
RECURSION IN RECONFIGURABLE COMPUTING: A SURVEY OF IMPLEMENTATION
APPROACHES

Iouliia Skliarova, Valery Sklyarov

Department of Electronics, Telecommunications and Informatics / IEETA
 University of Aveiro

 3810-193 Aveiro, Portugal
 email: iouliia@ua.pt, skl@ua.pt

ABSTRACT

Reconfigurable systems are widely used nowadays to
increase performance of computationally intensive
applications. There exist a lot of synthesis tools that
automatically generate customized hardware circuits from
specifications in both high-level and hardware description
languages. However, such tools have a limited applicability
because they are unable to handle recursive functions
whereas it is known that recursion is a powerful problem-
solving method widely used in computer science. Therefore
a great deal of research effort is aimed at efficient
implementation of recursion in reconfigurable hardware.
This paper presents the state of the art in this area. The
existing proposals are described, analyzed, and compared
according to such criteria as level of parallelism supported,
approach to concurrency, ease of use, availability of
automated high-level synthesis tools, etc.

1. INTRODUCTION

Recursion is a powerful problem-solving method widely
used in computer science. The basic idea is to divide a
given initial problem into a finite (and usually very small)
set of simpler sub-problems in such a way that every sub-
problem is of exactly the same type as the original problem
[1]. Subsequently, the same decomposition can be applied
recursively to each of the sub-problems until newer sub-
problems turn out to be so simple that their solution is
known (this situation is identified as a base case). Once the
base case is reached, a solution to the previous sub-problem
can easily be composed. By moving gradually from smaller
sub-problems to bigger sub-problems, a solution to the
original problem is finally obtained. Sometimes it is
necessary to solve all the sub-problems in order to get the
solution to the original problem (such as in inefficient
recursive calculation of Fibonacci sequence). Other times,
only part of the sub-problems needs to be solved (e.g.
binary search).
 Recursive specifications often produce elegant and
easier to understand solutions than the respective iterative

specifications. Therefore, practically all modern
programming languages provide support for recursion.
Recursive functions (as well as functions in general) are
implemented in general-purpose computers with the aid of
stack memory which keeps all necessary information
permitting to return from a recursive call and to restore the
state of data as it was before the recursive call. Managing
stack (pushing there all the required data before a function
call and popping these data as soon as a recursive return is
to be done) incurs an overhead for each function call, and
recursive functions magnify this overhead because
eventually a large number of recursive calls can be
generated [1]. But since the use of recursion frequently
clarifies complex programs and, in some cases, can be very
efficient (e.g. binary and N-ary search), additional overhead
may be ignored.
 Taking into account the main advantages of recursive
specifications it would be worthwhile to use recursion in
reconfigurable hardware. Besides, recursive functions are
the most time consuming parts in many algorithms and
accelerating their execution with reconfigurable hardware
would be very beneficial. However, modern hardware
description languages (HDL) as well as system-level
specification languages (SLSL) do not provide direct
support for recursion. This can be explained by two
reasons. First of all, HDL and SLSL descriptions can be
synthesized and further implemented over different
hardware platforms. These platforms, as a rule, do not
possess a dedicated stack memory which could be used for
supporting recursive calls. So, the first reason is the lack of
hardware support. Obviously, stack could be synthesized
specifically for each problem but it is not easy to calculate
recursion depth (and, consequently, the required stack size).
One alternative solution would be to substitute recursion
automatically by the respective iterative specification.
However, commercial synthesis tools do not follow this
approach because of its inherent complexity. Therefore, the
second reason of not synthesizing recursion is the
associated complexity. Moreover, for some algorithms,
iteration requires more data movement, is less clear, and is
often slower [2].
 Nevertheless a number of techniques have been
suggested aimed at implementing recursion in

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 224

reconfigurable hardware. The main objective of this paper
is to survey published proposals, to identify their relative
advantages and drawbacks, and to give recommendations
for future work.
 The remainder of the paper is organized in three
sections. Section 2 provides an overview of methodologies
for implementing recursive functions in reconfigurable
hardware. Section 3 makes a comparison of approaches
discussed in section 2. Finally, concluding remarks are
given in section 4.

2. METHODOLOGIES FOR IMPLEMENTING
RECURSION IN RECONFIGURABLE HARDWARE

Different attempts have been made to implement
recursion in reconfigurable hardware. Basically, all
proposals fall into one of two broad categories: unroll
recursive calls into a pipelined circuit or implement it with
a stack. In the following sub-sections all the suggested
methodologies will be reviewed.

