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In the Ablowitz-Kaup-Newell-Segur theory for N X N matrix system, the associated general nonlinear
evolution equation is obtained, in which the recursion operator is directly derived from the integrability
condition. Discussed are also the nonlinear superposition law and symmetries associated with the evolu-
tion equations.

§1. Introduction

The class of nonlinear evolution equations related to the general first order N X N
matrix differential equation was extensively studied in connection with the inverse
scattering method.*”® In this paper, we study the evolution equations obtained as the
integrability condition of the system of the differential equations for N-vector #(x, ¢, )

D¢—Qé+idrd=0, (1-1)
$:+Adp=0, (1-2)

where x € R and t€ R are independent variables, Q(x,t) and A(Q,A) are NXN
matrices, z=diag(z., -**, z~) for non zero constants z;>--- > v, A € C a spectral parameter
and D:=0/dx, ¢::=0¢/dt. Without loss of generality, we assume that Q is off-diagonal,
ie, @:=0. Integrability condition of ¢ in (1-1) and (1-2) yields the A dependent equation
for @ as )

Q:+DA+iAz, A1-1Q, A]=0, (1-3)

where [@, Bl:=aB—Ba. We can eliminate A from (1-3) to obtain A independent evolution
equation either by expanding 4 in powers of A and equating coefficients of the power of
A to zero or by introducing “squared eigenfunction” to invert A into recursion operator in
a Hilbert space. By each of these two methods, we derive in § 2 the general evolution
equation

Qet 3 A(L)0:Q=0 (1-4)

from (1-3), here L is an integro-differential matrix operator® defined by (2-9), f.(L) (=1,
2, ---, N —1) arbitrary function of L and p,Q:=[P;, @] with matrix unit P,={8us8,}. Itis
noted that L (recursion operator) is derived by simple algebraic manipulations. The
eigenfunctions of the adjoint of L which are usually named as “squared eigenfunctions”
are assumed to consititute a complete set in the Hilbert space.

In § 3, proving the hereditary property of L,
operator which transforms the symmetry® of (1-4) into the symmetry of (1-4). Here, the

we show that L is in fact the recursion

220z ysnbny oz uo 3senb Aq 621.5€81/5001/G/v2/a101He/d)d/wod dnoolwepese//:sdiy woly papeojumoq



1006 ' N. Asano and Y. Kato

_ symmetry of (1-4) is defined by the N X N matrix solution s of
set+K's=0, v (1-5)

where K’'s is the Gateaux differentiation of K [Q]=Z§V=;11fz(L)sz toward s, for the
solution @ of (1-4).

Some structural properties of (1-4) is discussed in § 5. First, we note that the
solution of (1-4) is expressible as the linear superposition of the eigenfunction ¥; of L,

since there is a solution 0@ for (1+5) with the invertible matrix o and ¥, also satisfies
(1-5);

QZp“‘/;ed(L)d/lCA v, | (1-6)

Here 6(L) denotes spectrum of L and C; is time-independent coefficient. We may call the
property (1:6) nonlinear superposition law, which was previously proposed for N =2.%

Finally, from the invariance of (1-1) and (1+2) under the gauge transformation, we derive
the symmetries of (1-3) §Q and (1:4) s

SQZ(L—A)9+1§:gz(A)mQ, (1-7)

SZEQZ(L)PLQ, (1-8)

where g is arbitrary off-diagonal matrix and g¢.(1) arbitrary function of A. Relations
among (1-4), (1-7) and (1-8) are also discussed. :

§2. General form of the evolution equation

Throughout the paper, we assume that Q and‘Qt for fixed ¢ are differentiable to any
order and decrease as |x|~ o faster than any inverse power of |x]. Then, the spectral

problem of (1-1) can be solved for a set of generic potentials Q.7 We rewrite (1-1) as
the eigenvalue problem,

1D, =70, ,
=it (D—Q), (2:1)

where @, is the holomorphic function in the upper or lower half of the complex A plane
under the Jost boundary condition @;oce™*% ag [g|-c0. The inverse matrix @;7!
satisfies

0, T(T:/i@x_lz' ,
T=—ir(D+0). (2-2)

Let ¢:={ds;} and ¢. ={¢:;} (j=1,2, -, N) be arbitrary column and row vectors in D,
and @,' respectively. Then it is easy to verify that the off-diagonal part of the matrix
T, defined as ¥rn={¢ulds=dr:d1;, 7, 7=1, 2,+, N, i+j} satisfies

LU, =)w,, ‘ (2:3)
L:=ix(D-—[Q, *1.—[Q, D0, -1]), (2-4)
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where x is the inverse of ad(z)-=lz, - 1,ie., x¥ ={xi¢:;}, x:5=(z:— ;) 7", suffices » and d
mean off-diagonal and diagonal parts of the matrices respectively and D" =/Zodr-. In
(2-4) and the following D' may be replaced by the integral —/Zdx-. We introduce a
Hilbert space H of off-diagonal matrix functions with the trace inner product

(4, ¢): =[:dx tr(é'¢) .

