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Recurrently deregulated lncRNAs in hepatocellular
carcinoma
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Hepatocellular carcinoma (HCC) cells often invade the portal venous system and subse-

quently develop into portal vein tumour thrombosis (PVTT). Long noncoding RNAs

(lncRNAs) have been associated with HCC, but a comprehensive analysis of their specific

association with HCC metastasis has not been conducted. Here, by analysing 60 clinical

samples’ RNA-seq data from 20 HCC patients, we have identified and characterized 8,603

candidate lncRNAs. The expression patterns of 917 recurrently deregulated lncRNAs are

correlated with clinical data in a TCGA cohort and published liver cancer data. Matched array

data from the 60 samples show that copy number variations (CNVs) and alterations in

DNA methylation contribute to the observed recurrent deregulation of 235 lncRNAs. Many

recurrently deregulated lncRNAs are enriched in co-expressed clusters of genes related to cell

adhesion, immune response and metabolic processes. Candidate lncRNAs related to

metastasis, such as HAND2-AS1, were further validated using RNAi-based loss-of-function

assays. Thus, we provide a valuable resource of functional lncRNAs and biomarkers asso-

ciated with HCC tumorigenesis and metastasis.
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H
epatocellular carcinoma (HCC) is one of the most
common and aggressive human malignancies1. The
dismal clinical outcome of HCC is largely due to

the high incidence of intrahepatic and extrahepatic metastasis
in HCC patients2. HCC cells are highly likely to develop into
portal vein tumour thrombosis (PVTT), which is the main route
for intra-hepatic metastasis of HCC (ref. 3). Therefore, PVTT is
closely associated with poor prognosis for HCC patients4.

Several long noncoding RNAs (lncRNAs), including H19
(ref. 5), HOTAIR (ref. 6) and HULC (ref. 7), are directly
involved in tumorigenesis and metastasis of various types of
cancer. Recent studies have also revealed the pro-metastasis
mechanisms through which some lncRNAs contribute to
the activation of epithelial-to-mesenchymal transition networks,
including activation of the WNT (ref. 8) and TGF-b signalling
pathways9. Although several studies have assessed the
contributions of individual lncRNAs to the development of
HCC, the functions and mechanisms of only a few lncRNAs in
HCC tumorigenesis and metastasis are understood in detail10,11.

Moreover, efforts at systematic identification and characte-
rization of candidate lncRNAs involved in HCC, especially
those involved in HCC metastasis, remain at an early stage.
A recent study based on The Cancer Genome Atlas
(TCGA, http://cancergenome.nih.gov/) revealed the existence
of more than 50,000 lncRNAs (designated MiTranscriptome
lncRNAs) in the human transcriptome (generated from various
tumours, normal tissues and cell lines)12, of which more
than 80% were not reported in previous studies or found in
databases (that is, GENCODE (ref. 13) and Refseq (ref. 14)). This
study demonstrates the genomic diversity and expression
specificity of lncRNAs, while suggesting that more lncRNAs
will be discovered as additional tumour and cell types
(for example, metastatic samples) are sequenced.

Remarkably, studies suggest that approximately 88% of single-
nucleotide polymorphisms (SNPs) in the human genome are
within noncoding regions15, suggesting that many noncoding
RNAs and DNA regulatory elements (for example, promoters and
enhancers) have functional roles. Indeed, some lncRNAs play
important roles in diverse cellular process, such as cell
differentiation16, cell death and tumorigenesis17. In addition,
lncRNAs can be used as biomarkers for cancer diagnosis,
prognosis and classification because they have cell-type
specificity better than that of most protein-coding genes and
relatively stable local secondary structures, facilitating
their detection in body fluids18–20. For instance, lncRNA PVT1
has been used as a diagnostic and prognostic biomarker for
HCC (ref. 11).

Here, 60 matched samples (primary tumour, PVTT and
adjacent normal tissue) from 20 Chinese HCC patients were
subjected to total RNA-seq (rRNA depleted), followed by
integrative analysis at the genomic, transcriptomic and epige-
nomic levels, with the goal of identifying and characterizing
deregulated lncRNAs in HCC patients. Approximately 76% of
the lncRNAs identified in the samples were not annotated
by the MiTranscriptome12 or GENCODE transcriptome13

databases. Next, approximately 1,000 lncRNAs that were
recurrently deregulated in primary tumours and/or PVTTs were
identified. Their expression levels were correlated with TCGA
clinical data and additional published liver cancer data21. We
also showed that one of the recurrently deregulated lncRNAs
was suitable as a prognosis and metastasis biomarker in
HCC patients. Furthermore, copy number variations (CNVs)
and DNA methylation alterations were shown to be responsible
for the aberrant expression patterns of 147 and 93 recurrently
deregulated lncRNAs, respectively. Finally, a coding-noncoding
co-expression network was used to predict candidate lncRNAs

related to metastasis, after which the predictions were validated
experimentally.

Results
Identification of candidate lncRNAs in HCC clinical samples.
To systematically identify lncRNAs related to HCC tumorigenesis
and metastasis, approximately 9.6 billion reads for 60 samples
from 20 HCC patients were sequenced using total RNA-seq
(rRNA depleted) (Supplementary Data 1). Three matched
samples were collected from each patient: primary tumour,
adjacent normal tissue and PVTT.

