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ABSTRACT 

Reconfigurable systems are widely used nowadays to 
increase performance of computationally intensive 
applications. There exist a lot of synthesis tools that 
automatically generate customized hardware circuits from 
specifications in both high-level and hardware description 
languages. However, such tools have a limited applicability 
because they are unable to handle recursive functions 
whereas it is known that recursion is a powerful problem-
solving method widely used in computer science. Therefore 
a great deal of research effort is aimed at efficient 
implementation of recursion in reconfigurable hardware. 
This paper presents the state of the art in this area. The 
existing proposals are described, analyzed, and compared 
according to such criteria as level of parallelism supported, 
approach to concurrency, ease of use, availability of 
automated high-level synthesis tools, etc. 

1. INTRODUCTION 

Recursion is a powerful problem-solving method widely 
used in computer science. The basic idea is to divide a 
given initial problem into a finite (and usually very small) 
set of simpler sub-problems in such a way that every sub-
problem is of exactly the same type as the original problem 
[1]. Subsequently, the same decomposition can be applied 
recursively to each of the sub-problems until newer sub-
problems turn out to be so simple that their solution is 
known (this situation is identified as a base case). Once the 
base case is reached, a solution to the previous sub-problem 
can easily be composed. By moving gradually from smaller 
sub-problems to bigger sub-problems, a solution to the 
original problem is finally obtained. Sometimes it is 
necessary to solve all the sub-problems in order to get the 
solution to the original problem (such as in inefficient 
recursive calculation of Fibonacci sequence). Other times, 
only part of the sub-problems needs to be solved (e.g. 
binary search). 
 Recursive specifications often produce elegant and 
easier to understand solutions than the respective iterative 

specifications. Therefore, practically all modern 
programming languages provide support for recursion. 
Recursive functions (as well as functions in general) are 
implemented in general-purpose computers with the aid of 
stack memory which keeps all necessary information 
permitting to return from a recursive call and to restore the 
state of data as it was before the recursive call. Managing 
stack (pushing there all the required data before a function 
call and popping these data as soon as a recursive return is 
to be done) incurs an overhead for each function call, and 
recursive functions magnify this overhead because 
eventually a large number of recursive calls can be 
generated [1]. But since the use of recursion frequently 
clarifies complex programs and, in some cases, can be very 
efficient (e.g. binary and N-ary search), additional overhead 
may be ignored. 
 Taking into account the main advantages of recursive 
specifications it would be worthwhile to use recursion in 
reconfigurable hardware. Besides, recursive functions are 
the most time consuming parts in many algorithms and 
accelerating their execution with reconfigurable hardware 
would be very beneficial. However, modern hardware 
description languages (HDL) as well as system-level 
specification languages (SLSL) do not provide direct 
support for recursion. This can be explained by two 
reasons. First of all, HDL and SLSL descriptions can be 
synthesized and further implemented over different 
hardware platforms. These platforms, as a rule, do not 
possess a dedicated stack memory which could be used for 
supporting recursive calls. So, the first reason is the lack of 
hardware support. Obviously, stack could be synthesized 
specifically for each problem but it is not easy to calculate 
recursion depth (and, consequently, the required stack size). 
One alternative solution would be to substitute recursion 
automatically by the respective iterative specification. 
However, commercial synthesis tools do not follow this 
approach because of its inherent complexity. Therefore, the 
second reason of not synthesizing recursion is the 
associated complexity. Moreover, for some algorithms, 
iteration requires more data movement, is less clear, and is 
often slower [2]. 
 Nevertheless a number of techniques have been 
suggested aimed at implementing recursion in 
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reconfigurable hardware. The main objective of this paper 
is to survey published proposals, to identify their relative 
advantages and drawbacks, and to give recommendations 
for future work. 
 The remainder of the paper is organized in three 
sections. Section 2 provides an overview of methodologies 
for implementing recursive functions in reconfigurable 
hardware. Section 3 makes a comparison of approaches 
discussed in section 2. Finally, concluding remarks are 
given in section 4. 

