal and paternal transmission of the deletion, making it unlikely that

imprinting plays a role in phenotypic variability.

Our results emphasize the importance of rare structural variants in human disease; they also

demonstrate some of the challenges. First, large samples of patients and controls are required

to show that a specific variant is pathogenic. Although there have been several reports of

patients with 1q21.1 deletions in studies of specific diseases,22,39-41 our study shows that

recurrent 1q21.1 microdeletions are significantly associated with pediatric disease, through

systematic comparison of the frequency of rearrangements in affected and unaffected persons.

Second, detailed clinical evaluations of affected persons disclosed a much broader spectrum

of phenotypes than anticipated, dispelling any notion of syndromic disease. While this article

was being reviewed before publication, two groups reported enrichment of 1q21.1 deletions

in persons with schizophrenia13,14; they report deletions in 0.26% of patients with

schizophrenia, as compared with our finding of deletions in 0.5% of persons with

developmental abnormalities. These results confirm the association of 1q21.1 rearrangements

with a broad spectrum of phenotypes but also further dispel the notion that rare copy-number

variants will necessarily follow the one gene (or one rearrangement)–one disease model.

The phenotypic diversity, incomplete penetrance, and lack of distinct syndromic features

associated with 1q21 rearrangements will complicate genetic diagnosis and counseling. For

clinicians caring for patients with developmental abnormalities, the identification of a 1q21

rearrangement by means of diagnostic array-based CGH should be considered a clinically

significant finding and probably an influential genetic factor contributing to the phenotype.

Evaluation of family members may reveal apparently unaffected (or mildly affected) persons
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carrying the same rearrangement. Given the spectrum of possible outcomes associated with

1q21 rearrangements, such persons should be monitored in the long term for learning

disabilities, autism, or schizophrenia or other neuropsychiatric disorders. Counseling in the

prenatal setting will present the greatest challenge: although the likelihood of an abnormal

outcome is high in a person with a 1q21.1 rearrangement, current knowledge does not allow

us to predict which abnormalities will occur in any given person. Further investigation of

genetic and environmental modifiers may explain such variable expressivity but requires

characterization of an even larger number of patients with a 1q21 deletion. Data on rare, de

novo structural variants are collectively beginning to explain an increasingly greater fraction

(approximately 15%) of patients with developmental delay, autism, schizophrenia, or other

neuropsychiatric disorders, and our study adds 1q21.1 as a locus to include in screening panels

for such patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. High-Density Oligonucleotide-Array Mapping of Chromosome 1q21.1 Rearrangements
in the Study Patients

Sixteen 1q21.1 deletions (Panel A) and seven 1q21.1 duplications (Panel B) from patients

without other chromosomal abnormalities were identified on chromosome 1q21.1. The region
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of minimal rearrangement is located from approximately 143,650,000 to 145,000,000 bp (pink

shading) and contains two assembly gaps and eight genes in the National Center for

Biotechnology Information Reference Sequence (RefSeq) collection. In Panel B, a patient with

a microdeletion (Patient 1) is shown for comparison with the duplication carriers (Patients 1

through 7 shown). Segmental-duplication blocks are shown, with the approximate breakpoint

(BP) regions indicated with green shading. The microdeletion associated with the

thrombocytopenia-absent radius (TAR) syndrome17 is shaded in blue. For each patient,

deviations from 0 of probe log2 ratios are depicted by vertical bars, with those exceeding a

threshold of 1.5 SD from the mean probe ratio shown in green or red to represent relative gains

or losses, respectively; bars below this threshold are black (gains) or gray (losses). Segmental

duplications of increasing similarity are also shown, as horizontal bars highlighted with green

shading: 90 to 98% (gray bars), >98 to 99% (yellow bars), and >99% (orange bars). Results

for Patients 17 through 20 with deletions and Patient 8 with a duplication are shown in Figure

3 in the Supplementary Appendix. Patient 21 with a deletion and Patient 6 with a duplication

were evaluated only by means of the screening platform listed in Table 1A in the Supplementary

Appendix, because of insufficient DNA for additional oligonucleotide-array analysis (data not

shown).
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Figure 2. Pedigrees of Eight Probands with a 1q21.1 Deletion

Squares indicate males, and circles females. Additional phenotypic information is available in

Table 1. CHD denotes coronary heart disease, DD developmental delay, and MR mental

retardation.
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Figure 3. High-Density Oligonucleotide-Array Comparative Genomic Hybridization of
Chromosome 1q21.1 Deletions in Three Study Patients

There were nearly identical breakpoints in the three patients, with the minimal 1.35-Mb

deletion in chromosome 1 in the region of 142,000,000 to 146,500,000 bp (according to

National Center for Biotechnology Information build 35). For each patient, deviations from 0

of probe log2 ratios are depicted by vertical bars, with those exceeding a threshold of 1.5 SD

from the mean probe ratio shown in red to represent relative losses; bars below this threshold

are black (gains) or gray (losses). Additional phenotypic information is available in Table 1

(for Patients 7 and 9) and in Table 4 in the Supplementary Appendix (available with the full

text of this article at www.nejm.org) (for Patient S5).
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