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Abstract

Extracting semantically related parts across models remains challenging, especially without supervision. The

common approach is to co-analyze a model collection, while assuming the existence of descriptive geometric

features that can directly identify related parts. In the presence of large shape variations, common geometric

features, however, are no longer sufficiently descriptive. In this paper, we explore an indirect top-down approach,

where instead of part geometry, part arrangements extracted from each model are compared. The key observation

is that while a direct comparison of part geometry can be ambiguous, part arrangements, being higher level

structures, remain consistent, and hence can be used to discover latent commonalities among semantically related

shapes. We show that our indirect analysis leads to the detection of recurring arrangements of parts, which are

otherwise difficult to discover in a direct unsupervised setting. We evaluate our algorithm on ground truth datasets

and report advantages over geometric similarity-based bottom-up co-segmentation algorithms.

1. Introduction

... that form ever follows function. This is the law.

— L. Sullivan (1896)

Large geometric differences often hide semantic simi-

larity across many related objects. Discovering such la-

tent commonalities reveals interesting object characteristics

along with their unifying semantic connections, and can

greatly benefit model exploration and content creation. Con-

sistent cross-model part level decompositions are rarely ex-

plicitly encoded in model collections, necessitating auto-

matic analysis to reveal such connections.

In recent years, various approaches have been developed

to collectively analyze model sets. Such co-analysis algo-

rithms either assume access to labeled training sets to facili-

tate supervised learning [KHS10,LMS13], or heavily rely on

geometric similarity across the models for successful analy-

sis [HFL12, HZG∗12, KLM∗12, KLM∗13]. In the presence

of significant geometric and topological variations, we still

lack appropriate algorithms to automatically analyze col-

lections of semantically related objects. For example, we

want to link consistent parts across the chairs in Figure 1-

top, which is still beyond the realm of state-of-the-art purely

geometry-based methods (see Table 1).

We observe that certain patterns in the form of arrange-

ments among object parts are intrinsic to object characteris-

tics and recur across models belonging to semantically re-

lated shape collections (e.g., legs support chair seats in typ-

ical part configurations). Discovering such patterns requires

identifying what are the parts, how they are arranged, and

how they correspond across the models. Our main observa-

tion is that although part geometries can significantly vary

across related models, their spatial arrangements (which we

refer to as part arrangements) remain consistent, and hence

can be used to establish part correspondence.

In particular, given a set of multi-component models in

a shape collection, our goal is to group the input compo-

nents to form object parts, whose consistency links to inter-

esting and meaningful semantics across model collections.

For example, in Figure 2, the relative arrangement of wheels,

frames, handles, seats is discovered, eventually leading to

consistent part correspondence across the models. Note that

regions of the models can go unclaimed (shown in gray).

We focus on man-made objects as commonly found in

online 3D repositories. Such models are typically non-

manifold, come in multi-components, and contain large ge-

Figure 1: We present a top-down indirect analysis to dis-

cover corresponding parts (bottom) across objects, even

with significant geometric and topological differences (top).
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part arrangement recurring partsinput

Figure 2: Starting from unlabeled models (left), we discover

recurring part arrangements (middle) and in turn extract

corresponding parts, even in presence of significant geomet-

ric and topological variations (right). Unassigned compo-

nents are indicated in gray.

ometric differences. A direct bottom-up approach would be

to create a set of possible parts for each model, and then,

‘cluster’ the parts across the different models. However, due

to large geometric differences, typical geometric shape de-

scriptors are not sufficiently descriptive to facilitate reli-

able clustering or grouping (see Table 1). Alternatively, one

could try to directly solve for point-to-point correspondence,

which can be ambiguous for models with large geometric

differences (see [vKZHCO11]).

Instead, we propose an indirect analysis. First, we group

different components from each model to form candidate

parts. Parts from the same model are then combined to form

different spatial arrangements. We focus on pairs of parts

or simply pair arrangements (PA) as the basic unit of ar-

rangement. Although we cannot compare parts from differ-

ent models; we can, however, compare PA-s from different

models, without establishing explicit part correspondence

(see Figure 3). The information is then propagated down to

compare segments, both within and across models. Multi-

ple such PA-s, in turn, reveal larger consistent part arrange-

ments (see Figure 2). Finally, in a gather stage, the infor-

mation is accumulated to reveal recurring part arrangements

and establish part correspondence.