2. METHODOLOGIES FOR IMPLEMENTING 
RECURSION IN RECONFIGURABLE HARDWARE 

Different attempts have been made to implement 
recursion in reconfigurable hardware. Basically, all 
proposals fall into one of two broad categories: unroll 
recursive calls into a pipelined circuit or implement it with 
a stack. In the following sub-sections all the suggested 
methodologies will be reviewed. 

2.1. Maruyama et al. 

One of the first works on implementing recursion in 
reconfigurable hardware was done by Mariyama et al. [3, 
4]. In particular, two techniques have been proposed: multi-
thread execution and speculative execution.  
 The first of these techniques was applied to 
combinatorial optimization problems that require the whole 
search space to be traversed (the knapsack problem was 
selected as a case study). First of all, all tail recursions 
(recursive calls that are the last statements in a given 
recursive function) were optimized into loops for the sake 
of efficiency. Then a pipeline was constructed whose 
number of stages is equal to the number of blocks into 
which a given algorithm can be decomposed. Operations 
within each block are executed in parallel. As all pipeline 
stages become active at the same time, the maximum 
attainable speedup is limited by the depth of the pipeline. 
When a recursive call is to be done, the arguments are 
either forwarded directly to the respective stage in the 
pipeline or pushed into a stack if the stage is occupied. This 
technique was applied for solving the knapsack problem in 
an Altera FPGA [3]. The resulting circuits supported the 
maximum clock frequency of 35 MHz and occupied 17% 
of logic resources of EPF10K100 device. The achieved 
speedup calculated as an average of solving 100 small 
problem instances (with 32 objects to be put into a 
knapsack) was 6.7x over the implementation of the same 
algorithm in software executing in Ultra-Sparc 200 MHz. 
The application of multi-thread execution method, 
however, seems to be very limited since, in a general case, 
all pipeline stages can potentially need reading and writing 
data from/to memory and supporting parallel accesses to 
different locations of the data memory in parallel is not 

feasible. Moreover, it is not clear how to proceed if there is 
a data dependency between the results of a recursive call 
and subsequent function’s statements. 
 The second technique proposed by Mariyama et al. [3] 
is aimed at solving combinatorial search problems (for 
which only one, not necessarily optimal, solution has to be 
found) and is more suitable for loops which include 
recursive calls. Knight’s tour problem was considered as an 
example. The main idea is to speculatively execute 
consecutive loop iterations in parallel assuming that no one 
of these iterations will make a recursive call. As soon as 
this assumption fails for iteration i, the recent computations 
for iterations i+1, i+2,…, i+n (n is the number of pipeline 
stages) are cancelled, the current data are pushed into stack 
and the loop is restarted from the beginning (simulating a 
recursive call). On a recursive return, the data are popped 
from the stack and execution is resumed at the interrupted 
stage. Mariyama et al. were able to achieve 4 times speedup 
by speculative execution (clocked at 31 MHz) over 
software implementation running on Ultra-Sparc 200 MHz. 
It is not clear however whether this speedup accounts for 
FPGA configuration time as well as for data transmission 
time.  
 In order to automate the process of generating circuits 
for speculative execution from high-level programming 
languages, a compiler was developed and reported in [4]. 
The compiler accepts C code augmented with special 
notations (such as for specifying the size of data in bits and 
for identifying statements to be executed in parallel) and 
generates synthesizable HDL code (based on speculative 
execution). All recursive calls are previously transformed 
into iterative loops by a pre-processor. When memory 
holding data is accessed more than once by different 
pipeline stages, the pipeline has to be stalled and memory 
access operations are executed sequentially. The generated 
circuit speculatively executes next loop iterations and resets 
and restarts them when data feedback dependencies are 
detected [4]. The resulting circuits generated by the 
compiler run in a range of 39-47 MHz (on Altera 
EPF10K100 FPGA) and achieve a speedup of 2 times 
(measured in the number of clock cycles) when compared 
to non-speculative execution. 