We first found that 95.1% of 13,870 lncRNAs (including 23,898
transcripts) annotated by GENCODE (V19) (ref. 13) were
detected (FPKM40.5 for single-exon lncRNAs and FPKM40
for multi-exon lncRNAs) in our samples, indicating that
our sequencing depth was good. Next, using these GENCODE
lncRNAs as a reference annotation, we assembled 8,603 candidate
lncRNAs (including 10,196 transcripts) (Supplementary Data 2)
with a bioinformatics pipeline (Fig. 1a and Supplementary
Table 1): (1) assembling RNA transcripts from RNA-seq
reads; (2) filtering potential noise based on genomic location,
length and expression level; (3) removing transcripts with
coding potential, which was calculated by two computational
tools, CPC (ref. 22) and COME (ref. 23) (see details in Methods).
These candidate lncRNAs were designated as newly assembled
lncRNAs. Only a small number of the newly assembled lncRNAs
were reported in other studies. For example, 76% of them
were not found in the MiTranscriptome database12, which was
mainly derived from TCGA data (Fig. 1b). The newly assembled
lncRNAs were also compared with two other representative
annotation databases: a high quality set, RefSeq (ref. 14), and
a comprehensive set, NONCODE (over 50,000 lncRNA
transcripts included)24. Only 2% and 10% of the newly
assembled lncRNAs were found in the RefSeq (Release 72) and
NONCODE (V4) databases, respectively (Supplementary Fig. 1).
These results indicate the depth of our sequencing data
and expression specificity of the lncRNAs identified in
our samples. We showed that the number of lncRNAs
increased when the number of sequenced samples was
increased (Supplementary Fig. 2), while the detection ability for
protein-coding genes and GENCODE lncRNAs was saturated at
approximately 10 and 20 out of 60 samples, respectively.

Characterization of the candidate lncRNAs. We characterized
genomic location, expression abundance, transcript length,
conservation and SNP enrichment for the newly assembled
lncRNAs (Fig. 1c–f, Supplementary Data 3 and 4). We first
focused on the genomic locations of newly assembled lncRNAs
(Supplementary Fig. 3A). The majority (74%) of the lncRNAs
were located in intergenic regions; 16% were antisense to protein-
coding genes, whereas 3% were located in the introns of protein-
coding genes. Moreover, 1.39% and 24.94% of the lncRNAs
overlapped with pseudogenes and transposable elements,
respectively, whereas 2.24% and 5.06% of the lncRNAs contained
local domains conserved with canonical ncRNAs (for example,
rRNA, tRNA and snRNA) at the sequence and structure
levels, respectively. Similarly, the GENCODE lncRNAs also
overlapped with or included these elements (Supplementary
Fig. 3b,c).

Next, we characterized the basic features of the newly
assembled lncRNAs and compared them with protein-coding
genes and GENCODE lncRNAs. Because they had fewer putative
exons, we found that the newly assembled lncRNA transcripts
were shorter than protein-coding genes, but longer than
GENCODE lncRNAs (Fig. 1c, Supplementary Fig. 4). This result
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indicates that the high sequencing depth of our analysis
(Supplementary Data 1) enabled us to assemble long transcripts
close to their full length, even though they were expressed at
low levels (Fig. 1d, Supplementary Data 4 and 5). Notably, the
newly assembled lncRNAs were less evolutionarily conserved in
comparison with protein-coding genes and GENCODE lncRNAs,
while exonic regions were more conserved in comparison with
intronic regions (Fig. 1e).

A previous study reported that almost 90% of SNPs are located
in non-coding regions15. To investigate the relationship between
lncRNAs and diseases, we capitalized on the GWAS SNP Catalog
from NHGRI (ref. 25). We intersected the lncRNAs with GWAS
SNPs from the NHGRI catalogue and randomly selected SNPs
from the dbSNP (ref. 26). Interestingly, we found that GWAS
SNPs were significantly enriched in the newly assembled
lncRNAs in comparison with a random set (Fig. 1f). These data
suggested that our newly assembled lncRNAs were likely to be
functionally associated with human diseases.

To further validate the activity of the newly assembled
lncRNAs, we used published ChIP-seq data for the HepG2 cell
line27 to depict activity markers around transcription start sites

(TSSs). Different epigenetic signatures (H3K4me3, H3K27ac,
Pol II binding, DNase I hypersensitivity) indicated active
transcription of the newly assembled lncRNAs in liver cancer
cell lines (Supplementary Fig. 5). Peaks of these markers were
found at the TSSs of lncRNAs, suggesting that the promoters of
these transcripts are actively regulated in HepG2 cells.

Recurrently deregulated lncRNAs in tumours and PVTTs.
We used three statistical methods, GFOLD (ref. 28) followed
by counting recurrences in multiple patients (Supplementary
Figs 6–7), DESeq2 (ref. 29) and Wilcoxon signed-rank
test to define lncRNAs (including both GENCODE lncRNAs
and newly assembled lncRNAs) that were differentially expressed
recurrently (Fig. 2a,b, Supplementary Data 6) (see details in
Methods).

For the comparison of primary tumours and adjacent normal
tissues, we found that the results of DESeq2 (ref. 29) and
Wilcoxon signed-rank test were more similar to each other than
to the results of GFOLD (Fig. 2a), because the former two
methods both treated the patients as replicates, whereas GFOLD
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assessed differential expression based on individual patients.
Finally, we identified 525 and 323 lncRNAs as recurrently
downregulated or upregulated, respectively, in primary tumours
by overlapping the predictions of all three methods (Fig. 2a,c).
The identified lncRNAs were considered to represent a group of
recurrently deregulated lncRNAs potentially associated with
tumorigenesis. These lncRNAs and their P values, q-values and
expression fold-changes are listed in Supplementary Data 6.

For the comparison of PVTTs and primary tumours, we
found that DESeq2 and Wilcoxon signed-rank test identified
very few differentially expressed lncRNAs (Fig. 2b), because of
the relatively high heterogeneity of PVTTs (Fig. 2d). Only
one lncRNA (HAND2-AS1) was identified as a downregulated
candidate in PVTTs. Paired primary tumours and PVTTs

from individual patients (average correlation coefficient: 0.99)
were more similar than PVTTs from different patients
(average correlation coefficient: 0.76). Therefore, we used GFOLD
to evaluate differential expression by treating patients individu-
ally, followed by counting recurrences in multiple patients
(see Methods), revealing 107 lncRNAs that were defined as
recurrently deregulated lncRNAs potentially associated
with metastasis (Fig. 2d, Supplementary Data 6). Notably, of
the 107 metastasis-associated candidates, 38 were also recurrently
deregulated in primary tumours in comparison with adjacent
normal tissues (see details in Discussion).