We tested our algorithm on a range of man-made ob-

ject collections with significant geometric differences. To the

best of our knowledge, we are the first to demonstrate that an

indirect, unsupervised analysis working on abstracted part

arrangements can reveal interesting substructures in model

collections. We created a benchmark consisting of models

with semantic parts manually marked, and used it to com-

pare our algorithm with state-of-the-art alternatives. In sum-

mary, we formulate the problem of co-analysis of a shape

collection as discovering recurring part arrangements; de-

sign an unsupervised algorithm based on a novel indirect

top-down analysis of part arrangements to reveal part corre-

spondence; and evaluate the algorithm on a range of publicly

available shape collections of man-made objects.

2. Related Work

Shape analysis. In order to create novel yet useful shapes

from existing models, it is often desirable to have a semantic

understanding of the source objects. Researchers have long

aimed at inferring such information from geometry alone.

For example, Fu et al. [FCODS08] infer upright orienta-

tion from a given model; iWires [GSMCO09] and followup

efforts [XZCOC12, ZCOM13] analyze inter- and intra-part

geometric relations for smart object manipulation and cre-

ation; Bokeloh et al. [BWS10] extract partial symmetry in-

formation towards inverse procedural modeling; encoding a

hierarchy of symmetrically related parts in individual mod-

els [WXL∗11] or in model collections [vKXZ∗13]; Kaloger-

akis et al. [KCKK12] learn a probabilistic distribution over

a part-based model encoding multiple object styles, part car-

dinalities, and part placements, and use it for shape synthe-

sis. Such methods either work on isolated models (hence, no

variations across models), or assume input/training models

to have consistent partitioning and part annotations, or rely

on geometric features for correspondences.

As humans, we categorize objects into semantically

meaningful parts, and classify their parts based on their

use [FSH11,LMS13]. Can we do the same computationally?

Grabner et al. [GGVG11] investigate the intriguing question

of ‘what makes a chair a chair’. Our goal is also to extract

semantic structure, without access to tagging or semantic

groups, purely based on input geometry.

Co-analysis of model collections. Compared to traditional

analysis of individual shapes, multiple shapes offer richer

information regarding what changes and what remains in-

variant across related shapes. Attene et al. [ARSF09] pro-

posed the “ShapeAnnotator" to support interactive segmen-

tation and annotation of 3D models, organizing them in a

shape ontology to demonstrate applications in both virtual

modeling and physical prototyping. Later, Golovinskiy and

Funkhouser [GF09] presented an automatic approach that

uses pairwise rigid alignment between models to establish

correspondence and extract consistent segmentation. Subse-

quent improvements continue to rely on pairwise rigid align-

ments and then diffuse the reliable alignment information

regularized by loop constraints to obtain improved corre-

spondence assignment [NBCW∗11, HZG∗12, KLM∗12].
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Figure 3: Starting from multi-component models, we construct their relation graphs (see Section 4.1), which are then used to

group components to form candidate parts. Non-conflicting pairs of such parts form pair arrangements (PA) (e.g., si
1 is formed

by (pi
1, pi

3)). Our main observation is as follows: while parts across different models are difficult to compare in the absence of

any suitable correspondence (e.g., how to compare pi
1 to p

j
1?); pairs of parts, i.e., PA-s can be directly compared across models,

and in turn be used to reveal similarity between parts across different models. We compare PA-s in a descriptor space; e.g., see

the similarity matrix on the right; elements with higher values indicating higher similarity. Finally, recurring parts and their

arrangements (see Figure 11(e)) are detected, often revealing semantic connections.

Many model collections exhibit strong geometric simi-

larity across the input shapes among their corresponding

parts. Hence, researchers have proposed geometric feature-

based clustering to define consistency among parts [KHS10,

XLZ∗10, HKG11, SvKK∗11, vKTS∗11, HFL12, WAvK∗12,

MXLH13]; extract low degree of freedom deforma-

tion linking different models for novel model explo-

ration [OLGM11]; perform co-abstraction [YK12]; detect

curve style [LZW∗13] for co-analysis of shapes; and have

employed geometric features and context to learn semantic

correspondence using an SVM classifier [LMS13]. Recently,

Kim et al. [KLM∗13] learn a part-based deformable model

by simultaneously optimizing for part decomposition, part

correspondence, and a low complexity deformation model

that best encodes input models.

