
2nd Reading

September 3, 2012 10:42 WSPC/S0219-8878 IJGMMP-J043 1250059

International Journal of Geometric Methods in Modern Physics
Vol. 9, No. 7 (2012) 1250059 (26 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219887812500594

RECURRENT Z FORMS ON RIEMANNIAN
AND KAEHLER MANIFOLDS

CARLO ALBERTO MANTICA

Physics Department, Università Degli Studi di Milano
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In this paper, we introduce a new kind of Riemannian manifold that generalize the
concept of weakly Z-symmetric and pseudo-Z-symmetric manifolds. First a Z form
associated to the Z tensor is defined. Then the notion of Z recurrent form is introduced.

We take into consideration Riemannian manifolds in which the Z form is recurrent. This
kind of manifold is named (ZRF)n. The main result of the paper is that the closedness
property of the associated covector is achieved also for rank(Zkl) > 2. Thus the existence
of a proper concircular vector in the conformally harmonic case and the form of the
Ricci tensor are confirmed for(ZRF)n manifolds with rank(Zkl) > 2. This includes and
enlarges the corresponding results already proven for pseudo-Z-symmetric (PZS)n and
weakly Z-symmetric manifolds (WZS)n in the case of non-singular Z tensor. In the last
sections we study special conformally flat (ZRF)n and give a brief account of Z recurrent
forms on Kaehler manifolds.
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1. Introduction

Weakly symmetric Riemannian manifolds are generalizations of the important and
often investigated locally symmetric Riemannian spaces. In the last decades many
kinds of weakly symmetric spaces were created and investigated. We give here a
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brief account of the most important results. Tamassy and Binh [36] introduced and
studied a type of non-flat Riemannian manifold whose Ricci tensor is not identically
zero and satisfies the following equation:

∇kRjl = AkRjl +BjRkl +DlRkj . (1.1)

Such a manifold is called weakly Ricci symmetric, Ak, Bk, Dk are non-null covec-
tors called associated one-forms, ∇ is the operator of covariant differentiation with
respect to the (positive definite) metric gkl and the manifold is denoted by (WRS)n.

Here we have defined the Ricci tensor to be Rkl = −Rm
mkl [42] and the scalar cur-

vature R = gijRij . If in (1.1) the one-form Ak is replaced by 2Ak and Bk and Dk

are replaced by Ak, then the manifold is called pseudo-Ricci symmetric manifold
introduced by Chaki [4] and denoted by (PRS)n. This notion of pseudo-Ricci sym-
metric is different from that of Deszcz [18]. If in (1.1) the one-form Ak is replaced
by 2Ak, then the manifold is called generalized pseudo-Ricci symmetric manifold
introduced by Chaki and Koley [6]. Later some authors studied these kind of man-
ifolds [14, 21, 12]. In [14] some global properties of (WRS)n were pointed out and
the form of the Ricci tensor was found. In [12] the authors considered conformally
flat generalized pseudo-Ricci symmetric manifolds, where the conformal curvature
tensor

Cm
jkl = Rm

jkl +
1

n− 2
(δm

j Rkl − δm
k Rjl +Rm

j gkl −Rm
k gjl)

− R

(n− 1)(n− 2)
(δm

j gkl − δm
k gjl) (1.2)

vanishes, i.e. Cm
jkl = 0: it may be scrutinized that the conformal curvature ten-

sor vanishes identically for n = 3 [31]. They also pointed out the existence of a
proper concircular vector for such a manifold. In [2] a (PRS)n with harmonic cur-
vature tensor i.e. ∇mR

m
jkl = 0 and with harmonic conformal curvature tensor i.e.

∇mC
m
jkl = 0 was taken into consideration. In [21] a quasi-conformally flat (WRS)n

was studied. They also pointed out the existence of a proper concircular vector for
such a manifold.

Later a generalization of (PRS)n manifolds was introduced in a paper by Chaki
and Saha [8]. They considered the so-called Projective Ricci tensor Pkl obtained by
a suitable contraction of the Projective Curvature tensor Pjklm [19]:

Pjl =
n

n− 1

(
Rjl − R

n
gjl

)
, (1.3)

where gjlPjl = 0. The generalization defined in [8] is thus written as:

∇kPjl = 2AkPjl +AjPkl +AlPkj . (1.4)

This kind of manifold is called pseudo-projective Ricci symmetric and denoted
by (PPRS)n. Recently in [5] and [13] a further generalization of the condition of
a (PRS)n manifold was considered. More precisely a manifold whose Ricci tensor
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satisfies the condition

∇kRjl = (Ak +Bk)Rjl +AjRkl +AlRkj (1.5)

is defined. Such a manifold is called almost pseudo-Ricci symmetric and denoted by
A(PRS)n: Ak and Bk are non-null covectors. In [13] the properties of conformally
flat A(PRS)n are studied. In the same paper the authors pointed out the importance
of pseudo-Ricci symmetric manifolds in the theory of General Relativity.

More recently in [27] and subsequently in [26] a new generalized (0, 2) symmetric
tensor was introduced and studied; precisely the new tensor was defined as:

Zkl = Rkl + φgkl, (1.6)

where φ is an arbitrary scalar function and was named generalized Z tensor (the
classical Z tensor is defined as Zkl = Rkl− R

n gkl). These authors pointed out several
interesting properties of such tensor that we recall here.

First of all the Z tensor allows to reinterpret many well-known structures on
Riemannian manifolds. (a) A Z flat Riemannian manifold is simply an Einstein
space Rkl = R

n gkl [3].
(b) If ∇iZkl = 0 (Z symmetric manifold) then ∇iRkl +∇iφgkl = 0: transvecting

with gik and gkl we obtain ∇kφ = 0 = ∇kR and a Ricci symmetric manifold is
recovered.

(c) If a Z recurrent Riemannian manifold is considered i.e. a space satisfying
the condition ∇iZkl = λiZkl one can easily find that this condition is equivalent to
∇iRkl = λiRkl +(n−1)µigkl with the choice (n−1)µi = λiφ−∇iφ. So the manifold
reduces to a Generalized Ricci Recurrent manifold [11] and if 0 = λiφ−∇iφ, a Ricci
recurrent manifold is recovered.

(d) Let us consider a Riemannian manifold with Codazzi Z tensor [17], i.e. with
the property:

∇kZjl = ∇jZkl. (1.7)

One can easily find that this condition is equivalent to:

∇kRjl −∇jRkl = (∇jφ)gkl − (∇kφ)gjl. (1.8)

Transvecting the previous relation with gjl we get ∇k(R + 2(n − 1)φ) = 0 and
finally:

∇kRjl −∇jRkl =
1

2(n− 1)
[(∇kR)gjl − (∇jR)gkl]. (1.9)

A manifold with Codazzi Z tensor is thus a Nearly Conformally Symmetric manifold
(NCS)n: this condition was introduced and studied by Roter [32] and generalized in
[35]. We note also that this is equivalent to have an harmonic conformal curvature
tensor ∇mC

m
jkl = 0. Conversely a (NCS)n manifold has a Codazzi type Z tensor if

the condition ∇k(R + 2(n− 1)φ) = 0 is satisfied. Moreover if ∇jφ = 0, a manifold
with harmonic curvature tensor is recovered.
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(e) If the condition ∇kZjl +∇jZlk +∇lZkj = 0 is considered, then transvecting
with gjl we get ∇k(2R+ (n+ 2)φ) = 0 and thus:

∇k

(
Rjl − 2

n+ 2
Rgjl

)
+ ∇j

(
Rlk − 2

n+ 2
Rglk

)

+∇l

(
Rkj − 2

n+ 2
Rgkj

)
= 0. (1.10)

These conditions on the Z tensor thus agree with the generalizations of the Ein-
stein metrics, that is, a few classes of Riemannian manifolds characterized by
tensorial conditions, which are consequences of the Einstein metric equation (see
Besse [3]).