2.1. Maruyama et al.

One of the first works on implementing recursion in
reconfigurable hardware was done by Mariyama et al. [3,
4]. In particular, two techniques have been proposed: multi-
thread execution and speculative execution.
 The first of these techniques was applied to
combinatorial optimization problems that require the whole
search space to be traversed (the knapsack problem was
selected as a case study). First of all, all tail recursions
(recursive calls that are the last statements in a given
recursive function) were optimized into loops for the sake
of efficiency. Then a pipeline was constructed whose
number of stages is equal to the number of blocks into
which a given algorithm can be decomposed. Operations
within each block are executed in parallel. As all pipeline
stages become active at the same time, the maximum
attainable speedup is limited by the depth of the pipeline.
When a recursive call is to be done, the arguments are
either forwarded directly to the respective stage in the
pipeline or pushed into a stack if the stage is occupied. This
technique was applied for solving the knapsack problem in
an Altera FPGA [3]. The resulting circuits supported the
maximum clock frequency of 35 MHz and occupied 17%
of logic resources of EPF10K100 device. The achieved
speedup calculated as an average of solving 100 small
problem instances (with 32 objects to be put into a
knapsack) was 6.7x over the implementation of the same
algorithm in software executing in Ultra-Sparc 200 MHz.
The application of multi-thread execution method,
however, seems to be very limited since, in a general case,
all pipeline stages can potentially need reading and writing
data from/to memory and supporting parallel accesses to
different locations of the data memory in parallel is not

feasible. Moreover, it is not clear how to proceed if there is
a data dependency between the results of a recursive call
and subsequent function’s statements.
 The second technique proposed by Mariyama et al. [3]
is aimed at solving combinatorial search problems (for
which only one, not necessarily optimal, solution has to be
found) and is more suitable for loops which include
recursive calls. Knight’s tour problem was considered as an
example. The main idea is to speculatively execute
consecutive loop iterations in parallel assuming that no one
of these iterations will make a recursive call. As soon as
this assumption fails for iteration i, the recent computations
for iterations i+1, i+2,…, i+n (n is the number of pipeline
stages) are cancelled, the current data are pushed into stack
and the loop is restarted from the beginning (simulating a
recursive call). On a recursive return, the data are popped
from the stack and execution is resumed at the interrupted
stage. Mariyama et al. were able to achieve 4 times speedup
by speculative execution (clocked at 31 MHz) over
software implementation running on Ultra-Sparc 200 MHz.
It is not clear however whether this speedup accounts for
FPGA configuration time as well as for data transmission
time.
 In order to automate the process of generating circuits
for speculative execution from high-level programming
languages, a compiler was developed and reported in [4].
The compiler accepts C code augmented with special
notations (such as for specifying the size of data in bits and
for identifying statements to be executed in parallel) and
generates synthesizable HDL code (based on speculative
execution). All recursive calls are previously transformed
into iterative loops by a pre-processor. When memory
holding data is accessed more than once by different
pipeline stages, the pipeline has to be stalled and memory
access operations are executed sequentially. The generated
circuit speculatively executes next loop iterations and resets
and restarts them when data feedback dependencies are
detected [4]. The resulting circuits generated by the
compiler run in a range of 39-47 MHz (on Altera
EPF10K100 FPGA) and achieve a speedup of 2 times
(measured in the number of clock cycles) when compared
to non-speculative execution.

2.2. Sklyarov et al.

Sklyarov et al. proposed a technique for implementing
recursive functions in reconfigurable hardware with the aid
of hierarchical finite state machines (HFSM) [5-7]. The
main idea is to implement recursive calls in hardware in the
same manner as it is done in software and to parallelize just
those operations that occur in between recursive calls. Each
function (which can be recursive or not) is supposed to be
executed by a specific hardware module which attempts to
execute as many operations as possible in parallel.
Recursive calls invoke operations over stacks in such a way

225

that the state of the module (where recursive invocation has
happened) is saved onto a stack and the stack pointer is
incremented to address the storage for a recursively called
module. When the recursively called module ends, the stack
pointer is decremented in order to restore the state of the
interrupted module [7].

The suggested hardware model of HFSM is depicted in
Fig. 1. The HFSM consists of a combinational circuit and
two stacks (that keep track of hierarchical functions
invocations), one for states (FSM_stack) and the other for
modules (M_stack).