Here ¢'=¢"* is the complex conjugate of the transposed matrix ¢7 of ¢. For any
operator U in H, we introduce an operator U* through the relation (¢', U¢)=(¢*, U“¢).
We rewrite (1-3) as

Q:+ixDa—2a—ilQ, xal.—[Q, Aaln=0, (2-5)
DAd_i[Q, de]d:(), (26)

where off-diagonal matrix « is defined by A.=ixa. Let the integration constant to A, in
(2-6) be 22Y-1Ci(A) P, with the matrix unit P,={8::0,;} and arbitrary functions of A, C.(A).
Then, (2:6) yields
. ‘
Ae=iD7[Q, xala+ Z C:(D) P.. (2:7)

Substituting (2-7) into (2:5), we have

QH(L—Na+ 2 Cl)eQ=0, (2-8)
L:=i(Dx-—[Q, x-1,—[Q, D7'[Q, x* 1] . (2-9)

As verified by the direct computation, L* coincides with L defined by (2:4). Hence,
multiplying (2-8) by ¥, € H from the left and constructing the inner product, one has

oo N ‘
[t wn(Qu+ 2 CUD)0:@)]=0. (2-10)
We assume the completeness of {¥»} in H,'® then (2-10) gives. the evolution equation
N
Qt+§1Cl(L)plQ:O' (2-11)

Since there is a constraint 217-:10,=0, (2:11) can be rewritten in terms of N —1 arbitrary
functions £:(4) :=Ci(A) — Cn(A) (I=1,2,++, N—1) as given by (1-4).

It is possible to obtain (2-11) by the other method. We assume that ¢ and C; can be
expanded as ¢=2>%wa;4’ and C;=2%.Ci;A’. Substituting these expansions into (2-8) and
equating coefficients of each power of A to zero, we have

N
dj—IZLdj'{‘lglCuPLQ, (F#0) (2-12)
N
Qt-l-Lao—(l—r‘rlglePzQ:O. (2-13)

Assuming further, L"¢,—0, L "a.-»—1—0 as #— o0 for L and the inverse L}, we have from
(2:12) @o=25-12"L"! Ci;0:Q and a-,=—2=L3VLICy0,Q and hence, from (2-13), obtain
(2-11).
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It is noted that, for the case Ci(4) =i, @.=constant (/=1, 2, ---, N —1), the integral
terms in (2-11) vanish identically due to the identity [@, x0:Q].=0 and (2-11) or (1-4)
reduces to

N-1
Q:— 2 a(Dx0:Q—[Q, %0.Q]») =0

which describes locally interacting n(<N ((N —1)) waves. By a choice C.(1) = —ih(A) Az,
({=1,2,+, N—1) and the identity 275! r.x0.Q= Q, we obtain also, from (2-11)

Q:+nh(L)DQ=0, (2-14)
where #(A) is an arbitrary function of A. Note that for N =2, (2:11) is always express-
ible in the form (2-14).%

§3. Hereditary property of L
In this section, we show that L is a recursion operator; for the solution @ of (2:11),

L satisfies

[—(%+K’, L]=0, (3-1)

where K’ is the operator defined by
K'¢=lim(K[Q+ed]— K[QD,

K[Ql=% CAD)o.Q. (3-2)

The fact that L is a recursion operator is essentially a consequence of the hereditary
property of L described in Lemma 3.3 below. For any specified K[Q], the pair X" and L
satisfying (3-1) is called “recursion pair”. The recursion pair constitutes a new Lax pair
for (2-11) and hence the eigenfunction ¢ of L, for the time independent eigenvalue,
satisfies ' ’ ‘

$:+K' ¢=0. (3:3)

In the following, we use the identities

JFki_ij: xi;jjkj

and
I[An, xBn]n_x[Bn,xAn]n:[xAn, ]an]n , (3'4)
[A, [Bn, )an]d]= [A, [Cn, XBn]d] ‘ ) (3'5)

for matrices A, B and C, where x[ , ]» is the multiplication of x on the matrix [ , ]. as
defined in § 2. We also use symbol K:[Q]=0.Q (I=1,2,--, N).

Lemma 3.1. K/ (I=1,2,--, N) and L are recursion pair.