Moreover in [26] and [27] the authors pointed out also the importance of the Z
tensor in mathematical physics. For example an Einstein-like equation Zkl = kTkl

may be written in n dimensions, being Tkl the energy-momentum tensor and k a
suitable gravitational constant. The physical condition ∇lTkl = 0 and the second
contracted Bianchi identity that reads ∇k(R

2 +φ) = 0 give φ = −R
2 +Λ. The choice

Λ �= 0 describes some cosmological models (see [16, 41]): in this case the vacuum
solution Zkl = 0 implies Λ = Rn−2

2n and thus an Einstien space Rkl = R
n gkl. The

choice Λ = 0 agrees with observations over regions of space of galactic dimension: in
this case the vacuum solution is reduced to Rkl = 0. Moreover it can be shown (see
[24, p. 321]) that a linear combination of Rkl − 1

2Rgkl and gkl is the most general
two index symmetric tensor which is divergence-free and can be constructed locally
from the metric and its derivatives up to second order. So the generalized Z tensor
may be as though a generalized Einstein Gravitational tensor with arbitrary scalar
function φ.

In [26] and [27] the Z tensor was used to introduce the new differential struc-
tures of pseudo-Z-symmetric and weakly Z-symmetric Riemannian manifolds. It
turned out that these manifolds generalize the notions of (PRS)n, (WRS)n and
the (PWRS)n manifolds. A pseudo-Z-symmetric manifold (PZS)n is defined by the
condition [27]:

∇kZjl = 2AkZjl +AjZkl +AlZkj . (1.11)

In [27] the authors studied the fundamental properties of such manifolds: they
focused the case with harmonic curvature tensors giving the conditions of closedness
of the associated one-form when the Z tensor is non-singular. In the conformally flat
case they gave the form of the Ricci and the metric tensors. Moreover they provided
sufficient conditions for a (PZS)n manifold to be Ricci pseudo-symmetric in the
sense of Deszcz [18]. Finally they studied (PZS)n space-time manifolds focusing the
properties of perfect fluid space-times.

In [26] the authors studied the properties of a manifold on which the Z tensor
is subjected to the condition:

∇kZjl = AkZjl +BjZkl +DlZkj . (1.12)
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Such a manifold is called weakly Z-symmetric and denoted by (WZS)n. In par-
ticular they presented a great number of relations to the already known weakly
symmetric spaces. Also in this case the authors found sufficient conditions for the
existence of a proper concircular vector, and determined the Ricci and the metric
tensors in the conformally harmonic and conformally flat cases. They described
the impact of the closedness of the one-form ωk = Ak − Bk when the Z tensor is
non-singular.

In this paper, we present a generalization of the above-mentioned mani-
folds. First a Z form associated to the Z tensor is defined. Then the notion of
Z recurrent form with its associated covector is introduced. We consider Rie-
mannian manifolds on which the Z form is recurrent and study its properties in
depth.

These manifolds are named (RZF)n. The notion of Z recurrent form incorporates
both pseudo-Z-symmetric and weakly Z-symmetric manifolds. The main result of
this paper is that the closedness property of the associated covector is achieved
also in the case of rank(Zkl) > 2. Thus the existence of a proper concircular vector
in the conformally harmonic case is confirmed in this more general situation. This
includes and enlarges already known results for pseudo-Z-symmetric and weakly
Z-symmetric manifolds with non-singular Z tensor developed in [26] and [27]. In
Sec. 5, we study a special conformally flat (RZF)n. In the last section we give a
brief survey of Z recurrent forms on Kaehlerian manifolds.

2. Recurrent Z Forms

In this section, we consider the recurrence of Z forms originating from Z tensors.
In [29] the authors extended the recurrence notion from curvature tensors to the
associated 2-forms. First we recall some basic definitions about generalized cur-
vature tensors and associated forms. Consider a class of curvature tensors Km

jkl

with the usual symmetries of the Riemann tensor satisfying the first Bianchi iden-
tity. Specifically we admit a generalized curvature tensor satisfying the following
relations [23, 25, 35]:

(a) Km
jkl +Km

klj +Km
ljk = 0, Km

jkl = −Km
kjl,

(b) ∇iK
m
jkl + ∇jK

m
kil + ∇kK

m
ijl = Bm

ijkl,
(2.1)

where Bm
ijkl is a tensor source in the second Bianchi identity. Moreover we may

define also an associated completely covariant (0, 4) tensor Kjklm = gmnK
n
jkl with

the following further properties [23]:

Kjklm = −Kkjlm = −Kjkml,

Kjklm = Klmjk.
(2.2)
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In this way the contraction Kkl = −Km
mkl defines a symmetric generalized Ricci

tensor [28]. An n-dimensional Riemannian manifold is said to be K-flat if Km
jkl = 0

and K-symmetric if ∇iK
m
jkl = 0, K-harmonic if ∇mK

m
jkl = 0 and K-recurrent if

∇iK
m
jkl = αiK

m
jkl [25]. Now the curvature two-form associated to this tensor is

defined in the following manner:

Ωm
(K)l = Km

jkldx
j ∧ dxk. (2.3)

If we consider the symmetric contraction Kkl = −Km
mkl a generalized Ricci

one-form may be defined [28] as:

Λ(K)l = Kkldx
k. (2.4)

Hereafter we consider n-dimensional non-K-flat Riemannian manifolds. An exterior
covariant derivative D (see [3] and [24]) acting on the forms (2.3) and (2.4) can be
defined as follows:

DΩm
(K)l = ∇iK

m
jkldx

i ∧ dxj ∧ dxk,

DΛ(K)l = ∇iKkldx
i ∧ dxk.

The forms Ωm
(K)l,Λ(K)l are said to be closed ifDΩm

(K)l = 0,DΛ(K)l = 0. This implies
respectively ∇iK

m
jkl +∇jK

m
kil +∇kK

m
ijl = 0 = Bm

ijkl and ∇iKkl −∇kKil = 0 for the
previously defined forms [27]. The notion of recurrent curvature form introduced
in [29] enlarges the closedness condition and the ordinary recurrence of curvature
tensors. In [29] the following definition was stated:

Definition 2.1. Let M be an n-dimensional Riemannian manifold. The curvature
two-form Ωm

(K)l = Km
jkldx

j ∧ dxk is said to be recurrent if there exist a nonzero
scalar one-form α for which:

DΩm
(K)l = α ∧ Ωm

(K)l, (2.5)

being α = αidx
i the associated one-form.

It is easy to see that the previous condition is a generalization of the notion of
K-recurrency. In fact if we write Eq. (2.5) in local components we have:

(∇iK
m
jkl − αiK

m
jkl)dx

i ∧ dxj ∧ dxk = 0. (2.6)

If α = 0 we recover the closedness of Ωm
(K)l. The following theorem stated in [29]

explains the meaning of this kind of recurrence.