The stacks are managed by a combinational circuit that
is responsible for new module invocations and state
transitions in any active module that is designated by
outputs of the M_stack. Any non-recursive transition is
performed through a change of a code only on the top
register of the FSM_stack. Any recursive call alters the
states of both stacks in such a way that the M_stack will
store the code for the new module and two values will be
pushed into the FSM_stack: first, the code of the next state
in the calling module and then the code of the first state in
the called module. Any hierarchical return just activates a
pop operation without any change in the stacks. As a
result, a transition to the state following the state where the
terminated module was called will be performed. The stack
pointer is common to both stacks. If the final state in a
module is reached when the stack pointer is equal to zero,
the algorithm terminates execution.

M_stack FSM_stackCombinational
circuit (CC)

x1 xL

y1 yN

current
state

current
module

next
state

next
module

Control: clk,
rst, push, pop

Control: clk,
rst, push, pop

Fig. 1. The hardware model of HFSM.

Besides of two control stacks depicted in Fig. 1, an
additional data stack is usually required to preserve all
necessary data in between recursive calls (that allows a
previous function’s data to be easily restored). Since all the
stacks are constructed on the basis of embedded in FPGA
memory blocks the additional FPGA resources required for
stack management are negligible.

The technique suggested in [5-7] has three main
advantages. First of all, this method can be applied for
implementing any recursive function with an arbitrary
number of recursive calls done within that function. The
only condition that has to be assured is that a function does
not contain infinite recursion (the same has to be
guaranteed in software). Obviously, the maximum depth of
recursion has to be known before runtime, but since
memory resources are abundant in recent FPGA families,

stacks can be created so as to be able to accommodate the
biggest number of modules that could eventually be called
by a given algorithm.

The second advantage is that parameterizable VHDL
and Handel-C templates have been developed for the
stacks and the combinational circuit composing an HFSM
[5-7]. Consequently the design process is very easy: it is
only necessary to customize the templates for a particular
algorithm.

And, finally, the same synthesized and implemented
circuit can be used for solving various problem instances.
This is not possible with the majority of other approaches
that require the circuit to be resynthesized (for example,
when initial problem data influence the number of times
that a function has to be unrolled).

The main disadvantage of the method is that parallelism
is limited to executing in parallel operations that occur in
between recursive calls. If the amount of work in these
operations is high, then the respective implementation can
outperform significantly the corresponding software
implementation. Otherwise, if there is a limited number of
operations whose execution can be parallelized, then the
resulting circuit will require roughly the same number of
clock cycles as software running on a single-core
microprocessor (actually, the number of clock cycles in
hardware will be smaller because invocation of new
modules can be overlapped with execution of other
algorithm’s operations [7]). Since the clock frequency of
microprocessors is generally higher than that of FPGA-
based systems, the resulting speedup would be negative.

Several experiments have been realized for problems of
binary tree sorting, matrix covering, knapsack problem and
computation of the greatest common divisor [5]. The
respective recursive algorithms were described in VHDL
and Handel-C and implemented on FPGAs of Spartan-IIE,
Spartan-3 and Virtex-II families. The main conclusion was
that using modular algorithms, in general, and recursive
algorithms, in particular, was more advantageous for
problems of binary (N-ary) search compared to iterative
implementations [6].

2.3. Ferizis et al.

Ferizis et al. proposed a method for mapping recursive
functions to reconfigurable hardware without the use of
stack [8-11]. The main idea was to parallelize function
execution as much as possible and for this it was suggested
to unroll the function as many times as necessary in an
FPGA at run time and to execute recursive calls in parallel.

In [8-9] all the statements in a recursive function are
split into two disjoint sets: pre-recursive (containing
statements that occur before the recursive calls) and post-
recursive (containing statements that occur after the
recursive calls). The resulting hardware circuit includes one
pre-recursion and one post-recursion logic unit for each

226

level in the function call graph. The logic units are arranged
in a pipeline as indicated in Fig. 1 for a case of recursion of
depth 2 (a function calls itself once and when it is activated
for the next time the base case is reached). If a function
includes several recursive calls (more than 1) then every
level of the function call graph contains several nodes,
however, just one of them can be active at a time.

pre-recursion pre-recursion post-recursion post-recursion

Fig. 2. Arrangement of pre- and post-recursion units for a

recursive function of depth 2.