Examples of tumorigenesis-associated lncRNAs are shown in
Fig. 2e. Some of the tumorigenesis-associated lncRNAs identified
in this study have been reported by previous studies. For instance,
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Figure 2 | Recurrently deregulated lncRNAs in primary tumours and PVTTs. Identification of recurrently deregulated lncRNAs: recurrently

downregulated and upregulated lncRNAs that were predicted by three statistical methods to be associated with (a) tumorigenesis and (b) metastasis.

Fold-change of expression in each individual patient for (c) recurrently deregulated tumorigenesis-associated lncRNAs; (d) recurrently deregulated

metastasis-associated lncRNAs (tumour versus PVTT). Patient I was not included in the analyses related to metastasis because the PVTTsample of patient

I was contaminated. Stacked bar charts showing examples of recurrently deregulated lncRNAs, including tumorigenesis-associated (e) and metastasis-

associated (f) lncRNAs. The number on the y axis is the number of patients with differential expression of each lncRNA.
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PVT1 promotes cell proliferation, cell cycle progression
and development of stem cell-like properties in HCC (ref. 11).
In addition, several lncRNAs (for example, TEX41,
XLOC_014515 and XLOC_030220) were recurrently upregulated
in PVTT samples, whereas others (for example, HAND2-AS1,
RP11-731F5.2 and XLOC_055355) were recurrently
downregulated in PVTTs (Fig. 2f). For example, HIF1A-AS2,
a lncRNA antisense to hypoxia-inducible factor 1-alpha, is
overexpressed in gastric cancer cells and involved in gastric
cancer development30. Notably, we identified some newly
assembled lncRNA candidates potentially related to metastasis,
including XLOC_014515 and XLOC_030220 (Supplementary
Data 6).

Association of deregulated lncRNAs with public clinical data.
Based on Gene Set Enrichment Analysis (GSEA) (see Methods) of
recurrently deregulated lncRNAs, we found that the expression

levels of the tumorigenesis- and metastasis-associated lncRNA
sets were consistent with their expression levels in another
published data set from 11 matched normal tissue samples,
primary tumours and PVTTs (ref. 21) (Fig. 3a,b). In addition, we
explored the expression levels of recurrently deregulated lncRNAs
in a TCGA liver hepatocellular carcinoma (LIHC) cohort
(see Methods). Tumorigenesis-associated lncRNAs were also
aberrantly expressed between normal tissues and primary
tumours. Because the TCGA LIHC cohort had no PVTT or
metastatic tumour samples, we compared expression levels
of metastasis-associated lncRNAs between primary tumours
with and without invasion, revealing that deregulation of
metastasis-associated lncRNAs was in accord with the clinical
status of the TCGA patients (Fig. 3a,b).

The consistent expression levels of recurrently deregulated
lncRNAs in our samples and the TCGA LIHC cohort suggest that
the identified lncRNAs could potentially serve as biomarkers.
As an example, we explored a metastasis-associated lncRNA,
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RP11-166D19.1 (ENSEMBL ID: ENSG00000255248, an isoform
of MIR100HG), which was also significantly downregulated in
4 of 11 PVTTs in comparison with matched primary liver
tumours in a previous study21. We found that RP11-166D19.1
could be used to clearly classify the patients in the TCGA cohort
into two subclasses with different survival rates. RP11-166D19.1
expression was significantly associated with the overall survival
time of HCC patients’ (log rank P value¼ 0.0037) (Fig. 3c).
Moreover, a multivariate analysis based on additional clinical
information showed that the HCCs of the low RP11-166D19.1
expression subclass were globally more severe than those of the
high-expression subclass: the low expression subclass was
significantly more likely to have AFPZ40 ngml� 1, had a high
risk of vascular invasion, and had a clear tendency to have serum
albumino3.5 g dl� 1 and prothrombin time46 s. The patients in
the high-expression subclass were mostly well-differentiated
(Fig. 3d).

Three HCC subclasses (S1, S2 and S3) were identified in
a previous HCC study31,32. Here, we clustered 20 primary
tumours from our study, as well as 157 TCGA LIHC tumours and
11 HCC tumours from a previous study21, into three subclasses
(Supplementary Fig. 9) based on the expression patterns of
619 signature genes31. We also identified lncRNAs that were
significantly deregulated in each subclass (Supplementary Fig. 10,
Supplementary Data 7). Interestingly, the putative metastasis
biomarker RP11-166D19.1 was found to be significantly
downregulated in subclass S2 in comparison with its expression
level in subclasses S1 and S3 (Wilcoxon rank-sum test,
P value¼ 3.5� 10� 4 and P value¼ 3.5� 10� 6, respectively)
(Fig. 3e).

DNA methylation alternations and CNVs of lncRNAs. We
categorized the recurrently deregulated lncRNAs based on
their correlations with CNVs and/or DNA methylation
alterations assayed in our matched samples (Fig. 4a). We listed
all recurrently deregulated lncRNAs (Supplementary Data 8) with
expression patterns correlated with CNV data (that is, upregu-
lated lncRNAs were found to be located in a DNA amplification
region) and/or DNA methylation data (that is, downregulated
lncRNAs had strong DNA methylation signals at their promoter
regions). Several lncRNAs were recurrently upregulated in some
patients and recurrently downregulated in other patients; such
lncRNAs were designated as bimorphic lncRNAs (Fig. 4a).

The CNVs of recurrently deregulated lncRNAs in HCC cells
were analysed using CytoscanHD arrays. Based on a GISTIC
analysis33, 4 significantly amplified genome regions and
70 significantly deleted genome regions were revealed in our
samples (Fig. 4b). To characterize candidate CNV-driven
lncRNAs, we mapped recurrently deregulated lncRNAs to
amplified and deleted genome regions. In total, 147 recurrently
deregulated lncRNAs were identified in deleted regions, whereas
none were found in amplified regions (Fig. 4a, Supplementary
Data 8). For example, FENDRR, which was reported to be
a prognostic biomarker in gastric cancer34, had a pattern of
decreased expression driven by copy number deletion (Fig. 4b).