Theorem 2.2. Let M be an n-dimensional Riemannian manifold. The curvature
two-form Ωm

(K)l = Km
jkldx

j ∧ dxk satisfies condition (2.5) if and only if :

Bm
ijkl = ∇iK

m
jkl + ∇jK

m
kil + ∇kK

m
ijl = αiK

m
jkl + αjK

m
kil + αkK

m
ijl. (2.7)
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Proof. From Eq. (2.6) we easily obtain the following expression:

(∇iK
m
jkl − αiK

m
jkl)dx

i ∧ dxj ∧ dxk

=
1
3!

(∇iK
m
jkl − αiK

m
jkl)δ

ijk
rstdx

r ∧ dxs ∧ dxt

=
∑

r<s<t

(∇iK
m
jkl − αiK

m
jkl)δ

ijk
rstdx

r ∧ dxs ∧ dxt = 0. (2.8)

The above condition is fulfilled if and only if (∇iK
m
jkl −αiK

m
jkl)δ

ijk
rst = 0 from which

Eq. (2.7) follows immediately. Obviously if the manifold is K-recurrent ∇iK
m
jkl =

αiK
m
jkl, then condition (2.7) is satisfied.

Now we focus on the notion of recurrence for the generalized Ricci one-form
Λ(K)l = Kkldx

k where Kkl = −Km
jkl. Again in [29] the following definition was

stated:

Definition 2.3. LetM be an n-dimensional Riemannian manifold. The generalized
Ricci one-form Λ(K)l = Kkldx

k is said to be recurrent if there exist a nonzero scalar
one-form β for which:

DΛ(K)l = β ∧ Λ(K)l, (2.9)

being β = βidx
i the associated one-form.

In local components the previous equation may be written in the form:

(∇iKkl − βiKkl)dxi ∧ dxk = 0. (2.10)

If β = 0 the closedness of the generalized Ricci one-form is recovered. The following
theorem explains the meaning of this kind of recurrence.

Theorem 2.4. Let M be an n-dimensional Riemannian manifold. The generalized
Ricci one-form Λ(K)l = Kkldx

l satisfies condition (2.9) if and only if :

∇iKkl −∇kKil = βiKkl − βkKil. (2.11)

Proof. From Eq. (2.9) we easily obtain the following expression:

(∇iKkl − βiKkl)dxi ∧ dxk =
1
2!

(∇iKkl − βiKkl)δik
rsdx

r ∧ dxs

=
∑
r<s

(∇iKkl − βiKkl)δik
rsdx

r ∧ dxs = 0. (2.12)

The above condition is fulfilled if and only if (∇iKkl − αiKkl)δik
rs = 0 from which

one concludes immediately.
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We apply the previous definition to the case of Z form Λ(Z)l = Zkldx
k; specifi-

cally we have the following definition.

Definition 2.5. Let M be an n-dimensional Riemannian manifold. The Z form
Λ(Z)l = Zkldx

k is said to be recurrent if there exist a nonzero scalar one-form ω for
which:

DΛ(Z)l = ω ∧ Λ(Z)l. (2.13)

From the above-mentioned theorems the Z form is recurrent if and only if:

∇kZjl −∇jZkl = ωkZjl − ωjZkl. (2.14)

In the previous expression ωk is called the associated covector. A manifold satisfying
condition (2.14) is called (ZRF)n, (Z recurrent form). Obviously if the Z tensor is
recurrent, ∇kZil = ωkZil the previous equation is satisfied.

Remark 2.6. We notice also that the notion of Z recurrent form incorporates
the properties of both pseudo-Z-symmetric manifolds and of weakly Z-symmetric
manifolds. In fact Eqs. (1.11) and (1.12) imply ∇kZjl − ∇jZkl = ωkZjl − ωjZkl.
where ωk = Ak for a pseudo-Z-symmetric manifold and ωk = Ak − Bk for a
weakly Z-symmetric manifold. Moreover if an almost pseudo-Z-symmetric manifold
is defined:

∇kZjl = (Ak +Bk)Zjl +AjZkl +AlZkj , (2.15)

then such a manifold is a (ZRF)n with ωk = Bk. This manifold is named (APZS)n.
Therefore all the results stated in this paper for (ZRF)n manifolds are valid also for
pseudo-Z-symmetric, weakly Z-symmetric and almost pseudo-Z-symmetric man-
ifolds and thus for all differential structures originating from them for various
choices of φ. If ωk = 0 the closedness of the Z form is recovered and thus a
Codazzi Z tensor: we have a (NCS)n manifold. If ∇kφ = ωkφ, the Z recurrent
form reduces to a Ricci recurrent form and ωk is a closed one-form. This hap-
pens if and only if φ = CeDωkxk

being C,D arbitrary constants, and includes the
case φ = 0.

Transvecting Eq. (2.14) with gjl and recalling the definition of the Z tensor
Zkl = Rkl + φgkl one can obtain:

1
2
∇kZ +

n− 2
2

∇kφ = ωkZ − ωlZkl, (2.16)

being Z = gklZkl. Now if we consider (ZRF)n manifold on which the Z tensor is a
Codazzi one [17]; we have simply from Eq. (2.14):

ωkZjl = ωjZkl. (2.17)
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Let us suppose that ωk �= 0: then transvecting equation with gjl we have ωkZ =
ωlZkl and consequently that Zjl = Z

ωjωl

ωkωk
. Thus we have just proved that the Z

tensor has rank one. We may state the following (see also [26]):

Theorem 2.7. Let M be an n-dimensional (ZRF)n Riemannian manifold whose
Z tensor is of Codazzi type [17], i.e. ∇kZjl = ∇jZkl: if rank(Zkl) > 1, then the
one-form ωk is null, that is, ωk = 0.

Remark 2.8. If ωk �= 0 and ∇kZjl = ∇jZkl then the Z tensor has rank one that
is a singular tensor, that is, det(Zkl) = 0.

3. Recurrent Z Forms: Conditions for the Closedness
of the ω One-Form

In this section, we investigate the conditions for the closedness of the one-form ωk

on a (RZF)n (n > 3) Riemannian manifold. We generalize some already known
results about the closedness property of associated forms in (PZS)n and (WZS)n

manifolds presented in [26] and [27] in the case of non-singular Z tensor. First we
need the following lemma known as Lovelock’s differential identity [24–26].

Lemma 3.1 (Lovelock’s differential identity). Let M be an n-dimensional
Riemannian manifold. Then the following identity is fulfilled:

∇i∇mR
m
jkl + ∇j∇mR

m
kil + ∇k∇mR

m
ijl

= −RimR
m
jkl −RjmR

m
kil −RkmR

m
ijl. (3.1)

Here we collect some useful preliminary formulas for the divergence of the Rie-
mann tensor on a (ZRF)n manifold. From the contracted second Bianchi identity
and from the definition of the Z tensor Zkl = Rkl + φgkl, the following equation
can be written:

∇mR
m
jkl = ∇kZjl −∇jZkl + (∇jφgkl −∇kφgjl). (3.2)

On the other hand, from the definition of a (RZF)n manifold one easily finds that:

∇kZjl −∇jZkl = ωkZjl − ωjZkl. (3.3)

From this we get:

∇mR
m
jkl = ∇kZjl −∇jZkl + (∇jφgkl −∇kφgjl)

= ωkZjl − ωjZkl + (∇jφgkl −∇kφgjl). (3.4)

In [27] the following theorem for pseudo-Z-symmetric manifolds was proved.