If the recursion depth is known before the execution
then the pipeline is configured so as to match exactly a
problem instance. Otherwise, a minimum estimated number
of logic units are configured and if a recursion level is
reached which exceeds the number of levels supported, then
the required additional recursive levels are added to the
pipeline by partial run-time reconfiguration [8-9]. To
simplify placement and routing all logic units are placed in
columns (that span the whole height of an FPGA of Xilinx
Virtex-II family) and interlinked with a network-on-chip.
The need for additional logic levels is predicted by a special
circuit whose task is to monitor input into the system and
detect the need for more logic before it is actually needed,
allowing to minimize the overhead of reconfiguration [9].

In [9] different case studies are presented where the
suggested method was applied to merge sort and Strassen’s
matrix multiplication. However, the method’s applicability
was only studied at the theoretical level and no real
hardware implementation was done.

In [10-11] it was proposed that each stage of pipeline,
instead of computing either pre- or post-recursive
statements of a single function, would control all the
functions that occupy the current recursive level, and, as a
result, would execute multiple instances of the recursive
function in parallel.

In order to deal with limited hardware resources (that
could not be sufficient to fully unroll a recursive function) it
was proposed to force each stage of the pipeline to compute
multiple recursive levels [10]. It is not clear however, how
data dependencies between recursive levels are resolved.
Actually, it seems that the whole model does not account
for memory access component (simultaneous memory
access by different logic units, available memory
bandwidth, etc.).

Run-time reconfiguration was not implemented and
therefore a simulator was developed to estimate the
possibility and effectiveness of unrolling recursion on the
fly. Several case studies are presented in [11] which were
either implemented on a Celoxica RC200 board or ran on a
simulator (that was employed to test run-time
reconfiguration). It was shown that merge sort, quick sort

and quad tree partitioning algorithms, when fully unrolled,
run in linear time and outperform stack-based
implementation [10-11]. However, the required hardware
resources are unknown and the level of details presented in
[8-11] does not allow to reproduce experiments and to
comment the results fairly.

2.4. Ninos et al.

The work of Ninos et al. extends the results of previous
proposals and suggests a data-oriented approach [12]. This
approach relies on a recursion simplification operation
which essentially transforms recursion to iteration with a
stack. Basically, if the condition for recursion is met then
local data are pushed into the data stack and the function
execution is restarted. Otherwise, if the condition for
recursion is not met, the function simply continues its
execution. When the last statement within the function is
reached, if the data stack is empty the execution is ended.
Otherwise, a recursive return is performed by popping the
previous data from the stack and returning to a state from
which recursive call was done. Since on a recursive return
control always goes back to the state from which a
recursive call has been done, it means that this state has to
be repeated in order to evaluate the next state to follow,
which will result in performance degradation.
 The authors claim that recursion simplification
operation can be expanded to as many recursive calls
within a function as necessary [12]. It seems however that
some additional information should be stored on the stack
that would allow to identify unequivocally the point to
return to from recursion in case of multiple recursive calls.
Actually, this assumption is proved in an example presented
in [12] for knight’s tour problem.
 The results of experiments with knight’s tour problem
have shown that implementations in Spartan-3 FPGA run 2-
3 times faster than software executed on Pentium-4 clocked
at 3.4 GHz [12]. Once again communication and FPGA
configuration times have not been taken into account.

2.5. Stitt et al.

Stitt et al. proposed a new synthesis optimization technique,
called recursion flattening, which eliminates recursive
function invocations by unrolling and inlining recursive
calls [13]. Recursion flattening is realized in two steps.
First, the maximum depth of recursion is calculated as a
function of a given set of inputs. Then recursive calls are
inlined until the required depth of the recursion is reached.
 The suggested technique is not capable of eliminating
all recursion but succeeds for some recursive algorithms.
Actually, the main difficulty is detecting recursion depth
that can only be done if a certain set of conditions is
satisfied (such as that every recursive call must modify at
least one variable that is used in checking if a base case has

227

been reached). An example of algorithm whose recursion
depth cannot be determined statically (before runtime) is
quick sort [13].
 A high-level synthesis tool was developed that performs
recursion flattening and outputs register-transfer level
VHDL code [13]. The generated VHDL code was further
synthesized and implemented on an FPGA of Xilinx
Virtex-4 family. The results of experiments with several
recursive benchmarks have shown that flattened recursive
hardware (running at a frequency ranging from 100MHz to
400 MHz) was on average 75x faster than software
executing iterative versions of the same algorithms over
ARM926EJ running at 400 MHz. Recursive-flattened
hardware was also on average 6.5x faster than the iterative
hardware and occupied a bit more resources.
 The main problem with this method is that, according to
[13], various instances of a recursive function (flattened
recursion) are synthesized to parallelized circuits. If so, it is
not clear how to deal with different instances of inlined
functions that require simultaneous access to memory.