Based on DNA methylation microarrays of 60 matched
samples, we analysed DNA methylation patterns to identify
recurrently deregulated lncRNAs that were affected by alterations
in DNA methylation. We applied several separate filtering
criteria (see Methods) to define recurrently deregulated lncRNAs
driven by alterations in DNA methylation. In total, 93 (10.1%)
recurrently deregulated lncRNAs had significant correlations
between DNA methylation and expression levels (Fig. 4a,c,
Supplementary Data 8), suggesting that their expression levels
in tumour and/or PVTT samples were probably regulated by

DNA methylation. As an example, we showed that the expression
level of a recurrently deregulated lncRNA, HAND2-AS1, was
inversely correlated with the DNA methylation level at its
promoter region (R2¼ 0.16694) (Fig. 4d). The promoter region of
HAND2-AS1 was hypermethylated in primary tumours and
PVTT samples.

Inference of lncRNA function using a co-expression network.
To predict the potential functional and regulatory mechanisms
of lncRNAs with respect to the molecular aetiology of HCC, we
constructed a co-expression network35 of protein-coding genes
and lncRNAs (see Methods). The resulting co-expression network
consisted of 7,367 protein-coding genes, 6,377 GENCODE
lncRNAs and 5,612 newly assembled lncRNAs. There were
1,286 recurrently deregulated lncRNAs in the network. All
protein-coding genes and lncRNAs were grouped into
43 clusters, each of which had at least 100 highly inter-
connected genes (Supplementary Data 9). In addition to
interaction edges within a cluster, there were also 337,609 edges
between nodes in different clusters, which could indicate their
functional relatedness or regulatory relationships (Fig. 5a,
Supplementary Fig. 11).

Among the 43 clusters, we found four clusters containing
protein-coding genes with interesting functions: clusters 4, 9, 18
and 25 (Fig. 5b). The recurrently deregulated lncRNAs are highly
enriched in these gene clusters (Fisher’s exact test, all
P valueso0.01). For example, Gene Ontology and KEGG
pathway enrichment analyses suggest that the protein-coding
genes in cluster 4 are mostly associated with metabolic processes
in the liver, such as organic acid metabolism and degradation of
fatty acids. The protein-coding genes in cluster 9 mainly function
in cell cycle processes such as DNA repair, DNA replication
and DNA metabolism, which influence cell migration36. Cluster
18 is enriched with immune response genes involved in the
T-cell and B-cell receptor signalling pathways, consistent with
reports that immune and inflammatory responses play decisive
roles in tumour development by influencing the processes of
invasion and migration37.

Another intriguing example is cluster 25 (Fig. 5c), which
includes protein-coding genes enriched in functional terms
related to metastasis, such as cell adhesion and the TGF-b
signalling pathway, which have been shown to play essential roles
in diverse processes, including cell proliferation, differentiation,
motility and adhesion38. Furthermore, many HCC-related driver
genes39 are also found in cluster 25. For example, the FLT3
receptor plays a role during the late stages of liver regeneration
and is involved in GPCR signalling pathways40. FLT3 was
co-expressed with other driver genes in the sub-network,
including WDFY4 and FAT4. Moreover, three recurrently
deregulated lncRNAs (HAND2-AS1, AC096579.7 and FENDRR)
were strongly correlated with FLT3 at the expression level,
suggesting that these lncRNAs have functions related to that of
FLT3. Another interesting gene in cluster 25, FAT4, encodes
a cadherin (a calcium-dependent cell adhesion protein) that
serves as a tumour-suppressor gene41. FAT4 was closely
associated with some recurrently deregulated lncRNAs,
including HAND2-AS1, FENDRR and WDFY3-AS2, all of which
were differentially expressed during cell migration. Cell adhesion
was one of the most significantly enriched processes during
tumour metastasis. These co-expression relationships provide
functional evidence demonstrating that adhesion-related
lncRNAs likely have roles in tumour metastasis. Furthermore,
driver gene ZFPM2 was also highly involved in the sub-network;
it was significantly correlated with seven driver genes and
five recurrently deregulated lncRNAs. Some migration-related
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recurrently deregulated lncRNAs (HAND2-AS1, AC096579.7 and
FENDRR) had expression patterns similar to that of PTPRB,
which plays an important role in blood vessel remodelling
and angiogenesis42, indicating that these lncRNAs could have
related functions.

Functional assay for metastasis-related lncRNA candidates.
Transwell migration assays were used to assess whether
putative candidate lncRNAs might function in the progression of
HCC. We first selected ten lncRNA candidates that were
associated with cell adhesion based on the co-expression network
described above (Supplementary Table 2), in which four lncRNAs
(WDFY3-AS2, HAND2-AS1, RP11-166D19.1 and XLOC_055355)

were also significantly co-expressed with genes in the
TGF-b signalling pathway. Note that seven candidate lncRNAs
(shown in Fig. 6a) were recurrently deregulated lncRNAs in
PVTT samples and designated as metastasis-associated lncRNAs
in the sections above. Three siRNAs were synthesized for each
candidate lncRNA and mixed as a pool (Supplementary Table 3).
Three liver cancer cell lines, HepG2, SMMC-7721 and HCCLM9,
were used to conduct loss-of-function RNAi assays (Fig. 6a).