Since the methods rely on part-level geometry to be con-

sistent (and hence corresponding descriptors being consis-

tent), they fail to reveal interesting relations across mod-

els under significant geometric variations. Specifically, the

methods expect sufficient model pairs to be very similar ge-

ometrically in terms of size, orientation, etc. in order to reli-

ably ‘propagate’ correspondence (see Section 5).

3. Overview

Starting from models from shape collections (e.g., Prince-

ton Shape Benchmark, Trimble 3D warehouse, etc.), our

goal is to group input components of models to reveal re-

curring parts and their arrangements. Since the models have

large geometric variations, we look at relations (e.g., sym-

metry, contact) to reveal semantic consistency and not ge-

ometric consistency of the parts. (In the rest of the text, we

refer to the different components from a model as segments.)

For each model, based on their relations, we construct a set

of possible groupings of segments to form candidate parts,

where each part is a connected subgraph of the relation-

graph obtained from the initial multi-component models (see

Section 4.1). If we can now compare parts coming from dif-

ferent models, we can discover a consistent pattern of part

arrangements. However, in the absence of part-level corre-

spondence, directly comparing them across different mod-

els is difficult (see Figures 1 and 3). We have an interleaved

problem: in order to compare part arrangements we have to

first determine what are the parts; while, relevance of parts

is determined by consistency among their arrangements.

We take an indirect approach. Candidate parts from within

models are grouped as model substructures to encode rela-

tive geometric arrangement. We consider pairs of parts (i.e.,

a PA) as the smallest non-trivial arrangement that reveals

shape structure. As a key enabler, PA-s can be efficiently

encoded and compared across different models without re-

quiring any correspondence information. In Section 4.2, we

describe how we create, encode, and compare PA-s from dif-

ferent models to form the PA-similarity matrix M1. Then,

by accumulating information from M1, we define a part-

similarity matrix M2 to compare parts across different mod-

els; M2 in turn is used to compare segments to form a

segment-similarity matrix M3. Thus, the cascade M1 ⇒
M2⇒M3 reveals segment-level similarity across models.

Finally, in Section 4.3, we use spectral clustering on M3

to group the segments and then extract recurring parts and

their arrangements using an MRF formulation.

4. Algorithm

Given a set of models {M1,M2, . . .}, we first create candi-

date parts (denoted by set Θi) by grouping initial compo-

nents for each model Mi. The key challenge is to reliably

c© 2014 The Author(s)
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Figure 4: Given a multi-component model (left) we cre-

ate a contact-graph to capture pairwise component inter-

actions. Then, based on partial symmetry information, we

group components, forming a simplified relation-graph.

compare two parts pa ∈ Θi and pb ∈ Θ j coming from dif-

ferent models (i.e., Mi 6= M j), without access to point- or

part-level correspondence.

4.1. Generating Initial Candidate Parts

We encode contact and symmetry information in input mod-

els as relation graphs and generate possible part candi-

dates. For each model Mi, we create a graph where each

node represents a component or segment in Mi. Two nodes

are connected by an edge if they are in contact (see also

[MYY∗10]). Specifically, for each pair of segments, we

compute the smallest distance between them. If this distance

is less than a threshold α, we consider the segments to be in

contact (α = 0.01 of the model’s bounding box diagonal).

We assume that the input models have a consistent upright

orientation (as commonly found in Trimble 3D warehouse

models). Further, we pre-align the models using their PCA

axes as proposed in Zheng et al. [ZCOM13]. Since the input

models are assumed to have upright orientations, we simply

have to decide between a PCA direction flip on the xy-plane

(alternatively [KLM∗12] can also be used).

In order to handle models with different part cardinali-

ties (e.g., chairs with symmetrically arranged four vs. five

legs), we simplify the graph based on symmetry information.

We perform a graph simplification by grouping/merging seg-

ments by progressively collapsing the biggest symmetry

groups [MGP06] if their common symmetry plane/axis is

aligned to the upright direction (see Figure 4). Any resulting

duplicate edges are removed (see also [KCKK12]).