3. COMPARISON OF THE PROPOSED METHODS

As it was shown in the previous section neither of the
suggested methods for implementing recursion in
reconfigurable hardware can be classified as a clear winner.
Efficiency of multi-thread execution and speculative
execution of Mariyama et al. greatly depends on particular
problem characteristics and is very limited by memory
bandwidth. Those methods that rely on stack (Sklyarov et
al. and Ninos et al.) have a restricted parallelizability.
However, their main advantage is that they can easily be
applied for implementing any algorithm and therefore
concept-to-implementation time is short. The recursion
unrolling method of Ferizis et al. potentially achieves high
level of parallelizability but tends to consume much more
hardware resources than other methods. Moreover it is very

platform-specific (because of the need to support run-time
reconfiguration), lacks clearly defined memory access
component and is difficult to conceptualize and apply on
practice. The recursion flattening method of Stitt et al. is
not suitable to all recursive algorithms because not always
the maximum recursion depth can be determined.
Simultaneous access to memory by different instances of
inlined functions is also a problem.
 As it has been shown all the methods differ in the level
of parallelism supported [14]. Sklyarov et al. and Ninos et
al. explore statement-level parallelism (SLP), where sets of
nearby statements are processed simultaneously. The
amount of SLP is limited by characteristics of a particular
algorithm. Mariyama et al. [3] and Stitt et al. explore
pipelining with statements being executed in an overlapped
sequence. As in the previous case, the maximum amount of
achievable parallelism is limited by inter-statement
dependencies. Finally, Mariyama et al. [4] and Ferizis et al.
explore process-level parallelism (PLP) augmented with
pipelining, where multiple instances of recursive function
are dispatched simultaneously. The efficiency of this
approach also depends on the algorithm and is very
restricted by inter-process dependencies and memory
bandwidth. Moreover, PLP is difficult to identify
automatically [14].
 The methods also differ according to approaches to
exploring concurrency. Proposals of Mariyama et al. [3],
Sklyarov et al., Ferizis et al. and Ninos et al. force the
designer to identify explicitly which statements/functions
will be executed in parallel, while Mariyama et al. [4] and
Stitt et al. provide automated high-level synthesis compilers
that generate synthesizable HDL code.
 The most important characteristics of the reviewed
methods, such as the supported level of parallelism,
approach to concurrency, whether a stack is required,
amount of occupied hardware resources, ease of use, and
limitations to applicability, are summarized in Table 1.

Table 1. Principal characteristics of different methods.

 Mariyama et al. Sklyarov et al. Ferizis et al. Ninos et al. Stitt et al.
Level of
parallelism

pipelining
process-level statement-level process-level statement-level pipelining

Approach to
concurrency

designer [3]
compiler [4] designer designer designer compiler

Stack required yes [3] yes no yes no
Occupied
hardware
resources

medium-large medium large medium medium-large

Ease of use not easy [3]
easy [4] easy difficult easy easy

Applicability

limited by data
dependencies between

the results of a recursive
call and subsequent

function’s statements

can be applied to
any recursive

function

requires run-time
reconfiguration

fully supports
only direct
recursion

recursion depth
must be

determinable
before run-time

228

 It is known that recursion can always be substituted by
iteration, but we believe that recursion should be used when
it permits a clearer specification to be provided. Therefore,
further work has to be developed to guarantee a simple and
efficient support for recursive functions in reconfigurable
hardware. One of the potential ways is to explore
techniques for improving the performance of recursive
computations that have been proposed for optimizing
software compilers. For example, Rugina et al. noticed that
a typical recursive function spends too much time in divide
and combine phases instead of performing useful
computations [15]. Therefore, Rugina et al. proposed a
temporary recursion unrolling targeted at increasing the size
and applicability of base cases. As a result, large base cases
can automatically be generated eliminating in this way a big
number of recursive calls and improving the overall
performance. We believe that a combination of such pre-
processing techniques with an easy-to-implement stack-
based approach can lead to very good results in
reconfigurable hardware.