Theorem 3.2. Let M be an n(n > 3)-dimensional (PZS)n Riemannian manifold
with non-singular Zkl tensor. Then Ak is a closed one-form if and only if the

1250059-9
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following algebraic relation is fulfilled.

RimR
m
jkl +RjmR

m
kil +RkmR

m
ijl = 0. (3.5)

In [26] the previous theorem was generalized to weakly Z-symmetric manifolds:
precisely the authors stated.

Theorem 3.3. Let M be an n(n > 3)-dimensional (WZS)n Riemannian manifold
with non-singular Zkl tensor. Then ωk is a closed one-form if and only if RimR

m
jkl +

RjmR
m
kil +RkmR

m
ijl = 0.

Following the same procedure of Theorems 3.2 and 3.3 we may state an equiv-
alent version of them for the present case of Z recurrent form. Nevertheless the
main result of this section is a generalization of the previous theorems. We are able
to assert a fundamental result that is valid under the condition rank(Zkl) > 2.
Precisely we have the following theorem.

Theorem 3.4. Let M be an n(n > 3)-dimensional (RZF)n Riemannian mani-
fold with rank(Zkl) > 2. Then ωk is a closed one-form if and only if RimR

m
jkl +

RjmR
m
kil +RkmR

m
ijl = 0.

Proof. By performing the covariant derivative of Eq. (3.2) recalling (3.2) one easily
obtains:

∇i∇mR
m
jkl = (∇iωk)Zjl + ωk(∇iZjl) − (∇iωj)Zkl

−ωj(∇iZkl) + (∇i∇jφgkl −∇i∇kφgjl). (3.6)

Now a cyclic permutation of the indices i.j.k is performed and the resulting three
equations are added to obtain:

∇i∇mR
m
jkl + ∇j∇mR

m
kil + ∇k∇mR

m
ijl

= (∇iωk −∇kωi)Zjl + (∇jωi −∇iωj)Zkl + (∇kωj −∇jωk)Zil

+ωj(∇kZil −∇iZkl) + ωk(∇iZjl −∇jZil) + ωi(∇jZkl −∇kZjl). (3.7)

Inserting Eq. (3.3) in the previous result and recalling Lemma 3.1 one easily writes:

(∇iωk −∇kωi)Zjl + (∇jωi −∇iωj)Zkl + (∇kωj −∇jωk)Zil

= −RimR
m
jkl −RjmR

m
kil −RkmR

m
ijl. (3.8)

Now if ωk is a closed one-form then Eq. (3.5) is fulfilled. Now suppose that Eq. (3.5)
holds: Eq. (3.8) may be written in the algebraic form:

ZilAjk + ZjlAki + ZklAij = 0, (3.9)

with Aij = ∇iωj −∇jωi. We prove that Aik = 0.
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First we introduce the following remark.

Remark 3.5 (Spectral theorem). Z is a symmetric (self-adjoint) endomorphism
on a manifold with positive definite metric, thus: (1) It possesses n real eigenvalues
λ1, . . . , λn and n real eigenvectors X(l)

i , . . . , X
(n)
i .

(2) The n eigenvectors form an orthonormal base. Moreover Z is unitarily diag-
onalized, i.e. there exist a unitary matrix U+ = U−1 whose columns are the orthog-
onal Z eigenvectors such that ZD = U+ZU being ZD the diagonal form of Z. From
this the spectral representation of Z is achieved:

Zij = λ1X
(1)
i X

(1)
j + λ2X

(2)
i X

(2)
j + · · · + λnX

(n)
i X

(n)
j ,

where λi are the eigenvalues of Z. If rank(Zkl) = n, recalling that rank(ZD) =
rank Z, the eigenvalues are all different from zero, i.e. λi �= 0, i = 1, . . . , n and
they may be degenerate or not. If rank(Zkl) = r < n the null space of Z has
dimension n − r: thus λi = 0, i = r + 1, . . . , n and the corresponding eigenvectors
X(r+1), . . . , Xn

i belong to the null space of Z. The spectral representation of Z is
then:

Zij = λ1X
(1)
i X

(1)
j + λ2X

(2)
i X

(2)
j + · · · + λrX

(r)
i X

(r)
j ,

where X(p)
i , X

(q)
i p �= q are distinct eigenvectors in the range of Z and λi �= 0, i =

1 · · · r are the relative eigenvalues: they may be still degenerate or not but the
spectral theorem guarantees the eigenvectors to be orthogonal.

From Remark 3.5 if rank(Zkl) > 2 we may choose three distinct orthonormal
eigenvectors X(p)

i , X
(q)
i , X

(s)
i : p �= q �= s in the range of Z such that

ZilX
l(p) = λpX

(p)
i ,

ZilX
l(q) = λqX

(q)
i , (3.10)

ZilX
l(s) = λsX

(s)
i ,

where λp, λq, λs �= 0 may be equal or not and X
(h)
m Xm(k) = δhk : h, k = p, q, s

(orthonormality condition). Transvecting (3.9) by X(p)l recalling that λp �= 0 gives:

X
(p)
i Ajk +X

(p)
j Aki +X

(p)
k Aij = 0. (3.11)

Now multiply the previous equation by Xj(q)Xk(s) to get:

X
(p)
i Xj(q)Xk(s)Ajk +X

(p)
j Xj(q)Xk(s)Aki +X

(p)
k Xk(s)Xj(q)Aij = 0. (3.12)

The second and the third terms vanish because of the orthogonality of distinct
eigenvectors and we get:

X
(p)
i Xj(q)Xk(s)Ajk = 0. (3.13)
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Thus we have:

Xj(q)Xk(s)Ajk = 0. (3.14)

Now Eq. (3.9) is transvected by Xj(q)Xk(s) giving:

Xj(q)Xk(s)ZilAjk +Xj(q)Xk(s)ZjlAki +Xj(q)Xk(s)ZklAij = 0. (3.15)

The first term vanishes and the eigenvalues equation gives:

λqX
(q)
l Xk(s)Aki + λsX

(s)
l Xj(q)Aij = 0. (3.16)

The previous condition is now multiplied respectively by X l(q) and by X l(s) giving
(recalling the orthogonality condition):

λqX
k(s)Aki = 0,

λsX
j(q)Aij = 0.

(3.17)

Thus the range eigenvectors of the tensor Z belong to the null space of A. Tran-
vection (3.9) by Xj(q) we get:

Xj(q)ZilAjk +Xj(q)ZjlAki +Xj(q)ZklAij = λqX
(q)
l Aki = 0, (3.18)

from which one concludes that Aki = 0.
In [25] the authors proved that Lovelock’s identity is left unchanged if the diver-

gence of the Riemann tensor is replaced by the divergence of any curvature tensor
satisfying certain properties. This property was discussed also in [26] and [28]. We
state it here again for convenience.

Theorem 3.6. Let M be an n-dimensional Riemannian manifold having a gener-
alized curvature tensor Km

jkl with the property:

∇mK
m
jkl = A∇mR

m
jkl +B[(∇jψ)akl − (∇kψ)ajl], (3.19)

where A and B are non-null constants, ψ an arbitrary scalar function and akl a
symmetric (0.2) Codazzi tensor, [17] i.e. ∇iakl = ∇kail. Then the following relation
is fulfilled:

∇i∇mK
m
jkl + ∇j∇mK

m
kil + ∇k∇mK

m
ijl

= −A(RimR
m
jkl +RjmR

m
kil +RkmR

m
ijl). (3.20)

In literature one always meets generalized curvature tensors whose divergence
is given in the form (3.19) with trivial Codazzi tensor (i.e. constant multiple of the
metric tensor) and ψ = R (see [25, 26, 28]):

∇mK
m
jkl = A∇mR

m
jkl +B[(∇jR)gkl − (∇kR)gjl]. (3.21)
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If the generalized curvature tensor is harmonic, i.e. ∇mK
m
jkl = 0, we recall the

following (see [26, 27]).