Man-made models coming from public repositories typ-

ically have many small and spurious segments (e.g., a car

model can have many small bolts, each as a separate compo-

nent). This leads to an unnecessarily large number of seg-

ments. Using a simple heuristic, we address the issue by

removing the small nodes (by volume), while updating the

graph connectivity. Specifically, if nodes ni and n j both share

a direct connection with a small node nk; we introduce an

edge ei j (unless already present), while removing the node

nk and edges eik,e jk. We remove such small nodes one at a

time, removing the smallest node in the current iteration, and

stopping when each of the remaining nodes’ volume is more

than 1-2% of the model’s bounding box volume.

part
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Figure 5: Starting from a model, we first generate a set of

valid candidate parts, which are then grouped together in

pairs to form pair arrangements (PA).

We call the simplified graph the relation-graph with each

of its connected subgraphs (i.e., set of segments) forming

a valid part. Figure 5-top shows a few examples; the high-

lighted part is invalid as the corresponding subgraphs are not

connected by any direct edge in the relation-graph. In the

end, for each model Mi, we have its relation-graph and a set

of candidate parts.

4.2. Comparing Candidate Parts

Creating pair arrangements (PA-s). First, we extract ar-

rangements of parts within a model. We use pairs of parts

as the smallest unit of arrangement. Given a set of candidate

parts Θi for a model Mi, not all pairs of parts, however, are

useful (see Figure 5). Specifically, we form pair arrange-

ments (PA) using a pair of parts sab := (pa, pb) such that

pa, pb ∈ Θi and (i) the subgraphs corresponding to the pair

of parts in the original relation-graph of Mi are connected

by (at least) a direct edge; and (ii) the set of segments of the

parts are disjoint. For example, in Figure 5 the bottom-right

figure shows an invalid PA that violates condition #(i). Note

that the PA-s are only comprised of candidate parts from

the same model and thus trivially have the same coordinate

frame. We next define a descriptor to characterize the spatial

arrangement of parts in such PA-s.

PA similarity matrix M1. Our motivation is to effectively

differentiate between PA-s with a different arrangement of

parts. One simple solution would be to compute a signature

based on the geometry of the underlying parts. For example,

we can compute a shape distribution [OFCD02] correspond-

ing to the union of the parts in a PA. However, since our

focus is to characterize part arrangements rather than part

geometries, such an approach is not suitable (see Figure 6).

The key is to ignore small-scale geometric variations and

instead focus on how the parts are arranged. We propose a

simple descriptor to do so.

c© 2014 The Author(s)
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Given PA sab := (pa, pb), we compute the bounding boxes

of its component parts. Note that we compute axis-aligned

bounding boxes instead of oriented bounding boxes since at

this stage the models are already axis-aligned. Based on the

relative positions (along upright direction) of the centroids

of pa and pb, we name their bounding boxes as B1 and B2,

with B1 denoting the upper box. We define the descriptor for

PA sab using the set of pairwise distances between vertices

of B1 and B2. Specifically,

S(sab) := {‖vi(B
1)−v j(B

2)‖} (1)

for i, j ∈ [0,7] going over the eight vertices vi of each bound-

ing box. (Note that we can select any consistent but fixed

ordering among the vertices.) Finally, to account for scale

variations, we normalize the descriptor using its Euclidean

norm as: S(sab)←S(sab)/‖S(sab)‖.

In Figure 6, we compare the proposed spatial arrangement

descriptor to shape distribution (computed using a uniform

set of 10K points per PA with 64 histogram bins and aver-

aged over 5 runs) on a small example. In each case, we com-

puted descriptors for a set of 69 PA-s extracted from a set

of three airplane models, computed their pairwise distances,

and embedded the distances to 2D using multi-dimensional

scaling (MDS). Our proposed descriptor by focusing on PA-

s over the geometry of the parts can more reliably cluster

similar arrangements (arrangement of orange/blue boxes in

this example), while differentiating between different ones.

We construct a PA similarity matrix M1 to store the pair-

wise similarity between all pairs of PA-s coming from dif-

ferent models (i.e., Mi 6= M j). Note that the number of

columns/rows in M1 is equal to the total number of PA-

s across all the input models. Specifically, given two PA-s

sab ∈Mi and scd ∈M j , we define the corresponding similar-

ity matrix entry in M1 as exp(−‖S(sab)−S(scd)‖
2/2σ2),

Figure 6: We design a simple descriptor for PA-s, based on

the relative arrangement of the bounding boxes of their in-

dividual parts. A candidate part (e.g., fuselage) can partic-

ipate in different PA-s and thus appear in multiple regions

of the descriptor space. The sub-figures show MDS mapping

to 2D applied to the pairwise PA distances computed using

the proposed descriptor (left) and shape distribution (right).