4. CONCLUSION

This paper is dedicated to the description and comparison
of different approaches to implement recursion in
reconfigurable hardware. The analysis leads to the
following conclusions:

- Practically all the methods reported in this paper
were tested on very small problem instances and it is
impossible to draw conclusions about their scalability. It
seems that only stack-based methods are fully scalable.

- It is quite difficult to compare the results that have
been achieved because just a few proposals fully reveal all
the details and make the projects publicly available and the
results reproducible.

- The majority of methods require the designer to
identify statements/functions to be executed in parallel.
Just two proposals include a high-level synthesis tool that
automates this task.

- The speedups achieved by reconfigurable
hardware compared to software are significant just for
certain classes of algorithms (and it is not clear whether
they account the hardware configuration time).
Consequently, although many interesting and worthwhile
methods have already been proposed, innovative
approaches still need to be explored in the reconfigurable
hardware domain.

5. REFERENCES

[1] F.M. Carrano, Data abstraction and problem solving with
C++: walls and mirrors, 5th ed., Addison-Wesley, 2007.

[2] J.V. Nobble, “Recurses!”, Computing in Science &
Engineering, May/June 2003, vol. 5, issue 3, pp. 76-81.

[3] T. Maruyama, M. Takagi, T. Hoshino, “Hardware
implementation techniques for recursive calls and loops”, in
Proc. of the 9th International Workshop on Field-
Programmable Logic and Applications - FPL’99, Glasgow,
UK, August/September 1999, pp. 450-455.

[4] T. Maruyama, T. Hoshino, “A C to HDL compiler for
pipeline processing on FPGAs”, in Proc. of IEEE
Symposium on Field-Programmable Custom Computing
Machines FCCM’2000, CA, USA, 2000, pp. 101-110.

[5] V. Sklyarov, “FPGA-based implementation of recursive
algorithms,” Microprocessors and Microsystems. Special
Issue on FPGAs: Applications and Designs, vol. 28/5-6, pp.
197–211, 2004.

[6] V. Sklyarov, I. Skliarova, B. Pimentel, "FPGA-based
Implementation and Comparison of Recursive and Iterative
Algorithms", in Proc. of the 15th International Conference
on Field-Programmable Logic and Applications - FPL'2005,
Finland, August 2005, pp. 235-240.

[7] I. Skliarova, V. Sklyarov, "Recursive versus Iterative
Algorithms for Solving Combinatorial Search Problems in
Hardware", in Proc. of the 21st International Conference on
VLSI Design – VLSI Design’2008, Hyderabad, India,
January 2008, pp. 255-260.

[8] H. ElGindy, G. Ferizis, “Mapping basic recursive structures
to runtime reconfigurable hardware”, in Proc. of the 14th
International Conference on Field-Programmable Logic
and Applications - FPL’04, 2004, pp. 906-910.

[9] H. ElGindy, G. Ferizis, “Mapping basic recursive structures
to runtime reconfigurable hardware”, technical report, July
2004, available online at:
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/0419.pdf.

[10] G. Ferizis, H. ElGindy, “Mapping recursive functions to
reconfigurable hardware”, in Proc. of the 16th International
Conference on Field Programmable Logic and Applications
- FPL 06, Madrid, Spain, August 2006, pp. 283-288.

[11] G. Ferizis, “Mapping recursive functions to reconfigurable
hardware”, Ph.D. thesis, University of New South Wales,
Australia, 2005.

[12] S. Ninos, A. Dollas, “Modeling recursion data structures for
FPGA-based implementation”, in Proc. of the 18th
International Conference on Field Programmable Logic and
Applications – FPL’08, Heidelberg, Germany, September
2008, pp. 11-16.

[13] G. Stitt, J. Villarreal, “Recursion flattening”, in Proc. of the
18th ACM Great Lakes symposium on VLSI – GLSVLSI’08,
FL, USA, May 2008, pp. 131-134.

[14] S.A. Edwards, “The Challenges of Synthesizing Hardware
from C-Like Languages”, IEEE Design & Test of
Computers, vol. 23, issue 5, September-October 2006, pp.
375-386.

[15] R. Rugina, M. Rinard, ”Recursion unrolling for divide and
conquer programs”, in Proc. of 13th International Workshop
on Languages and Compilers for Parallel Computing -
LCPC’2000, NY, USA, August 2000, pp. 34-48.

229