Theorem 3.7. Let M be an n-dimensional Riemannian manifold having a gener-
alized curvature tensor Km

jkl with the property:

∇mK
m
jkl = A∇mR

m
jkl +B[(∇jR)gkl − (∇kR)gjl], (3.22)

where a and b are constants. If ∇mK
m
jkl = 0 and the condition B �= A

2(n−1) is
satisfied then the scalar curvature is a covariant constant ∇kR = 0.

Proof. Transvecting Eq. (3.21) with gkl and using the second contracted Bianchi
identity one easily obtains (∇jR)[12A − (n − 1)B] = 0 from which one concludes
immediately.

Some curvature tensors Km
jkl with the property (3.21) and trivial Codazzi tensor

are well-known: the Projective curvature tensor Pm
jkl [19], the conformal curvature

tensor Cm
jkl [31], the Concircular tensor C̃m

jkl [33, 37] and the quasi-conformal tensor
Wm

jkl [30, 40]. See also [22].
Now considering (RZF)n manifolds from Eqs. (3.21), (3.2) and (3.3) one simply

gets (see [26, 27]):

∇mK
m
jkl = A[ωkZjl − ωjZkl] +A[∇jφgkl −∇kφgjl]

+B[(∇jR)gkl − (∇kR)gjl]. (3.23)

If ∇mK
m
jkl = 0 from the previous relation we have:

A(ωkZjl − ωjZkl) = [∇k(Aφ+BR)gjl −∇j(Aφ+BR)gkl]. (3.24)

In [26] the authors stated the following lemma (see also [27]):

Lemma 3.8. Let M be an n-dimensional Riemannian (WZS)n manifold with non-
singular Z tensor having a generalized curvature tensor satisfying the property
(3.21). Then if ∇mK

m
jkl = 0 the one-form ωk vanishes if and only if ∇k(Aφ+BR) =

0. Moreover, if B
A �= 1

2(n−1) then ∇kR = 0 and the one-form ωk vanishes if and
only if ∇kφ = 0.

Here we extend the previous lemma to rank(Zkl) > 1; precisely we have (see
also Theorem 2.7).

Lemma 3.9. Let M be an n-dimensional Riemannian (RZF)n manifold with
rank(Zkl) > 1 having a generalized curvature tensor satisfying the property (3.21).
Then if ∇mK

m
jkl = 0, the one-form ωk vanishes if and only if ∇k(Aφ + BR) = 0.

Moreover if B
A �= 1

2(n−1) , then ∇kR = 0 and the one-form ωk vanishes if and only
if ∇kφ = 0.
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Proof. If ωk = 0 from Eq. (3.24) we have ∇k(Aφ + BR)gjl = ∇j(Aφ + BR)gkl;
transvecting with gjl we get the result. Now if ∇k(Aφ + BR) = 0 we have imme-
diately ωkZjl = ωjZkl. If rank(Zkl) > 1 we claim that ωk = 0; in fact let us
suppose on the contrary that ωk �= 0: transvecting with gjl we have ωkZ = ωlZkl

and consequently that Zjl = Z
ωjωl

ωkωk
. Thus we have obtained a Z tensor of

rank one, that is a contradiction: consequently ωk = 0. The second statement
is obvious.

In the K-harmonic case, in order to have ωk �= 0 the condition ∇k(Aφ+BR) �= 0
must be satisfied. In particular using Theorems 3.4 and 3.6 the following statement
is fulfilled:

Theorem 3.10. Let M be an n-dimensional Riemannian (RZF)n manifold with
rank(Zkl) > 2 having a generalized curvature tensor satisfying the property (3.21).
Then if ∇mK

m
jkl = 0 and ∇k(Aφ +BR) �= 0, ωk is a closed one-form.

Remark 3.11. If we have an n-dimensional Riemannian (RZF)n manifold with
rank(Zkl) > 2 having ∇mR

m
jkl = 0 from Eqs. (3.1)–(3.3) we have ωkZjl − ωjZkl =

∇kφgjl −∇jφgkl. Thus if ∇φ �= 0, ωk is a closed one-form.

Corollary 3.12. Let M be an n-dimensional Riemannian (RZF)n manifold with
rank(Zkl) > 2 having harmonic Conformal curvature tensor ∇mC

m
jkl = 0 and with

∇k(R + 2(n− 1)φ) �= 0: then ωk is a closed one-form.

Proof. We are in the case B
A = 1

2(n−1) (valid only with K = C), thus Lemma 3.9
and Theorem 3.10 apply.

Now we consider the case of harmonic quasi-conformal curvature tensor. In 1968
Yano and Sawaki [40] defined and studied a tensor Wm

jkl on a Riemannian manifold
of dimension n, which includes both the conformal curvature tensor Cm

jkl and the
concircular curvature tensor C̃m

jkl as particular cases. This tensor is known as quasi-
conformal curvature tensor and its components are given by:

Wm
jkl = −(n− 2)bCm

jkl + [a+ (n− 2)b]C̃m
jkl. (3.25)

In the previous equation a �= 0, b �= 0 are constants and n > 3 since the conformal
curvature tensor vanishes identically for n = 3. We recall that the components of
the concircular tensor are given by:

C̃m
jkl = Rm

jkl +
R

n(n− 1)
(δm

j gkl − δm
k gjl). (3.26)

A non-flat manifold has the harmonic quasi-conformal curvature tensor if
∇mW

m
jkl = 0. If the equations for ∇mC

m
jkl and ∇mC̃

m
jkl = 0 are employed and
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the covariant derivative with respect to the index m is applied on the definition of
quasi-conformal curvature tensor, one obtains straightforwardly:

∇mW
m
jkl = [a+ b]∇mR

m
jkl +

2a− b(n− 1)(n− 4)
2n(n− 1)

[(∇jR)gkl − (∇kR)gjl]. (3.27)

Now if ∇mW
m
jkl = 0, transvecting the previous equation with gkl after some calcu-

lations it follows that:

(n− 2)
a+ b(n− 2)

n
(∇jR) = 0. (3.28)

This means that or ∇jR = 0 or a+ b(n− 2) = 0.

Corollary 3.13. Let M be an n(n > 3)-dimensional (RZF)n Riemannian manifold
with rank(Zkl) > 2 having harmonic quasi-conformal tensor ∇mW

m
jkl = 0 and with

∇k(R + 2(n− 1)φ) �= 0,∇φ �= 0: then ωk is a closed one-form.

Proof. If ∇mW
m
jkl = 0 we have (n − 2)a+b(n−2)

n (∇jR) = 0. This means that
∇jR = 0 or a + b(n − 2) = 0. If ∇jR = 0 we are in the case ∇mR

m
jkl = 0, thus

Remark 3.11 applies. If a+ b(n− 2) = 0, we have ∇mC
m
jkl = 0, thus Corollary 3.12

applies.

Now for other curvature tensors the following corollaries are easily proven.

Corollary 3.14. Let M be an n-dimensional Riemannian (RZF)n manifold with
rank(Zkl) > 2 having harmonic Projective curvature tensor ∇mP

m
jkl = 0 and ∇φ �=

0: then ωk is a closed one-form.