Focusing on part arrangements over part geometries reveals

high-level similarity.

i.e., higher distances getting lower similarity values. We set

σ = 0.1.

Alternative descriptors can also be used, e.g., we ex-

perimented with a descriptor that computes the transla-

tion/rotation/scaling (∈ R
9) necessary to map B1→ B2, but

found the performance comparable for the repository mod-

els that were mostly axis-aligned. The challenge then was to

relatively weigh distance, angle, and scale.

Part similarity matrix M2. We use the PA similarity ma-

trix M1 to vote for similarity among corresponding candi-

date parts coming from different models. We encode the

similarity as the part-similarity matrix M2 with number of

rows/columns equal to the total number of parts across all

the models, i.e., ∑i |Θi|. Starting with M2 = 0, we take the

appropriate similarity values from M1 and accumulate them

to form M2. Intuitively, a high entry in M2 indicates a pair

of parts that can be swapped across models, while preserv-

ing their respective PA descriptors, i.e., without disturbing

the resultant arrangement.

For any valid PA-s sab ∈Mi and scd ∈M j with Mi 6= M j ,

we have a corresponding entry M1(sab,scd), capturing the

similarity between sab := (pa, pb) and scd := (pc, pd). Now,

in a key enabling step, we are ready to assess the similarity

between pa ↔ pc and pb ↔ pd . Intuitively, if parts can be

swapped without affecting the corresponding PA descriptors,

we expect them to be ‘similar’ and accumulate the evidence.

Note that now similarities are between a pair of parts, but

coming from different models Mi and M j. We simply assign

M2(pa, pc)←M2(pa, pc) +M1(sab,scd) and similarly for

M2(pb, pd). The main observation is that we arrived at these

part similarity values simply relying on pair arrangements.

(Note that we assumed (pa, pb) and (pc, pd) to be relatively

ordered based on corresponding bounding boxes B1, B2 as

defined earlier. If not, we switch the assignments to pa↔ pd

and pb↔ pc.)

Segment similarity matrix M3. Finally, we use the infor-

mation gathered in M2 to construct a similarity matrix M3

(with number of rows/columns equal to the total number

of nodes across all relation-graphs) between pairs of seg-

ments (i.e., initial components) coming from different mod-

els, starting with M3 = 0. However, we cannot directly dis-

tribute the entries from M2 to M3 since different parts can

be made of a different number of segments. We observe that

splitting a part into any two subparts results in one of the

following: (i) at least one invalid subpart, i.e., the nodes are

disconnected in the corresponding relation-graph; (ii) two

subparts where each subpart is a single node (i.e., segment);

(iii) two subparts where one subpart is a part and another is

a segment; or (iv) two smaller parts.

Based on these observations, we propose a recursive al-

gorithm to accumulate part similarity (M2) into M3. For any

pair of parts pa ∈ Mi and pb ∈ M j , we look at the corre-

sponding similarity entry M2(pa, pb). Further, say part pa

c© 2014 The Author(s)
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has na segments and part pb has nb segments. Then, there are
(

na

2

)

and
(

nb

2

)

different ways of splitting each of the respec-

tive parts into two subparts. We now handle the four cases

listed above.

Say part pa is split into a1 and a2; and similarly part pb

into b1 and b2. Since they have a relative ordering as defined

before, we discuss the groupings of the form (a1,b1) (the

process is repeated for the groupings of the form (a2,b2)).
Type (i) split: We discard splits resulting in any invalid part.

Type (ii) split: If a1 and b1 are both individual segments, we

assign M3(a
1,b1)←M3(a

1,b1)+M2(pa, pb).
Type (iii) split: If only a1 is a single segment and b1 is a part,

we distribute M2(pa, pb) to the corresponding elements of

M3 using a1 and the single segments constituting b1. We dis-

tribute the score based on the relative volume of the segment

in b1 normalized by the total volume of all the segments in

b1. We similarly distribute scores if b1 is a single segment

with a1 being a part.

Type (iv) split: If a1 and b1 are both parts, we select the best

matched splits (based on M1 entries), and then recursively

continue the procedure. Note that in this setting there is an-

other entry M2(a,b) that may also be distributed to the ma-

trix M3, further voting for segment-level similarity.