Remarkably, knockdown of seven of the ten candidate
lncRNAs significantly affected cell migration in at least one
cell line; knockdown of three lncRNAs produced accordant
alterations in cell migration in at least two cell lines by
suppressing or promoting cell migration (Fig. 6a, Suppleme-
ntary Table 3). RNAi knockdown efficiency was confirmed using
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qRT-PCR (Fig. 6b, Supplementary Fig. 12, Supplementary
Table 4). The results from three representative transwell
assays are shown on the right side of the figure (Fig. 6c,d).
In order to document the reproducibility of the results, we
repeated the RNAi knockdown and transwell migration assays
using three siRNAs separately in all three cell lines (Supple-
mentary Fig. 13A–B and Supplementary Table 5); the results of
these experiments were consistent with those of the mixed siRNA
experiments. Moreover, to avoid mistaking differences in cell
proliferation for differences in cell migration, we performed
CCK8 cell proliferation assays, revealing that knockdown of these
lncRNAs hardly affected cell proliferation (Supplementary
Fig. 13C, Supplementary Table 6).

For some lncRNA knockdown experiments, changes in
migration ability were consistent with the deregulation patterns
of HCC patients. For example, RP11-166D19.1 was recurrently
downregulated in PVTT samples from four patients. The loss-of-
function assay showed that knockdown of RP11-166D19.1
enhanced the migration ability of HCC cells. However, some
other lncRNAs, such as HAND2-AS1, demonstrated an incon-
sistent trend between deregulation patterns in HCC patients
and experimentally validated functions in cancer cell lines;
silencing of HAND2-AS1 suppressed cell migration, although it

was downregulated in 8 of 20 patients’ PVTT samples. It has
been reported that nearly half of HCC cell lines do not
resemble primary tumours43, so the intrinsic differences
between cancer cells lines and clinical samples might explain
the discrepancies between the samples’ gene expression patterns
and experimentally validated functions in cell lines. Overall,
the high validation rate of the candidate lncRNAs showed that
the co-expression network, based on previous knowledge of
signalling pathways and supplemented by recurrent aberrant
expression patterns in matched clinical samples, identified
candidate lncRNAs that potentially play functional roles in the
sophisticated regulation of cancer development and progression.

Discussion
Based on an analysis of genomic, epigenomic and transcriptomic
data of HCC primary tumours and PVTTs, this study reports
several findings. First, based on high-throughput sequencing
technology and bioinformatics analysis of 60 matched samples,
including primary tumours, PVTTs and adjacent normal tissue,
we discovered and characterized an expanded landscape of
lncRNAs. Using PVTTs from Chinese HCC patients and deep
sequencing data enabled us to detect many candidate lncRNA
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transcripts. Moreover, we identified lncRNAs that were
recurrently deregulated during HCC tumorigenesis and metas-
tasis. Second, integrative multi-omics analysis revealed that
recurrent deregulation of lncRNA expression was often associated
with alterations in DNA methylation and CNV. In addition,
lncRNA expression levels were correlated with clinical data from
the TCGA and other published liver cancer data sets. Lastly, using
network analysis and loss-of-function assays, we identified
functional lncRNAs potentially related to cell adhesion, immune
responses and metabolic processes. For example, our paired
RNA-seq data showed that lncRNA HAND2-AS1 was recurrently
deregulated; its expression levels among 60 samples were
inversely correlated with matching DNA methylation data. Based
on our co-expression network, we inferred that HAND2-AS1
might be related to HCC metastasis. Finally, using an RNAi
functional assay, we demonstrated that the function of lncRNA
HAND2-AS1 in HCC cells is related to cell migration.

In addition, we have shown that RP11-166D19.1 could
potentially serve as a promising single-gene HCC biomarker.
We also demonstrated that knockdown of RP11-166D19.1
promoted cell migration. RP11-166D19.1 is an isoform of lncRNA
MIR100HG, a leukemia-related oncogene44 hosting three
miRNAs (let-7a, miR-100 and miR-125b) in its introns45. As
reported previously, lncRNAs are more tissue- and cell-type-
specific in comparison with protein-coding genes18. Moreover,
in comparison with protein-coding genes, the local secondary
structures of lncRNAs confer greater stability and provide

a greater likelihood of detection19. Therefore, translation of
these results into candidate lncRNA biomarkers might impact
clinical decision-making and ultimately improve clinical
outcomes for patients with HCC.

By exploring lncRNA transcriptome alteration, we found that
the lncRNA landscapes of PVTTs were indistinguishable from
those of matched primary tumours, consistent with previous
studies46. We employed principal component analysis to assess
the expression profiles of recurrently deregulated lncRNAs in
different samples. principal component analysis showed that the
recurrently deregulated lncRNAs could be used to clearly
distinguish primary tumours from adjacent normal tissues,
while PVTTs were more similar to primary tumours
(Supplementary Fig. 8). This observation showed that the
lncRNA expression profile of the PVTTs was very similar to
that of their matched primary tumours, consistent with studies on
protein-coding genes, CNV and DNA methylation46. These
findings suggest that (1) primary tumours of HCC patients with
PVTT may contain sub-clones with the potential to invade the
portal vein and develop into PVTTs; (2) many metastasis-
associated lncRNAs were deregulated in these sub-clones. These
findings are consistent with clinical observations, because all of
our sequenced patients had stage IV HCC with serious PVTT.
Although the overall lncRNA expression patterns of PVTTs were
similar to those of their matched primary tumours, approximately
100 lncRNAs were significantly and recurrently deregulated in
PVTTs in comparison with their expression levels in paired
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primary tumours. These lncRNAs could play essential roles in
metastasis, because they were deregulated further as primary
HCC cells invaded the portal vein.

PVTT has been considered as a type of intrahepatic
HCC metastasis by several previous genomic studies10,47.
Moreover, PVTTs have also been used to study HCC metastasis
in functional and mechanistic studies48,49, although some
researchers have not regarded PVTT as a solid metastatic
model. In this genomic study, we provide putative associations
and predicted candidates at the transcriptome level, but their
functions and the mechanisms in which they play a role must be
confirmed by experimental validation.