Proof. The components of the Projective curvature tensor are defined as
[19, 34]:

Pm
jkl = Rm

jkl +
1

n− 1
(δm

j Rkl − δm
k Rjl). (3.29)

Applying the operator of covariant derivative to the previous equation and recalling
the second contracted Bianchi identity one obtains:

∇mP
m
jkl =

n− 2
n− 1

∇mR
m
jkl. (3.30)

Thus applying Theorem 3.6 we are in the conditions of Theorem 3.10.

Corollary 3.15. Let M be an n-dimensional Riemannian (RZF)n manifold with
rank(Zkl) > 2 having harmonic Concircular curvature tensor that ∇mC̃

m
jkl = 0 and

∇φ �= 0: then ωk is a closed one-form.
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Proof. The components of the Concircular [30, 34] curvature tensor are defined as:

C̃m
jkl = Rm

jkl +
R

n(n− 1)
(δm

j gkl − δm
k gji). (3.31)

Applying the operator of covariant derivative to the previous equation and consid-
ering the second contracted Bianchi identity one obtains:

∇mC̃
m
jkl = ∇mR

m
jkl +

1
n(n− 1)

[(∇jR)gjl − (∇kR)gjl]. (3.32)

Thus applying Theorem 3.6 we are in the conditions of Theorem 3.10.

Corollary 3.16. Let M be an n-dimensional Riemannian (RZF)n manifold with
rank(Zkl) > 2 having harmonic Conharmonic curvature tensor ∇mN

m
jkl = 0 and

∇φ �= 0: then ωk is a closed one-form.

Proof. The components of the Conharmonic curvature tensor are defined as
[30, 34]:

Nm
jkl = Rm

jkl +
1

n− 2
(δm

j Rkl − δm
k Rjl +Rm

j gkl −Rm
k gjl). (3.33)

Applying the operator of covariant derivative to the previous equation and consid-
ering the second contracted Bianchi identity one obtains:

∇mN
m
jkl =

n− 3
n− 2

∇mR
m
jkl +

1
2(n− 2)

[(∇jR)gkl − (∇kR)gjl]. (3.34)

Thus applying Theorem 3.6 we are in the conditions of Theorem 3.10.

Finally we can state the following remark.

Remark 3.17. Since manifolds on which Z forms are recurrent incorporate the
cases of (PZS)n, (WZS)n and (APZS)n manifolds, we get: (a) Theorem 3.10 and
Corollaries from (3.1) to (3.5) are valid for (PZS)n, (WZS)n and (APZS)n with
rank(Zkl) > 2.

(b) If φ = 0, Theorem 3.10 and Corollaries from (3.1) to (3.5) are valid for
(PRS)n, A(PRS)n and (PWRS)n with rank(Rkl) > 2.

4. Conformally Harmonic Recurrent Z Forms: Local
Form of the Ricci and Metric Tensors

In this section, we study in depth conformally harmonic (i.e. ∇mC
m
jkl = 0) recurrent

Z forms; in particular we point out the existence of a proper concircular vector in
such a manifold and give the local form of the metric tensor in the conformally flat
case. It is worth to notice that the proof in the present paper is based only on the
request of rank(Zkl) > 2. Similar results were obtained in [26] and [27] for (PZS)n
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and (WZS)n manifolds with the stronger condition of non-singular Z tensor. It is
well-known that the divergence of the conformal tensor satisfies the relation:

∇mC
m
jkl =

n− 3
n− 2

[
∇mR

m
jkl +

1
2(n− 1)

(∇jRgkl −∇kRgjl)
]
. (4.1)

So if we consider ∇mC
m
jkl = 0 one immediately obtains:

∇mR
m
jkl = ∇kRjl −∇jRkl =

1
2(n− 1)

(∇kRgjl −∇jRgkl). (4.2)

Now considering Eqs. (3.3), (3.2) and (4.2) one can see that the following relation
holds for a (RZF)n manifold with harmonic conformal curvature tensor:

ωkZjl − ωjZkl =
1

2(n− 1)
[∇k(R + 2(n− 1)φ)gjl −∇j(R+ 2(n− 1)φ)gkl]. (4.3)

This is the starting point for the proofs of the most important properties of a
(RZF)n manifold having harmonic conformal curvature tensor.

Remark 4.1. We note that the condition ∇mC
m
jkl = 0 implies that the manifold

is a (NCS)n one. Thus if the condition ∇k(R + 2(n − 1)φ) = 0 is satisfied, the Z
tensor becomes a Codazzi tensor [32]. From Theorem 2.7 if rank(Zkl) > 1 then the
one-form ωk is null i.e. ωk = 0 in this condition. To avoid Zkl to be of rank one we
suppose in this section that ∇k(R + 2(n− 1)φ) �= 0.

Now we follow the procedure explained in [13] to point out other properties of
a (RZF)n manifold. Transvecting Eq. (4.3) with gkl gives:

ωjZ − ωmZjm =
1
2
∇j(R+ 2(n− 1)φ). (4.4)

Inserting this result in (4.3) one can write the following relation:

ωjZjl − ωjZkl =
1

(n− 1)
[(ωkZ − ωmZkm)gjl − (ωjZ − ωmZjm)gkl]. (4.5)

Transvecting the previous equation with ωl one straightforwardly obtains:

ωkω
lZjl = ωjω

lZkl. (4.6)

Again we multiply the previous equation by ωj to obtain:

ωkω
jωlZjl = ωjω

jωlZkl. (4.7)

This last can be rewritten as:

ωlZkl =
ωkω

jωlZjl

ωjωj
= tωk, (4.8)

where t = ωjωlZjl

ωjωj is a scalar function. We have just proved the following theorem
that generalizes a similar result in [13] for an A(PRS)n Riemannian manifold (see
also [26] and [27]).
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Theorem 4.2. Let M be an n(n > 3)-dimensional (RZF)n Riemannian manifold
with the property ∇mC

m
jkl = 0. Then the vector ωl is an eigenvector of the Zkl

tensor with eigenvalue t.

Inserting (4.8) in Eq. (4.4) one easily obtains:

ωk(t− Z) = −1
2
∇k(R+ 2(n− 1)φ). (4.9)

This result is again a natural generalization of a similar equation given in [13] for
an A(PRS)n Riemannian manifold.

Now transvecting Eq. (4.5) with ωj and using the result (4.8) one straightfor-
wardly shows that the following equation holds:

Rkl =
ωkωl

ωjωj

[
nt− Z

n− 1

]
+ gkl

[
Z − t

n− 1
− φ

]
. (4.10)

Again we have a quasi-Einstein manifold [7]. This result can be written in the more
compact form:

Rkl = αgkl + βTkTl, (4.11)

where α = Z−t
n−1 − φ, β = nt−Z

n−1 are the associated scalars and Tk = ωk√
ωjωj

is

naturally a unit covector. We have just proved the following.

Theorem 4.3. Let M be an n(n > 3)-dimensional (RZF)n Riemannian manifold
with the property ∇mC

m
jkl = 0: then the manifold is quasi-Einstein.