2.2. Sklyarov et al. 

Sklyarov et al. proposed a technique for implementing 
recursive functions in reconfigurable hardware with the aid 
of hierarchical finite state machines (HFSM) [5-7]. The 
main idea is to implement recursive calls in hardware in the 
same manner as it is done in software and to parallelize just 
those operations that occur in between recursive calls. Each 
function (which can be recursive or not) is supposed to be 
executed by a specific hardware module which attempts to 
execute as many operations as possible in parallel. 
Recursive calls invoke operations over stacks in such a way 
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that the state of the module (where recursive invocation has 
happened) is saved onto a stack and the stack pointer is 
incremented to address the storage for a recursively called 
module. When the recursively called module ends, the stack 
pointer is decremented in order to restore the state of the 
interrupted module [7]. 

The suggested hardware model of HFSM is depicted in 
Fig. 1. The HFSM consists of a combinational circuit and 
two stacks (that keep track of hierarchical functions 
invocations), one for states (FSM_stack) and the other for 
modules (M_stack).  

The stacks are managed by a combinational circuit that 
is responsible for new module invocations and state 
transitions in any active module that is designated by 
outputs of the M_stack. Any non-recursive transition is 
performed through a change of a code only on the top 
register of the FSM_stack. Any recursive call alters the 
states of both stacks in such a way that the M_stack will 
store the code for the new module and two values will be 
pushed into the FSM_stack: first, the code of the next state 
in the calling module and then the code of the first state in 
the called module. Any hierarchical return just activates a 
pop operation without any change in the stacks. As a 
result, a transition to the state following the state where the 
terminated module was called will be performed. The stack 
pointer is common to both stacks. If the final state in a 
module is reached when the stack pointer is equal to zero, 
the algorithm terminates execution. 

M_stack FSM_stackCombinational
circuit (CC)

x1 xL

y1 yN

current
state

current
module

next
state

next
module

Control: clk, 
rst, push, pop

Control: clk,
rst, push, pop

 
Fig. 1.  The hardware model of HFSM. 

Besides of two control stacks depicted in Fig. 1, an 
additional data stack is usually required to preserve all 
necessary data in between recursive calls (that allows a 
previous function’s data to be easily restored). Since all the 
stacks are constructed on the basis of embedded in FPGA 
memory blocks the additional FPGA resources required for 
stack management are negligible.  

The technique suggested in [5-7] has three main 
advantages. First of all, this method can be applied for 
implementing any recursive function with an arbitrary 
number of recursive calls done within that function. The 
only condition that has to be assured is that a function does 
not contain infinite recursion (the same has to be 
guaranteed in software). Obviously, the maximum depth of 
recursion has to be known before runtime, but since 
memory resources are abundant in recent FPGA families, 

stacks can be created so as to be able to accommodate the 
biggest number of modules that could eventually be called 
by a given algorithm. 

The second advantage is that parameterizable VHDL 
and Handel-C templates have been developed for the 
stacks and the combinational circuit composing an HFSM 
[5-7]. Consequently the design process is very easy: it is 
only necessary to customize the templates for a particular 
algorithm. 

And, finally, the same synthesized and implemented 
circuit can be used for solving various problem instances. 
This is not possible with the majority of other approaches 
that require the circuit to be resynthesized (for example, 
when initial problem data influence the number of times 
that a function has to be unrolled). 

The main disadvantage of the method is that parallelism 
is limited to executing in parallel operations that occur in 
between recursive calls. If the amount of work in these 
operations is high, then the respective implementation can 
outperform significantly the corresponding software 
implementation. Otherwise, if there is a limited number of 
operations whose execution can be parallelized, then the 
resulting circuit will require roughly the same number of 
clock cycles as software running on a single-core 
microprocessor (actually, the number of clock cycles in 
hardware will be smaller because invocation of new 
modules can be overlapped with execution of other 
algorithm’s operations [7]). Since the clock frequency of 
microprocessors is generally higher than that of FPGA-
based systems, the resulting speedup would be negative. 