In this study, we identified recurrently deregulated tumorigen-
esis- and metastasis-associated lncRNAs, many of which were
experimentally validated and mechanistically linked to cancer
development and progression. We anticipate that the recurrently
deregulated lncRNAs identified in this report could provide
a valuable resource for studies aimed at delineating the relation-
ship between functional lncRNAs and HCC tumorigenesis/
metastasis. In addition, recent studies suggest that lncRNAs
can code for small peptides50,51. Although COME can detect
some of these small peptides23, Ribo-seq experiments52 are a
more reliable way to detect peptides translated from lncRNAs in
cancer cells.

Methods
Transcriptome assembly for 60 samples from HCC patients. Total RNA from
60 samples from 20 Chinese HCC patients was sequenced (GSE77509). Each
patient had three matched samples: primary HCC tumour, adjacent normal liver
tissue and PVTT. The patients were ordered using alphabetic labels (A to T) in this
paper, but the patients were originally numbered as 3,6, 7, 8, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 24, 25 and 26. The PVTT sample of one patient (14) was
not distinguishable from normal tissue, so we did not use it in our migration and
metastasis analyses. The ethical committee of EHBH hospital approved this study.
Informed consent was obtained from each patient.

We first evaluated RNA-seq quality using FastQC (version 0.10.1) and
found that all raw reads qualified for the analysis. We aligned the RNA-seq reads to
human reference rRNA using Bowtie with one mismatch in order to estimate the
rRNA ratio. Most of the rRNAs were removed by our experiments; only a few
remained and generated rRNA reads.

Next, the RNA-seq reads were mapped to the human reference genome (hg19)
using Tophat (version 2.0.10) (ref. 53) with default parameters. The human
genome sequence was downloaded from Ensembl (Homo sapiens GRCh37/hg19).
After mapping, we further removed PCR duplicates using rmdup in Samtools54.
Further details of the preprocessing results are described in Supplementary Data 1.

Subsequently, based on the mapped reads, we re-assembled a transcriptome
using Cufflinks (version 2.2.1) (ref. 55) by providing reference annotations
(option ‘-g’) from GENCODE (v19) for each data set of 60 samples. Next, we used
Cuffmerge55 to merge all 60 meta-assemblies to generate a final transcriptome
(Supplementary Data 2).

Identification of candidate lncRNAs. After the transcriptome was assembled, we
used several stringent filters to identify a set of candidate lncRNAs, newly
assembled lncRNAs, in addition to GENCODE lncRNAs:

[1] Transcripts that overlapped (4¼ 1 nt) on the same strand with the exons of

protein-coding genes or noncoding RNAs (both canonical ncRNAs and long

lncRNAs (lncRNAs)) annotated by GENCODE (V19) were removed.

Canonical ncRNAs include rRNA, tRNA, miRNA, snRNA, snoRNA,

misc_RNA, mitochondria tRNA and rRNA. Six biotypes were defined as

‘long non-coding RNAs’ by GENCODE: ‘lincRNA’, ‘processed_transcript’,

‘sense_intronic’, ‘sense_overlapping’, ‘antisense’, and ‘3prime_overlap-

ping_ncrna’13. Note that ‘processed transcript’ means that a transcript does

not contain an open reading frame, although it could have a historical protein-

coding-style name. Note that some lncRNAs were updated as protein-coding

genes in recently released GENCODE annotation versions.

[2] Transcripts shorter than 200 bp and without strand information were

discarded.

[3] To remove fragments of annotated RNA, single-exon transcripts proximal

(within 2000 bp) to protein-coding genes or other noncoding RNAs on the

same strand were filtered.

[4] We calculated transcript expression levels using Cufflinks55 with rRNA reads

masked. Single-exon transcripts with low expression levels (FPKM o0.5) in all

samples were removed.

[5] To ensure stringent evaluation of coding potential, we calculated the coding

potential of each transcript using two computational tools, CPC (ref. 22) and

COME (ref. 23). CPC calculates coding potential based on sequence features,

whereas COME integrates expression, RNA secondary structure, conservation

and epigenetic signals56 (Supplementary Table 1). COME has been successfully

applied to noncoding RNA prediction in worm57,58, fly, human59, mouse and

Arabidopsis60. Transcripts with CPC score40 or COME score40.5 were

removed.

Annotation of candidate lncRNAs. We annotated the genomic locations of the
identified candidate lncRNAs, GENCODE lncRNAs and MiTranscriptome
lncRNAs (TCGA) by overlapping them with annotated coding genes. Intronic
lncRNAs were defined as those located in the intronic regions of coding genes on
the sense strand. Antisense lncRNAs were those that overlapped at least 1 nt with
any exon (including both coding genes and ncRNAs) on the antisense strand.
Cis-lncRNAs (also called sense lncRNAs) were those that were close to
(within 2,000 nt of the 50- or 30-ends) a protein-coding gene. The remaining
lncRNAs that did not overlap with any coding genes or annotated ncRNAs were
designated as intergenic lncRNAs.

We also assessed whether any of the candidate lncRNAs overlapped with
pseudogenes or transposable elements, because previous studies suggested that
some lncRNAs could be derived from such sequences. Annotations of pseudogenes
and transposable elements were derived from GENCODE and the UCSC Genome
Browser, respectively.

Furthermore, we also annotated lncRNAs with domains/motifs conserved with
annotated canonical ncRNAs at the sequence and structure levels. Sequence
conservation was assessed by performing BLASTN over canonical ncRNAs
sequences. The cutoff E-value was the default value of 1e-5. Secondary structure
conservation was calculated by scanning the Rfam structure families of known
ncRNAs using INFERNAL/cmscan (E-value cutoff was 0.01), in which hits were
considered to be sufficiently reliable to be reported in a possible subsequent search
round.

Conservation and SNP enrichment analysis for lncRNAs. The PhastCons scores
for multiple alignments of 46 vertebrate genomes were downloaded from the
UCSC Genome Browser (https://genome.ucsc.edu/). Two conservation scores were
calculated for each transcript; one was based on the average value of the PhastCons
scores in the exonic regions, whereas the other was based on those in the intronic
regions.