Proof For N=1 and Ci(1)= 8.1, (2-11) is reduced to
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Recursion Operators for N X N Matrix Nonlinear Evolution Equations 1009

Qt1+K1:O ,
where we denote =1, to distinguish each K;[@Q]=p:Q (I=1,2, -, N). Since Ki'¢=p:1¢

" and

Li¢=i{l01Q, x¢].+[0:Q, ¢a1+1[Q, D' [0:Q, x41.1},
(L, K'lp=i{Dxo:¢—[Q, %0:6]»— [Q,D7'[Q, x0:4]]
—01Dx¢+0:1[Q, x¢1n+0:[Q, DTQ, %811},
here ¢.:=D7[Q, x$la, the L. H. S. of (3:1) is reduced to
(Lo +[K', LD ¢=1i{[0:Q, x$12+1Q, x0:6]n—0:[Q, x$]:}
+i{l0:Q, 4]+ 1Q, D7 [0:Q, x¢]]
+[Q, D7[Q, x0:¢]al—0:[Q, 84} . (3-6)

The first bracket of the R. H. S. of (3-6) vanishes due to o: and the Jacobi identity. -

The second bracket vanishes because of the identities
—[0:Q, #al+0:[Q, 1=~ [[Ps, Q1 $ul+[P, [Q, da]]
=—[Q, [P, ¢.11=0,
[0:1Q, x¢1a +[Q, 201414 = [P, Q) x¢]a+[Q, [Py, %41l
=—[Py, [x¢, 11la=0.

For [=2,:-, N, the proof is similar.

Lemma 3.2. Let K,"and L are recursion pair and K'=X2}_,C,K,” (C,=constant), then K’
and L are recursion pair. \
Proof Let L'(¢) be Gateaux derivative of L toward ¢. It is to be noted that, since L.
=L"(Q.), the equation L.+ [K,, L]=0 is equivalent to the identity

_L,(Kl)+[KL,, L]EO (3'7)

independent of Q.. Then, from the equation
Qe+ B CilQl=0,
we have
Lot (K, L1=2C—L'(K) +[K/, L] . (3-8)

The R. H. S. of (3:8) vanishes by (3-7).
Lemma 3.3. Bilinear operator I'(-, *)

I'(¢,9)=LL($)¢+L'(LP)¢ (3-9)

is symmetric, ie., I'(¢, §)=I"(¢, ¢) for ¢,y € H.
Proof According to the order of the power of Q, we divide L and I" as L=>%_,L« and
F:2§=o[1(i), where
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Lw¢:=iDxd, Loyg:=—ilQ, xdlx,
Lo¢:=—ilQ, D4 (.=IQ, x4l

As easily shown from (3-9), I'o takes the form

I'o(¢, ¢)=LwLw (¢$)¢+Lay(Lwd) ¢
=XD[¢) x¢]n+ [;C-D‘ﬁy x¢]n ’

which is symmetric due to (3-4). The first order component I is given by

T'y=Lwo(La'$)¢+La(Lay'd)¢+Le (Loyd) ¢+ Loy (Layd) ¢
=xD[¢, D $.1+xD[Q, D7'[$, x41a1—[Q, x[8, xp]1nlx
+[xD¢, D' ¢al+1Q, D [xD¢, x¢1a1—[[Q, ¥1n, x$]x .

From (3-4), (3-5) and the Jacobi identity, we have

Tofé, §) =T, ¢) =[xé, dal—[x¢, 1+ Dlxd, D¢, xpla—[4, x$1a)]
- [QT x[p, xln—x1¢, 241212 +1Q, [x¢, x4]4]
—[[Q, 291n, 812+ 1[Q, 281, 2d1n
= [x¢, [Q, 2611+ [0, [x6, QU +1Q, [x0, x61]n
=0.

I is constituted from four terms

LiL;(¢)¢=1Q, x[¢, D7'[Q, x¢]all. —[Q, x[Q, D[4, x¢]alln,
L.L/($)¢=—[Q, D'[Q, x[4, x¢].]a],
L (L) ¢=—[[Q, D7'[Q, x41a], x¢]~

=[Q, [x¢, D7'[Q, #4111~ [[Q, x8], D'[Q, x¢]al~,
L/(L:9)¢=—1lQ, x¢1», D7'[Q, x8]a]—[Q, D'[[Q, x¢]x, x8]d].

The sum of the first terms of L.L.(¢)¢ and of the second equation for L. (L.¢)¢
vanishes. The second terms of L:L;'(¢) is symmetric with respect to ¢ and ¢. The sum
of L:L/(¢)¢ and the second term of L, (Li¢)¢ is reduced to —[Q, (¢, $)+I(¢, $)],
where 217 (¢, 9)=1[Q, [x¢, ¥+ x[d, xp).]+ [0, x[Q, x¢$].]a, while the second term of

L/ (L.¢) is symmetric with the first term of L. (L.1¢)é. It is shown that

To=—[Q, D'[Q, x[¢, D'[Q, x¢1.1l.]—[Q, D'[Q, x[Q, D'[¢, x¢].]l.]
—[lQ, D7'[Q, x¢le), D'[Q, x8]a]—1Q, D'[[Q, x¢]a], x41a].