4.3. Extracting Recurring Parts

Given segment-similarity matrix M3, we directly use spec-

tral clustering to group the segments, both within and across

the models. Thus, for a grouping with k clusters, we get k

groups across all the models, although each model can have

k or fewer such members. Figure 7 shows spectral clusters

for a small set of airplane models yielding groups of fuse-

lage, wings, tail, front wheel, etc.

Our goal now is to select parts, one from each model Mi,

such that the set of selected parts have maximum consistency

across the model collection. Note that since similarity is in-

herited from matrix M1, consistency among parts is based

on consistency among arrangements. Essentially, we have a

labeling problem: For each model Mi, our goal is to select

only one of its parts, i.e., select a label li from the set of all

its parts labeled as {l0
i , l

1
i , . . .}. The selected parts should be

consistent across the model collection. We define unary and

binary terms to quantify this consistency.

The unary term is to impose a hard constraint that a model

selects a part only from its own label set, and not from an-

other model. Thus, E(Mi→ lk
j ) is given equal weight (set to

1) if i = j, and high penalty (set to∞) for i 6= j, for any k.

The joint assignment likelihood term is defined as:

E(Mi→ lk
i ,M j→ ll

j) := exp(−sim(pa, pb)
2) where, pa ∈Θi

denotes the part from Mi corresponding to the label lk
i and

similarly for pb ∈ Θ j from M j. We now describe how to es-

timate sim(pa, pb).

Intuitively, we look at the graphs of pa and pb, and sum

spectral clustering

same group

M3

k = 5

Figure 7: We use standard spectral clustering on M3 to

group the segments, both within and across the different

models. The figure shows oversegmented input models (top)

and the same models after regrouping segments (bottom),

with nodes from the same group colored similarly.

up their edge-to-edge similarity, while matching edges based

on their node colors. We break pa (and pb) into smaller seg-

ments (at least with two nodes), and compare these segments

if their group colors match. These smaller segments are sim-

ply a subset of PA-s of Mi (and M j). For each pa, we se-

lect {s1
a,s

2
a, . . .} from the original PA set of Mi (similarly for

pb). Any selection of the form sa (similarly sb) satisfies two

properties: (i) the segments in sa are contained in pa, i.e.,

sa ⊂ pa; and (ii) if sa = (p1, p2) then the segments in p1 and

p2 should all have a single (group) color, and segments in p2

should all have a second color.

Now based on group index/color between nodes in pa and

pb, for each sk
a we have one (or more) corresponding sk

b.

Hence, we simply define: sim(pa, pb) := ∑k sim(sk
a,s

k
b) =

∑k M1(s
k
a,s

k
b) using the observation that the respective en-

tries are already in M1. Our goal is to solve for the best la-

beling such that:

{li}
⋆

:= argmin
{li}

∑E(Mi→ l
k
j )+∑

i, j

E(Mi→ l
k
i ,M j→ l

l
j)

(2)

using α-β swap [BK04].

We select the number of clusters by looping through k =
2 : n, with n being the number of the nodes in the relation-

graph. For example, in Figure 7, k = 5 yields the lowest cost

(MRF costs are: 5.7,5.2,5.1,4.5 for k = 2,3,4,5, resp.).

5. Evaluation

Datasets. We tested our algorithm on various datasets of

man-made objects obtained from public repositories (e.g.,

Trimble 3D Warehouse, Princeton Shape Benchmark, and

[XZCOC12]). The raw models came in multi-components

c© 2014 The Author(s)
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N=10 N=20 N=40

input models

PA-descriptor space recurring PA-s

Figure 8: PA-s generated from different models get embed-

ded in a descriptor space. PA-s arising from consistent parts

across models share similar location in this space. For visu-

alization, here we map the space to 2D using MDS. As the

number of input models grows (N=10, 20, 40), the recurring

PA-s become increasingly prominent (in darker color) as the

probability of unrelated PA-s coming from different models

ending up at the same descriptor location decreases sharply.

and often contain a large number of spurious components.

We ignore the small components before creating candidate

parts. We assumed the models to have consistent up-vector

and pre-aligned them (see Section 4.1).

Our datasets (see supplementary material) comprised of

different model collections including chairs (39 models),

tables (21 models), battleships (8 models), airplanes (19

models), infant-beds (9 models), etc. Note that for mod-

els with less geometric variations, one should append our

arrangement-based descriptor with a per-part (i.e., geome-

try inside bounding boxes) shape descriptor. This will, for

example, help differentiate between a hollow versus an oc-

cupied box. However, in this paper, we investigate the core

arrangement-based approach, and hence we selected models

with significant geometric and topological variations.