To assess SNPs in different genomic elements, we downloaded two
SNP databases: (1) 12,891 SNPs from the National Human Genome
Research Institute’s GWAS catalogue (https://www.genome.gov/26525384);
(2) 14,416,369 common SNPs from dbSNP Build 142 common (downloaded from
the UCSC Genome Browser) (treated as background variation). We calculated the
number of SNPs that overlapped with the transcripts using the BEDTools intersect
function. We first calculated the fraction, frac.(transcripts), of the amount of
overlapped SNPs from the GWAS catalogue to the number of overlapped
background SNPs for different categories of genomic elements (for example,
lncRNAs and protein-coding genes). Next, we shuffled the transcripts’ positions on
the whole genome 100 times and re-calculated frac.(shuffled transcripts).
Subsequently, we calculated the odds ratio (OR) as

OR ¼frac: transcriptsð Þ=frac: shuffled transcriptsð Þ

An OR (control) was calculated by replacing SNPs from the GWAS catalogue
with control SNPs:

OR controlð Þ¼frac: transcriptsð Þ0=frac: shuffledtranscriptsð Þ0

where the control SNPs were randomly selected from the background SNPs
shuffled over the whole genome. The significance of comparison for the OR over
OR (control) was tested via paired Student’s t-test.

Differential expression analyses. From 8,603 newly assembled lncRNAs and
13,870 known lncRNAs annotated in GENCODE, we identified lncRNAs that were
differentially expressed between primary tumours and adjacent normal tissues, as
well as between PVTTs and matched primary tumours. We used two different
strategies: treating all patients as biological replicates (DESeq2 (ref. 29) and
Wilcoxon signed-rank test) and treating each patient individually
(GFOLD (ref. 28)) followed by recurrence count.

In DESeq2 and Wilcoxon signed-rank test, significantly differentially expressed
lncRNAs were defined as satisfying two criteria: |log2 (fold-change)|41 and
q-value (Benjamini-Hochberg adjusted P value)o0.05.

In GFOLD (V1.1.3), which was especially useful for assessing samples without
replicates, differentially expressed lncRNAs were first identified for each individual
patient. GFOLD calculated its own statistics (that is, significance cutoff and
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GFOLD value) for expression level changes based on the posterior distribution
of the log fold-changes in expression28. The significance cutoff was set at
0.01 (-sc 0.01), also requiring |GFOLD value|41.

After differentially expressed lncRNAs were identified in individual patients
using GFOLD (Supplementary Fig. 6), lncRNAs that were not recurrently
deregulated in multiple patients were filtered out from the results, yielding
1,112 lncRNAs that were recurrently differentially expressed in at least
8 of 20 patients (permutation test, FDRo0.05) when primary tumours were
compared with adjacent normal tissues, as well as 107 lncRNAs that were
recurrently differentially expressed in at least four patients (permutation test,
FDRo0.05) when PVTTs were compared with matched primary tumours
(Supplementary Fig. 7). We used a permutation test to estimate the FDR of the
recurrence among multiple patients. First, we randomly sampled size-matched
lncRNAs for each patient according to the number of differentially expressed
lncRNAs identified by GFOLD and calculated the number of recurrences. Next, we
repeated the sampling and counting 10,000 times to estimate a null distribution for
the number of recurrences. Finally, we calculated the FDRs for the recurrences
based on the null distribution. We set the minimum number of recurrences
to 8 and 4 for primary tumours versus adjacent normal tissues and PVTTs versus
primary tumours, respectively, to ensure that the FDR of each recurrence was
smaller than 0.05.

Integrative analyses of TCGA LIHC data. We downloaded RNA-seq data for
157 LIHC patients with clinical data in the TCGA from the NCI Cancer Genomics
Hub (CGHub)61. We calculated the expression level of each gene/lncRNA (FPKM)
for each TCGA sample using Cufflinks55.

In the Kaplan-Meier survival analysis, the survival data included vital status,
days to death, and other variables, which were available for 151 of 157 patients.
We first divided the samples into two groups (51 low-expression and
100 high-expression) according to the expression level of a marker gene/lncRNA
(for example, RP11-166D19.1). Next, we used Kaplan-Meier survival
analysis62 to perform a 5-year survival analysis via the survival package
(https://cran.r-project.org/web/packages/survival) in the R environment for
statistical computing and computed significance using the log-rank test.

Additional clinical information (age, gender, AFP, serum albumin, prothrombin
time, cirrhosis, vascular invasion, and so on) for the LIHC patients in the
TCGA was downloaded for the multivariate analysis. Based on two groups defined
by the expression level of a particular lncRNA (for example, RP11-166D19.1),
the odds ratio of each clinical criterion was calculated for each class of patients
(low expression and high expression). A forest plot was drawn with odds ratios and
95% confidence intervals for each clinical criterion.

We used GSEA (v2.0.13) (ref. 63) to assess enrichment of sets of recurrently
deregulated lncRNAs in other data sets. GSEA requires three input files: a gene set,
expression data and phenotype labels. We used the recurrently deregulated lncRNA
set (the tumorigenesis set or metastasis set) as the gene set. Expression data were
derived from the TCGA cohort or published liver cancer data21. For the published
data, we used sample information (adjacent normal tissue, primary tumour and
PVTT) as phenotype labels. Because the TCGA LIHC cohort had no PVTT or
other metastasis samples, we classified primary tumour samples into invasion
and non-invasion groups based on clinical information (T stages in the
TNM staging system: T1 versus T2–T4). The lncRNAs were rank-ordered by
differential expression (signal2Noise in GSEA v2.0.13) (ref. 63) between the two
groups.

Subtypes of HCC tumours. Based on the expression pattern of 619 signature
genes, HCC primary tumours were classified into three subclasses, S1, S2 and
S3 (refs 31,32). We used an online classification tool, NearestTemplatePrediction,
from GenePattern (http://software.broadinstitute.org/cancer/software/genepattern/
modules) to perform the classification. Finally, the Wilcoxon rank-sum test was
used to identify lncRNAs deregulated in each subclass (Supplementary Fig. 10)
(q-valueo0.05 and fold change42).