Several experiments have been realized for problems of 
binary tree sorting, matrix covering, knapsack problem and 
computation of the greatest common divisor [5]. The 
respective recursive algorithms were described in VHDL 
and Handel-C and implemented on FPGAs of Spartan-IIE, 
Spartan-3 and Virtex-II families. The main conclusion was 
that using modular algorithms, in general, and recursive 
algorithms, in particular, was more advantageous for 
problems of binary (N-ary) search compared to iterative 
implementations [6]. 

2.3. Ferizis et al. 

Ferizis et al. proposed a method for mapping recursive 
functions to reconfigurable hardware without the use of 
stack [8-11]. The main idea was to parallelize function 
execution as much as possible and for this it was suggested 
to unroll the function as many times as necessary in an 
FPGA at run time and to execute recursive calls in parallel.  

In [8-9] all the statements in a recursive function are 
split into two disjoint sets: pre-recursive (containing 
statements that occur before the recursive calls) and post-
recursive (containing statements that occur after the 
recursive calls). The resulting hardware circuit includes one 
pre-recursion and one post-recursion logic unit for each 
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level in the function call graph. The logic units are arranged 
in a pipeline as indicated in Fig. 1 for a case of recursion of 
depth 2 (a function calls itself once and when it is activated 
for the next time the base case is reached). If a function 
includes several recursive calls (more than 1) then every 
level of the function call graph contains several nodes, 
however, just one of them can be active at a time. 

pre-recursion pre-recursion post-recursion post-recursion

 
Fig. 2.  Arrangement of pre- and post-recursion units for a 

recursive function of depth 2. 

If the recursion depth is known before the execution 
then the pipeline is configured so as to match exactly a 
problem instance. Otherwise, a minimum estimated number 
of logic units are configured and if a recursion level is 
reached which exceeds the number of levels supported, then 
the required additional recursive levels are added to the 
pipeline by partial run-time reconfiguration [8-9]. To 
simplify placement and routing all logic units are placed in 
columns (that span the whole height of an FPGA of Xilinx 
Virtex-II family) and interlinked with a network-on-chip. 
The need for additional logic levels is predicted by a special 
circuit whose task is to monitor input into the system and 
detect the need for more logic before it is actually needed, 
allowing to minimize the overhead of reconfiguration [9]. 

In [9] different case studies are presented where the 
suggested method was applied to merge sort and Strassen’s 
matrix multiplication. However, the method’s applicability 
was only studied at the theoretical level and no real 
hardware implementation was done. 

In [10-11] it was proposed that each stage of pipeline, 
instead of computing either pre- or post-recursive 
statements of a single function, would control all the 
functions that occupy the current recursive level, and, as a 
result, would execute multiple instances of the recursive 
function in parallel. 

In order to deal with limited hardware resources (that 
could not be sufficient to fully unroll a recursive function) it 
was proposed to force each stage of the pipeline to compute 
multiple recursive levels [10]. It is not clear however, how 
data dependencies between recursive levels are resolved. 
Actually, it seems that the whole model does not account 
for memory access component (simultaneous memory 
access by different logic units, available memory 
bandwidth, etc.). 

Run-time reconfiguration was not implemented and 
therefore a simulator was developed to estimate the 
possibility and effectiveness of unrolling recursion on the 
fly. Several case studies are presented in [11] which were 
either implemented on a Celoxica RC200 board or ran on a 
simulator (that was employed to test run-time 
reconfiguration). It was shown that merge sort, quick sort 

and quad tree partitioning algorithms, when fully unrolled, 
run in linear time and outperform stack-based 
implementation [10-11]. However, the required hardware 
resources are unknown and the level of details presented in 
[8-11] does not allow to reproduce experiments and to 
comment the results fairly. 