Results. Figures 2, 10, and 11 show consistent part arrange-

ments and parts for various model collections. (Please see

supplementary material for all the results). Even for the same

model collection, different models can have a different num-

ber of parts (e.g., airplanes with/without landing gear), or

certain segments can stay unassigned (shown in gray). Note

the diversity of the datasets, both in terms of geometric and

topological variations. Our algorithm, by mainly focusing on

the arrangement of parts, can detect consistency, and thereby

extract parts and reveal their correspondence across models.

In each case, the part arrangements reveal non-trivial parts.

Figure 9: (Top-to-bottom) Starting from models across dif-

ferent shape collections, our method can still reveal consis-

tent part arrangements and parts.

For example, in the case of the chairs, we discover parts for

back, seat, legs; for the tables, we get top and supporting

legs; for the bicycles, we get wheels, frame, handle, seat; for

the beds, we get frame, back, mattress, pillow; etc.

Since our method ignores low-level geometric details by

abstracting candidate parts by their bounding boxes, our ap-

proach detects consistent part arrangements even among a

mixture of different collections. For example, in Figure 9,

we detect consistent leg and support arrangements among

chairs, tables, sofas, etc. This result can enable new content

creation possibilities by mixing model parts based on their

part arrangement consistency.

Some semantically inconsistent parts as erroneously de-

tected by our algorithm are highlighted in Figure 11. For ex-

ample, when the windscreen and side mirrors are wrongly

labeled as corresponding parts; or the top of a chair back

stays unclaimed; etc.

chair

beach chair

airplane table

swing

toy plane

bicycle

infant bed

bus stop

bed

k=5; N=19

k=5; N=6

k=6; N=10k=8; N=4

k=3; N=39 k=3; N=9

k=4; N=4k=8; N=8

k=2; N=21

k=4; N=6

Figure 10: Different representative part arrangements ex-

tracted for various model collections. Note that our unsuper-

vised analysis relies only on available geometry information

and has no access to part names or additional tagging in-

formation (see also Figure 11). The symbols k and N denote

the number of part clusters and the number of models in the

shape collections, respectively.
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(a) airplane

(b) beach chair

(c) bed

(d) car

(e) chair

(f) infant bed

(g) table

wind shield vs. side mirror

missed top

missed pillowmissed framemissed frame

Figure 11: Consistent part arrangements extracted using our unsupervised algorithm. For each model collection, we show only

a subset of the results showing both the extracted part arrangements and parts. Unclaimed components are in gray (see also

supplementary material).

Comparison. Our goal is to discover consistency in the

space of part arrangements, as well as establish part-level

semantic correspondence. In order to quantitatively assess

such semantic part correspondence, we first setup a manu-

ally annotated ground truth dataset. For four model collec-

tions, we manually grouped the segments in each model into

parts and tagged them with an available part label. Part la-

bels were selected from Wikipedia and were: leg, arm, back,

seat for chair; supporter and bed for infant bed; wings, hori-

zontal tail, vertical tail, landing gear, and body for airplane;

sheet, pillow, front legs, back legs, back frame, front frame

for bed. Note that the raw models came as multi-component

inputs, which satisfy our assumption. For polygon soups, our

method will be less suited.

We compared our algorithm against several state-of-the-

art co-segmentation algorithms on the same dataset (using

the authors’ implementations). Note that although the in-

put requirements are quite different, we did this comparison

mainly to validate our output. With the exception of Kim

et al. [KLM∗13], the rest of the algorithms assume the in-

put to be manifold meshes. Hence, for those algorithms, in

a preprocessing step, we first manually repaired the mod-

els and converted them to manifold meshes (using [LA13]).

Note that most of these methods rely on various geomet-

ric features for bottom-up clustering; or geometric similarity

between certain model pairs, which is then diffused to less

similar models. Instead, we establish part correspondence in

a top-down fashion via extracted repeated part arrangements,

and can ignore fine-level geometric dissimilarity.