Remark 4.4. In the case of (RZF)n with K-harmonic curvature tensor (i.e.
∇mK

m
jkl = 0) Eq. (4.3) takes the form:

A(ωkZjl − ωjZkl) = ∇k(Aφ+ bR)gjl −∇j(Aφ +BR)gkl. (4.12)

Transvecting this with gkl we obtain:

ωjZ − ωmZjm =
n− 1
A

∇j(Aφ +BR). (4.13)

Inserting (4.13) in (4.12) we get again the result (4.5). Following the same procedure
used for the conformally harmonic case we get that a K-harmonic (RZF)n manifold
is quasi-Einstein [7].

The notion of manifold of quasi-constant curvature was introduced by Chen and
Yano [9] and generalizes a space of constant curvature. A Riemannian manifold
(n > 3) is said to be a manifold of quasi-constant curvature if it is conformally flat
and the Riemann curvature tensor may be written in the form:

Rjklm = p[gmjgkl − gmkgjl]

+ q[gmjTkTl − gmkTjTl + gklTmTl + gjlTmTk], (4.14)

where p and q are scalars (with q �= 0) and Ti is a unit covector.
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Now in a conformally flat manifold the curvature tensor may be written as:

Rjklm =
1

(n− 2)
[gmkRjl − gjmRkl − gklRjm + gjlRkm]

+
R

(n− 1)(n− 2)
[gmjgkl − gmkgjl]. (4.15)

Now if we consider an n(n > 3)-dimensional (RZF)n Riemannian manifold with the
property ∇mC

m
jkl = 0 we get Rkl = αgkl + βTkTl, and inserting this in Eq. (4.15)

we obtain a manifold of quasi-constant curvature with q = − β
(n−2) , p = R−2(n−1)α

(n−1)(n−2) .
We may assert the following.

Theorem 4.5. Let M be an n(n > 3)-dimensional conformally flat (RZF)n Rie-
mannian manifold: then the manifold is of quasi-constant curvature.

We shall give now sufficient conditions for the existence of a proper concircular
vector in a conformally harmonic (RZF)n. We follow the same procedure already
used in [26] and [27] for pseudo-Z-symmetric and weakly Z-symmetric manifolds
(see also [15] and [12]).

Theorem 4.6. Let M be an n(n > 3)-dimensional manifold whose Ricci tensor is
given by Rkl = αgkl +βTkTl where Tk is a unit vector : if the manifold is conformally
harmonic and the condition Tj(∇kβ) = Tk(∇jβ) is satisfied, then Tk is a proper
concircular vector.

Proof. If the manifold is conformally harmonic then Eq. (4.2) holds. The definition
Rkl = αgkl + βTkTl is then substituted in (4.2) and the operations of covariant
differentiation are performed to give straightforwardly:

(∇kβ)TjTl + β(∇kTj)Tl + βTj(∇kTl) − (∇jβ)TkTl − β(∇jTk)Tl − βTk(∇jTl)

=
1

2(n− 1)
(∇kR̃gjl −∇jR̃gkl), (4.16)

where R̃ = R− 2(n− 1)α. Recalling that Tk is a unit vector and so (∇kTl)T l = 0,
Eq. (4.16) is then transvected with gjl to obtain:

(∇kβ) − (∇lβ)TkTl − β(∇lTk)Tl − βTk(∇lT )l =
1
2
(∇kR̃). (4.17)

Transvecting again Eq. (4.16) with T jT l gives:

(∇kβ) − (∇lβ)TkT
l − βT l(∇lTk) =

1
2(n− 1)

(∇kR̃) − 1
2(n− 1)

(∇lR̃)TkT
l.

(4.18)

Comparing the last two equations gives immediately:

βTk(∇lTl) =
2 − n

2(n− 1)
(∇kR̃) − 1

2(n− 1)
(∇lR̃)TkT

l. (4.19)
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The last result is then transvected with T k so that the following holds:

β(∇lTl) = −1
2
(∇lR̃)T l. (4.20)

Now Eq. (4.20) is substituted in (4.19) to give:

(∇lR̃)TkT
l = (∇kR̃). (4.21)

If the last result is substituted in (4.18) one can easily obtain:

(∇kβ) − (∇lβ)TkT
l = βT l(∇lTk). (4.22)

It is worth to notice that, by (4.21) one easily has (∇kR̃)Tj = (∇jR̃)Tk. Thus
transvecting Eq. (4.16) with T l gives immediately:

β[∇kTj −∇jTk] + Tj∇kβ − Tk∇jβ = 0. (4.23)

Following the hypothesis of the theorem we immediately conclude that Tk is a closed
one-form, that is:

∇kTj −∇jTk = 0. (4.24)

Now with this condition in mind we can transvect again Eq. (4.16) with T j recalling
that (∇jTl)T j = (∇lTj)T j = 0 being Tj closed to obtain the following relation:

∇kTl =
Tm(∇mR̃)
2β(n− 1)

[TlTk − gkl]. (4.25)

So we conclude that Tk is a concircular vector.

Now we can state the following remarks.

Remark 4.7. From (∇mR̃)TmTk = (∇kR̃) we easily obtain by a covariant deriva-
tive that the following is true:

∇j∇kR̃ = (∇jTk)(∇mR̃)Tm + Tk∇j(∇mR̃)Tm. (4.26)

A similar relation is written with indices k and j exchanged and the resulting
equations are then subtracted recalling that Tk is a closed one-form to obtain finally:

∇j(∇mR̃)Tm = Tj(T k∇k(Tm∇mR̃)). (4.27)

Remark 4.8. From (∇kβ)− (∇lβ)TkT
l = βT l(∇lTk) recalling that Tk is a closed

one-form one easily writes:

(∇kβ) = (∇lβ)TkT
l. (4.28)

Now if the scalar function f = T m(∇mR̃)
2β(n−1) is considered by the previous remarks one

can write ∇jf = µTj where µ is in another scalar function: thus the one-form
ωk = fTk is closed and Tk is a proper concircular vector.
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Now from Eqs. (2.16) and (4.8) it follows immediately that:

1
2
∇kZ +

n− 2
2

∇kφ = ωk(Z − t). (4.29)

Now a process of covariant differentiation is employed to obtain:

1
2
∇j∇kZ +

n− 2
2

∇j∇kφ = ∇jωk(Z − t) + ωk∇j(Z − t). (4.30)

Exchanging the indices k and j and subtracting the resulting equations one easily
obtains:

(∇jωk −∇kωj)(Z − t) + ωk∇j(Z − t) − ωj∇k(Z − t) = 0. (4.31)

Again from (4.29) one easily finds that the following is fulfilled:

1
2
ωj∇kZ +

n− 2
2

ωj∇kφ = ωjωk(Z − t). (4.32)

Now the indices k and j are again exchanged and the resulting equation then
subtracted to obtain:

ωj∇kZ − ωk∇jZ + (n− 2)[ωj∇kφ− ωk∇jφ] = 0. (4.33)

If ωk is a closed one-form and the condition ωj∇kφ − ωk∇jφ = 0 is fulfilled, then
one obtains the following equations:

ωk∇j(Z − t) − ωj∇k(Z − t) = 0,

ωj∇kZ − ωk∇jZ = 0.
(4.34)

According to Theorem 4.3 a (RZF)n Riemannian manifold with the property
∇mC

m
jkl = 0 is quasi-Einstein, [7] that is, the Ricci tensor satisfies Rkl =

αgkl + βTkTl. If rank(Zkl) > 2 the covector ωk is closed and if the condition
ωj∇kφ − ωk∇jφ = 0 is fulfilled by Eq. (4.34) we have ωj(∇kt) = ωk(∇jt) and
ωj(∇kZ) = ωk(∇jZ). One easily obtains the following relation:

ωj

(
∇k

nt− Z

n− 1

)
= ωk

(
∇j

nt− Z

n− 1

)
. (4.35)

Thus multiplying the previous result by 1√
ωjωj

and considering Theorem 4.5 we

can state the following.