2.4. Ninos et al. 

The work of Ninos et al. extends the results of previous 
proposals and suggests a data-oriented approach [12]. This 
approach relies on a recursion simplification operation 
which essentially transforms recursion to iteration with a 
stack. Basically, if the condition for recursion is met then 
local data are pushed into the data stack and the function 
execution is restarted. Otherwise, if the condition for 
recursion is not met, the function simply continues its 
execution. When the last statement within the function is 
reached, if the data stack is empty the execution is ended. 
Otherwise, a recursive return is performed by popping the 
previous data from the stack and returning to a state from 
which recursive call was done. Since on a recursive return 
control always goes back to the state from which a 
recursive call has been done, it means that this state has to 
be repeated in order to evaluate the next state to follow, 
which will result in performance degradation. 
 The authors claim that recursion simplification 
operation can be expanded to as many recursive calls 
within a function as necessary [12]. It seems however that 
some additional information should be stored on the stack 
that would allow to identify unequivocally the point to 
return to from recursion in case of multiple recursive calls. 
Actually, this assumption is proved in an example presented 
in [12] for knight’s tour problem. 
 The results of experiments with knight’s tour problem 
have shown that implementations in Spartan-3 FPGA run 2-
3 times faster than software executed on Pentium-4 clocked 
at 3.4 GHz [12]. Once again communication and FPGA 
configuration times have not been taken into account. 

2.5. Stitt et al. 

Stitt et al. proposed a new synthesis optimization technique, 
called recursion flattening, which eliminates recursive 
function invocations by unrolling and inlining recursive 
calls [13]. Recursion flattening is realized in two steps. 
First, the maximum depth of recursion is calculated as a 
function of a given set of inputs. Then recursive calls are 
inlined until the required depth of the recursion is reached. 
 The suggested technique is not capable of eliminating 
all recursion but succeeds for some recursive algorithms. 
Actually, the main difficulty is detecting recursion depth 
that can only be done if a certain set of conditions is 
satisfied (such as that every recursive call must modify at 
least one variable that is used in checking if a base case has 
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been reached). An example of algorithm whose recursion 
depth cannot be determined statically (before runtime) is 
quick sort [13].  
 A high-level synthesis tool was developed that performs 
recursion flattening and outputs register-transfer level 
VHDL code [13]. The generated VHDL code was further 
synthesized and implemented on an FPGA of Xilinx 
Virtex-4 family. The results of experiments with several 
recursive benchmarks have shown that flattened recursive 
hardware (running at a frequency ranging from 100MHz to 
400 MHz) was on average 75x faster than software 
executing iterative versions of the same algorithms over 
ARM926EJ running at 400 MHz. Recursive-flattened 
hardware was also on average 6.5x faster than the iterative 
hardware and occupied a bit more resources. 
 The main problem with this method is that, according to 
[13], various instances of a recursive function (flattened 
recursion) are synthesized to parallelized circuits. If so, it is 
not clear how to deal with different instances of inlined 
functions that require simultaneous access to memory. 

3. COMPARISON OF THE PROPOSED METHODS 

As it was shown in the previous section neither of the 
suggested methods for implementing recursion in 
reconfigurable hardware can be classified as a clear winner. 
Efficiency of multi-thread execution and speculative 
execution of Mariyama et al. greatly depends on particular 
problem characteristics and is very limited by memory 
bandwidth. Those methods that rely on stack (Sklyarov et 
al. and Ninos et al.) have a restricted parallelizability. 
However, their main advantage is that they can easily be 
applied for implementing any algorithm and therefore 
concept-to-implementation time is short. The recursion 
unrolling method of Ferizis et al. potentially achieves high 
level of parallelizability but tends to consume much more 
hardware resources than other methods. Moreover it is very 