The sum of the first and the fourth terms vanishes. Each of the second and the third term

is symmetric with repect to ¢ and ¢. Thus, the proof is completed.
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Lemma 34. Let K’[Q]=L’0.Q (j € Z) for any fixed /. If (K’)" and L are the recursion
pair, then so (K7*')" and L.
Proof Since (K'*Y)'¢=L"($)K’+L(K’) ¢, we have

|2+ (&#*Y, L|o=—L (LK) ¢+ L (LY K?+ LIK?Y Lo~ LL'($) K'~ LXK?Y ¢

=—I'(¢, K)+I'(K’, $)+ L[~ L (K)+(K?)'L—L(K")]¢ .

From Lemma 3.3 the first two terms of the R. H. S. vanish and hence one can immediately
obtain the statement for K?*!. The proof for K’} is similar.

Collecting Lemmas 3.1~3.4, we have a theorem. _
THEOREM K’ and L defined by (3-2) and (2-9) respectively for arbitrary C.(1) (I=1,2,
-+-, N') are the recursion pair for the evolution equation (2-11).

§4. Superposition law and symmetries

We discuss two characteristic structures of (1-4) or (2-11), i.e., superposition law for
the solutions of (2-11) and infinitesimal symmetries.

First, we note that a solution of (2-11) is expressible, in the form of a linear superposi-
tion in term of the eigenfunction ¢:(¢) in H with the time independent eigenvalue A. To
see this, first we write solutions of the linear equation (3:3) in H in terms of a linear
operator T(#) as

o(1)="T(2)¢(0), T.+K' () T(£)=0. : (4-1)
Since by the Lax theory we have
T(HLWO) T(H)'=L(#)

and the spectrum of L(#) is invariant under the evolution by 7'(¢), we may write, under
the assumption of the completeness of {@i|d € ¢(L)}

w0)=[_ aACh(®), (4-2)

where ¢.(¢) evolves by T(#) whereas C; is time independent and is determined at =0
from ¢(0). On the other hand, any symmetry s of (2-11) also satisfies (3+3) and hence its
evolution is expressible in the form (4-2). We show in the following that 0,Q (/=1,2,
-+, N) is the symmetry. Thus, for such constants «; that the matrix o =3_.2.0; has the
inverse o', one can construct @ in the form

Q=0 [ o @A), (4-3)

where C; is determined from

Q(0)=p™* [ o PAC18:(0) . | (4-4)

We can rewrite (4-3) as

Qv =p" [ dAACTDHO. (4-5)
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The set of (4-4) and (4-5) is a nonlinear analogue of the Fourier method for intial value
problem for linear evolution equation. In this sense, we may call the formula (4-3)
nonlinear superposition law in the solution space of (2-11).

Finally, we note the symmetry property of (2:11). The system (1-1) and (1-2) is
invariant under the gauge transformation ¢— ¢ =Gé (G GL(N)), Q- 0=(GQ+DG
+iAlz, GD G and A-» A=(—G.+ GA)G™'. 1tis easy to see that these transformations
constitute a group and have the infinitesimal form G=1+6G, Q=Q+ 8Q, and A=A
+38A, where

0Q=[0G, Q1+ DSsG+iAlr, §G], (4-6)
0A=—0G.+[8B, A]. - 47

Since (1-3) is invariant under the variations (4:6) and (4-7), 8Q defined by (4-6) is a
symmetry of (1-3) and hence of (2-8) for arbitrary §G. We can rewrite (4-6) as

anZOZV[iZQ, Q]¢+D6Gd s (4'8)
8Q.=[0G, Qln+ixDg—Alz, xg]x, ' (4-9)

where 0G is decomposed into §G=8Ga+ixg (g€ H). Let the integration constant to

dGa obtained from (4-8) be 2-19:(A) P, where g.(d) is arbitrary function, then (4-9)
reduces to

8Q=06Qn=(L-Ng+a(NoQ. (4-10)

From (4-10), we have A independent symmetry s of (2-11) by the same method used to
obtain (2-11) from (2-8). Thus for instance, by expanding ¢ in powers of A and equating
each power of A equal to zero (c.f., (2-12), (2-13)), one has

s=310(L)0:Q . (4-11)

In particular, each p»Q (m=1,2,---, N—1) is symmetries corresponding to the choice
9:(A) =8 im under the constraint 3'¥_,0,=0. Symmetry DQ associated with x translation
is obtained by the choice g:.(1) = —iAr,. Evolution equations (2-11) and (2+14) are inter-
preted by these symmetries.” '
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