Corollary 4.9. Let M be an n(n > 3)-dimensional (RZF)n Riemannian manifold
with the property ∇mC

m
jkl = 0. Then: (A) The manifold is quasi-Einstein and (B) If

rank(Zkl) > 2 and the condition ωj∇kφ−ωk∇jφ = 0 is fulfilled, then the following
is true:

Tj(∇kβ) = Tk(∇jβ). (4.36)
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So if we recall Theorem 4.6 we can finally state the following theorem.

Theorem 4.10. Let M be an n(n > 3)-dimensional conformally harmonic
(RZF)n. If rank(Zkl) > 2 and the condition ωj∇kφ − ωk∇jφ = 0 is fulfilled, then
the manifold admits a proper concircular vector.

Hereafter we specialize to the conformally flat case. It is well-known [1] that
if a conformally flat space admits a proper concircular vector, then this space is
subprojective in the sense of Kagan. In this way the following holds.

Theorem 4.11. Let M be an n(n > 3)-dimensional conformally flat (RZF)n. If
rank(Zkl) > 2 and the condition ωj∇kφ−ωk∇jφ = 0 is fulfilled, then the manifold
is a subprojective space.

In [38] Yano proved that a necessary and sufficient condition for a Riemannian
manifold to admit a concircular vector is that there is a coordinate system in which
the first fundamental form may be written as:

ds2 = (dx1)2 + eq(x1)g∗αβdx
αdxβ , (4.37)

where g∗αβ = g∗αβ(xγ) are functions of xγ only (α, β, γ = 2, 3, . . . , n) and q is a
function of x1 only. Since a conformally flat (RZF)n manifold with rank(Zkl) > 2
admits a proper concircular vector field, this space is the warped product 1× eqM∗

where (M∗, g∗) is an (n − 1)-dimensional Riemannian manifold. Gebarosky [20]
proved that the warped product 1 × eqM∗ satisfies the condition (4.2) if and only
if M∗ is Einstein. Thus the following theorem holds:

Theorem 4.12. Let M be an n(n > 3)-dimensional conformally flat (RZF)n. If
rank(Zkl) > 2 and the condition ωj∇kφ−ωk∇jφ = 0 is fulfilled, then the manifold
is the warped product 1 × eqM∗, where M∗ is Einstein.

Remark 4.13. The condition ωj∇kφ−ωk∇jφ = 0 is satisfied if ∇kφ = ωkχ, being
χ an arbitrary scalar function. If φ = χ from Sec. 1 we have that the Z recurrent
form reduces to Ricci recurrent form.

5. Special Conformally Flat (RZF)n Manifolds

In this section, we prove that a conformally flat (RZF)n is a special conformally
flat manifold. In [10] Chen and Yano introduced the notion of special conformally
flat manifold that is a generalization of a subprojective space. A conformally flat
Riemannian manifold is said to be special conformally flat if the (0, 2) tensor
defined as:

Hij = − 1
n− 2

Rij +
R

2(n− 1)(n− 2)
gij , (5.1)
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may be written in the form:

Hij = −γ
2

2
gij + δ(∇iγ)(∇jγ), (5.2)

where γ, δ are scalar functions and γ > 0. In the previous sections we have proved
that a conformally flat (RZF)n is quasi-Einstein [7] and the Ricci tensor is written
in the form Rij = αgij + βTiTj; inserting this in (5.1) one easily gets:

Hij = −γ
2

2
gij − βTiTj

(n− 2)
, (5.3)

where γ2 = − R̃
(n−1)(n−2) and R̃ = R − 2(n − 1)α as previously defined (provided

that R̃ < 0).
Now recalling (4.21) ∇kR̃ = TkT

l(∇lR̃) = λTk we have Ti =
− 2(n−1)(n−2)

λ γ(∇iγ), and consequently that:

TiTj = −4(n− 1)(n− 2)R̃
λ2

(∇iγ)(∇jγ). (5.4)

We have thus proved the result in (5.2) with the choice δ = 4βR̃(n−1)
λ2 . Thus a

conformally flat (RZF)n manifold is a special conformally flat manifold. We state
the following theorem.

Theorem 5.1. An n-dimensional (n > 3) conformally flat (RZF)n manifold is a
special conformally flat manifold.

In [10] Chen and Yano proved that every simply connected special conformally
flat manifold can be isometrically immersed in an Euclidean space En+1 as a hyper-
surface. Thus from Theorem 5.1 we may assert the following theorem.

Theorem 5.2. An n-dimensional simply connected (n > 3) conformally flat
(RZF)n manifold can be isometrically immersed in an Euclidean manifold En+1

as a hypersurface.

6. Recurrent Z Forms on Kaehlerian Manifolds

In this section, we give a brief account of the behavior of Z recurrent form on a
Kaehlerian manifold. An n(= 2m)-dimensional Kaehlerian manifold is a Rieman-
nian space equipped with a structure tensor field Fα

i (an affinor) satisfying the
following relations [39]:

Fα
i F

i
s = −δα

s ; Fα
i gαj + Fα

j gαi = 0; ∇jF
α
i = 0. (6.1)

From these it is easily shown that:

gsj = gαiF
α
j F

i
s ; Fα

i Rαj + Fα
j Rαi = 0; Rsj = RαiF

α
j F

i
s . (6.2)
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Consequently also the Z tensor Zkl = Rkl +φgkl obeys to the same relations that is:

Fα
i Zαj + Fα

j Zαi = 0; Zsj = ZαiF
α
j F

i
s . (6.3)

We now consider a recurrent Z form defined on a Kaehlerian manifold, that is by
definition the following equation:

∇kZij −∇jZik = ωkZij − ωjZik. (6.4)

The previous relation is thus transvected with F i
l F

j
h and a rearrangement of the

indices is made to obtain:

∇kZαβF
α
i F

β
j −∇βZαkF

α
i F

β
j = ωkZαβF

α
i F

β
j − ωβZαkF

α
i F

β
j . (6.5)

From Eq. (6.3) then we have simply:

∇kZij −∇βZαkF
α
i F

β
j = ωkZij − ωβZαkF

α
i F

β
j . (6.6)

Now a similar equation with indices k and i exchanged is written and the two
relations are added to obtain (recalling (6.1)):

∇kZij + ∇iZkj −∇β(ZαkF
α
i F

β
j + ZαiF

α
k F

β
j )

= ωkZij + ωiZkj − ωβ(ZαkF
α
i F

β
j + ZαiF

α
k F

β
j ). (6.7)

Thus from (6.3) we get (after an indices rearrangement):

∇kZij + ∇jZki = ωkZij + ωjZki. (6.8)

Now Eqs. (6.8) and (6.4) are added to get the final result:

∇kZij = ωkZij . (6.9)

We are able to state the following.

Theorem 6.1. On an n(=2m)-dimensional Kaehler manifold the notion of Z
recurrent form is equivalent to the ordinary recurrency of the Z tensor.

From Sec. 1 we recall that if the Z tensor is recurrent, then the Ricci tensor is
generalized recurrent; we state the following result.

Theorem 6.2. On an n(= 2m)-dimensional Kaehler manifold with Z recurrent
form: then the Ricci tensor is generalized recurrent.
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