platform-specific (because of the need to support run-time 
reconfiguration), lacks clearly defined memory access 
component and is difficult to conceptualize and apply on 
practice. The recursion flattening method of Stitt et al. is 
not suitable to all recursive algorithms because not always 
the maximum recursion depth can be determined. 
Simultaneous access to memory by different instances of 
inlined functions is also a problem. 
 As it has been shown all the methods differ in the level 
of parallelism supported [14]. Sklyarov et al. and Ninos et 
al. explore statement-level parallelism (SLP), where sets of 
nearby statements are processed simultaneously. The 
amount of SLP is limited by characteristics of a particular 
algorithm. Mariyama et al. [3] and Stitt et al. explore 
pipelining with statements being executed in an overlapped 
sequence. As in the previous case, the maximum amount of 
achievable parallelism is limited by inter-statement 
dependencies. Finally, Mariyama et al. [4] and Ferizis et al. 
explore process-level parallelism (PLP) augmented with 
pipelining, where multiple instances of recursive function 
are dispatched simultaneously. The efficiency of this 
approach also depends on the algorithm and is very 
restricted by inter-process dependencies and memory 
bandwidth. Moreover, PLP is difficult to identify 
automatically [14]. 
 The methods also differ according to approaches to 
exploring concurrency. Proposals of Mariyama et al. [3], 
Sklyarov et al., Ferizis et al. and Ninos et al. force the 
designer to identify explicitly which statements/functions 
will be executed in parallel, while Mariyama et al. [4] and 
Stitt et al. provide automated high-level synthesis compilers 
that generate synthesizable HDL code. 
 The most important characteristics of the reviewed 
methods, such as the supported level of parallelism, 
approach to concurrency, whether a stack is required, 
amount of occupied hardware resources, ease of use, and 
limitations to applicability, are summarized in Table 1. 

  
Table 1.  Principal characteristics of different methods. 

 Mariyama et al. Sklyarov et al. Ferizis et al. Ninos et al. Stitt et al. 
Level of 
parallelism 

pipelining  
process-level statement-level process-level statement-level pipelining 

Approach to 
concurrency 

designer [3] 
compiler [4] designer designer designer compiler 

Stack required yes [3] yes no yes no 
Occupied 
hardware 
resources 

medium-large medium large medium medium-large 

Ease of use not easy [3] 
easy [4] easy difficult easy easy 

Applicability 

limited by data 
dependencies between 

the results of a recursive 
call and subsequent 

function’s statements 

can be applied to 
any recursive 

function 

requires run-time 
reconfiguration 

fully supports 
only direct 
recursion 

recursion depth 
must be 

determinable 
before run-time 
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 It is known that recursion can always be substituted by 
iteration, but we believe that recursion should be used when 
it permits a clearer specification to be provided. Therefore, 
further work has to be developed to guarantee a simple and 
efficient support for recursive functions in reconfigurable 
hardware. One of the potential ways is to explore 
techniques for improving the performance of recursive 
computations that have been proposed for optimizing 
software compilers. For example, Rugina et al. noticed that 
a typical recursive function spends too much time in divide 
and combine phases instead of performing useful 
computations [15]. Therefore, Rugina et al. proposed a 
temporary recursion unrolling targeted at increasing the size 
and applicability of base cases. As a result, large base cases 
can automatically be generated eliminating in this way a big 
number of recursive calls and improving the overall 
performance. We believe that a combination of such pre-
processing techniques with an easy-to-implement stack-
based approach can lead to very good results in 
reconfigurable hardware. 

4. CONCLUSION 

This paper is dedicated to the description and comparison 
of different approaches to implement recursion in 
reconfigurable hardware. The analysis leads to the 
following conclusions: 

- Practically all the methods reported in this paper 
were tested on very small problem instances and it is 
impossible to draw conclusions about their scalability. It 
seems that only stack-based methods are fully scalable. 

- It is quite difficult to compare the results that have 
been achieved because just a few proposals fully reveal all 
the details and make the projects publicly available and the 
results reproducible.  

- The majority of methods require the designer to 
identify statements/functions to be executed in parallel. 
Just two proposals include a high-level synthesis tool that 
automates this task. 

- The speedups achieved by reconfigurable 
hardware compared to software are significant just for 
certain classes of algorithms (and it is not clear whether 
they account the hardware configuration time). 
Consequently, although many interesting and worthwhile 
methods have already been proposed, innovative 
approaches still need to be explored in the reconfigurable 
hardware domain. 
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