For each algorithm output, we manually tagged the fi-

nal parts using the available part labels. We used inter-

model part-correspondence to propagate the labels. Finally,
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Figure 12: Stability of results under different input segmen-

tations. The percentage histograms show the distances be-

tween the discovered and the original part arrangements for

5 datasets, across 100 runs of the two tests. Distance is mea-

sured as the average distance between the corresponding

parts’ bounding box vertices. Notice the examples of chair

and plane where distance is negligible.

we counted the fraction of correct part tags (each segment

gets one tag) to measure accuracy. For the preprocessed

manifold models, we projected the face tags to their parent

input models. Table 1 presents a summary of the compari-

son. In many cases, even on manifold meshes, clustering in

the geometric feature space simply failed – we mark them

by ‘×’.

Table 1: Semantic segmentation accuracy against manually

annotated groundtruth labeling across different algorithms.

Class Kim’13 Wang’12 Hu’12 Huang’12 ours

chair 0.59 0.69 0.30 0.83 0.96

bed 0.25 0.27 × 0.65 0.91

inf. bed 0.53 0.36 0.61 0.37 0.71

airplane 0.52 0.36 × 0.58 0.94

Robustness. Our algorithm relies on the input over-

segmentations. We performed two tests to evaluate the sta-

bility of the algorithm on varying input segmentations. (Note

that we cannot handle input as polygon soups due to com-

putational complexity, and also due to degenerate config-

urations.) In the first test (#a), we selected 50% of the in-

put models at random and ran our algorithm on such selec-

tions. For each model family, we compared the results across

100 random runs and quantitatively evaluated the closeness

of the recovered parts with the base results. In the second

test (#b), we selected 70% of the input models at random and

independently split their segments (10-20%) also at random,

and compared the stability of the results across 100 runs. In

both tests, we found the discovered parts to be stable with

respect to (moderate) variations in initial partitioning (see

Figure 12). In most cases, the variations in the extracted part

arrangements are marginal.

User study. We hypothesize that certain arrangements of

parts are intrinsic to a given type of object, and these are ex-

tracted by our algorithm. To test this, we conducted a user

study using a selection of shapes from our datasets (air-

plane, bed, car, chair, table). First, bounding boxes of the

corresponding (extracted) part arrangements were shown in

random order. Users were asked to recognize what type of

shape these abstract boxes represent. Second, the same part

arrangements were shown in a different random order, but

this time the user had eleven options to choose from, drawn

from the names of all datasets used in this paper.

136 users (age range 18-55 years) participated in the user

study, with 74% being male and 62% having some computer

graphics experience. Even in the first step, users were able to

correctly identify airplane (93%), bed (100%), chair (99%)

and table (99%), while they failed to recognize car reliably

(35%). In the second stage, not surprisingly, the recognition

success was slightly higher.

Timing. The complexity of our algorithm is O(N3), where

N is the size of M j=1,2,3, which strongly depends on the

number of nodes in the relation-graph as the size of ma-

trix M1 depends on it. In our examples, the typical num-

ber of nodes in the relation-graphs is less than 15, e.g., for

the airplanes and the cars it is around 10. While the typical

number of PA-s was a few dozens for sparse graphs, it went

up to a few hundreds for complex graphs with loops (e.g.,

bikes, toy-planes). The corresponding running times were

a few seconds to 2-5 minutes (see also demo) for a single

core implementation. Most example model collections took

less than two minutes to process, as their relation-graphs are

sparse. However, for complex datasets such as bike, car, and

bed, it took about 5 minutes.

Limitations. Our algorithm suffers from the following lim-

itations: (i) while our method assumes access to man-made

models with multiple components, we can not handle poly-

gon soups or a single connected manifold mesh or raw

scanned point clouds; and (ii) since we search for all pos-

sible part arrangements, we run into scalability challenges

for models with many spurious components or model col-

lections with many models.

6. Conclusions and Future Work

We presented an unsupervised algorithm to extract consis-

tent parts and their arrangements in model collections of

semantically related shapes. In a top-down approach, ar-

rangements of parts are compared across different mod-

els and the findings are then diffused to recover consistent

parts across the different models. We evaluated our approach

on a range of models with large geometric and topologi-

cal variations, and compared our results with state-of-the-art

co-segmentation methods, using manually-annotated bench-

mark datasets.
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In the future, we would explore higher order part group-

ings involving triplets or quadruplets of parts. Further, the

extracted parts along with their correspondence can be used

for model synthesis while preserving discovered part ar-

rangements to realize large geometric/topological changes.
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