Copy number variation data for lncRNAs. DNA copy numbers were determined
for the 60 matched samples (PVTT/tumour/normal tissue samples from
20 patients) using Affymetrix CytoscanHD arrays by following the manufacturer’s
protocol (GSE77275). The CytoscanHD array contains 2,696,550 probes,
including 1,953,246 nonpolymorphic probes. The GISTIC algorithm (GISTC2.0)
(ref. 33) was used to calculate G-scores and FDRs (q-values) for the aberrant
regions and thus identify genomic regions that were significantly amplified or
deleted across all samples. G-scores consider the amplitude of the aberration and
its frequency of occurrence across all samples. Aberrant regions were considered
significant when the assigned FDR q-value was less than 0.25. The GISTIC
algorithm also reported genes found in each aberrant region. We identified
recurrently deregulated lncRNAs for which CNVs contributed to their
deregulation.

DNA methylation data for lncRNAs. DNA methylation profiles were probed
using the Illumina Infinium HumanMethylation 450 k BeadChip, which
contains more than 485,000 CpG sites (GSE77269). b values were calculated to

independently assess the methylation levels of the CpG sites for each data set.
CpG sites were distributed across the promoters and gene bodies of the lncRNAs.
To identify recurrently deregulated lncRNAs that were epigenetically regulated by
DNA methylation, we assigned all CpG sites corresponding to promoter regions
(2,000 bp upstream of the TSS) to each lncRNA. Pearson correlation coefficients
between expression levels and b-values were calculated for each lncRNA and all
assigned methylation sites across all 60 samples. When there were multiple
CpG sites for the same gene promoter, the CpG site with the highest correlation
was assigned to that lncRNA. Recurrently deregulated lncRNAs with Pearson
correlation coefficients o� 0.3 were identified as lncRNAs regulated by
DNA methylation alteration.

Co-expression network construction. We adapted a published method35 to
construct a co-expression network of lncRNAs (including both GENCODE
lncRNAs and lncRNAs identified in the HCC samples). The expression levels
derived from the total RNA-seq data for the 60 samples were used. Genes
with a maximum expression level among all data sets that ranked in the bottom
20% were excluded from the input gene list. For each gene pair (including lncRNAs
and protein-coding genes), we calculated the Pearson correlation coefficient and
corresponding P -value using the WGCNA package for the R Environment for
Statistical Computing64. All P values were adjusted for multiple testing via
Bonferroni correction in the multtest R package65. Markov clustering (MCL)66 was
used to detect highly inter-connected gene/lncRNA clusters. Bonferroni-adjusted
P values (cutoff: 0.01) were used as edge weights for MCL. To control the size
of the clusters generated from the MCL clustering, the inflation coefficient was
set to 2.4.

Gene ontology and pathway enrichment analyses. For the protein-coding genes
in each co-expression cluster, we used R package topGO (ref. 67) to estimate
enrichment in biological process (BP) terms for different gene sets. We estimated
the significance of GO term enrichment using a hypergeometric test. Moreover, we
used R package KEGGREST (ref. 68) to estimate enrichment in biological pathways
for each cluster. We also annotated 271 driver genes of liver cancer, which were
derived from a recent study39.

Knockdown of candidate lncRNAs and transwell migration assay. Three
human liver cancer cell lines, HepG2, SMMC-7721 and HCCLM9, were used to
conduct functional assays (HepG2 was purchased from the American Type Culture
Collection (ATCC, Manassas, VA, USA), SMMC-7721 and HCCLM9 were
provided by Professor Jianzhong Xi from Peking University). All cell lines were
tested for mycoplasma contamination and no contamination was found. Three
siRNAs were designed for each candidate lncRNA (Supplementary Table 3) and
obtained from GenePharma. qRT-PCR was used to monitor siRNA knockdown
efficiency. Primer sequences used for qRT-PCR are listed in Supplementary
Tables 3 and 4. Transwell migration assays were used to test the effects of candidate
lncRNAs on cell migration. CCK8 cell proliferation assays were used to assess the
effects of candidate lncRNAs on cell proliferation.

For the cell migration assays, cells were first transfected with 30 nM siRNA
mixtures of three designed siRNAs in 24-well plates and incubated for 48 h,
followed by resuspension and washing with phosphate-buffered saline buffer. Next,
for each experiment, approximately 40,000 cells were seeded into the upper
chamber of a transwell insert (pore size, 8 mm, Costar) in 100 ml of serum-free
medium per well. Medium (600 ml) containing 10% serum was placed in the lower
chamber to act as a chemoattractant. The seeded cells were incubated for 24 h to
allow them to migrate. Subsequently, non-migratory cells were removed from the
upper chamber by scraping it with cotton. The cells remaining on the lower surface
of the insert were fixed with 4% formaldehyde (Sigma) and stained with DAPI for
counting. Each type of cell was assayed in triplicate. Moreover, we repeated the
RNAi knockdown and migration assays for all candidate lncRNAs using each
siRNA at the same concentration.

To assess whether cell proliferation affected cell migration activity in the
transwell assays, we performed CCK8 cell proliferation assays after knockdown of
candidate lncRNAs using each individual siRNA. For the cell proliferation assays,
cells were transfected with 30 nM of each siRNA and allowed to grow for 48 h.
Next, cells were incubated with 10% CCK8 reagent (DoJinDo Laboratories, Japan)
for 1 h at 37 �C. The absorbance of the solution in each well at 450 nm was detected
using an automatic spectrometer (Multimode Reader; Enspire). Each experiment
was performed in triplicate.

Data availability. The high-throughput sequencing data from this
study have been submitted to the NCBI Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE77276
(RNA-seq, GSE77509; small RNA-seq, GSE76903; 450k array, GSE77269; Cytoscan
HD array, GSE77275). The authors declare that all other data are available in the
article and its Supplementary Information Files or from the corresponding author
on reasonable request.
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