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1 Introduction

Conformal field theories (CFTs) are remarkable quantum field theories (QFTs) endowed

with an enhanced symmetry under the conformal group. Such special theories represent

fixed points in renormalization group flows and at the same time describe second-order

phase transitions in statistical and condensed matter systems. Strikingly, they also shed

light on the structure of the landscape of quantum field theories and elucidate aspects of

quantum gravity and black hole physics via the AdS/CFT correspondence. In recent years,

a modern revival of the conformal bootstrap program [1] has spurred many impressive ad-

vances in this field [2]. The bootstrap program furnishes a systematic non-perturbative

approach to reconstructing the CFT data associated with a given theory by exploiting

conformal symmetry and imposing stringent consistency conditions, such as crossing sym-

metry and unitarity. This powerful method empowers us to gradually carve out the com-

plete allowed space of CFTs, thus extending our understanding of the structure of the full

landscape of theories.

Most results so far have been extracted through the consideration of 4-point correlation

functions of operators, as reviewed in [2]. For example, well-known explicit expressions or

recursion relations exist for the conformal blocks appearing in 4-point functions of scalars in

arbitrary spacetime dimensions. Moreover, a rich variety of techniques have been developed

for handling 4-point conformal blocks involving external and internal exchanged operators

in arbitrary Lorentz representations. In addition to the tremendous profusion of progress

with respect to 4-point functions, there exists some recent stimulating work on higher-point

functions. Some of this work focuses on 2d CFTs [3–7] or on constructing correlators in

the context of the AdS/CFT correspondence [8–13].

There are a number of reasons to desire a more precise understanding of five- and

higher-point correlation functions. Some motivation includes the compelling idea that it

might be possible to get more leverage from examining these objects in the context of

the conformal bootstrap. While in principle crossing symmetry of all 4-point functions is

sufficient, it may be easier to extract constraints from simple higher-point functions than

from arbitrary spinning 4-point functions. Relatedly, the analysis of higher-point functions

may also enable us to more easily probe different physical regimes of a conformal field

theory, e.g. by taking various lightcone and Regge limits. The behavior of correlators in

such regimes gives alternative ways of packaging information on the structure of the CFT.

In holographic CFTs, the elusive 3-point functions of heavy operators 〈OHOHOH〉

can be probed by studying the 5-point object 〈OLOLOHOLOL〉 involving mostly light

operators. Moreover, additional motivation comes from the desire to understand the CFT

implications of the averaged null energy condition (ANEC) [14–24]. For example, one

can require positivity of the expectation value of the energy flux operator E in a bilocal

state created by two scalar operators, which is encoded in a 5-point function of the form

〈φiφjT µνφiφj〉. It may be interesting to understand if this positivity condition leads to

new constraints on the CFT spectrum.

Literature on higher-point conformal blocks for general CFTs in d > 2, which may be

required for the above analyses, is relatively scarce. A noteworthy contribution is the anal-
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ysis by Rosenhaus [25], where the author computed a series expansion for the 5-point scalar

exchange conformal block in a 5-point function of external scalar operators. Holographic

representations of higher-point conformal blocks were constructed in the works [26–28],

and dimensional reduction formulae for higher-point scalar exchange blocks were recently

derived in [29]. In addition, the null polygon limit of multi-point correlators was later

explored in [30]. Further, a connection to Lauricella systems was made in [31], while a

connection to Gaudin integrable models was proposed in [32]. A different perspective was

introduced by [33], and general representations of higher-point blocks were developed us-

ing the operator product expansion (OPE) in embedding space [33–38]. In particular, let

us highlight that both [27] and [35] derived alternate (but equivalent) expansions for the

scalar 5-point block with scalars exchanged.

As of now, few explicit results for higher-point conformal blocks capturing the ex-

change of spinning operators exist. A notable exception is [9], which developed a series

expansion for such blocks with identical external scalars. However, this result involves a

summation over 9 variables, with coefficients that must be determined recursively by solv-

ing the Casimir differential equations. A simpler approach to computing such blocks would

clearly be desirable. In this work, we endeavor to improve our understanding of 5-point

blocks, by deriving simple recursion relations which can be used to compute 5-point blocks

for the exchange of arbitrary symmetric traceless tensors. Our results may be regarded

as a natural generalization of recursion relations for 4-point blocks obtained by Dolan and

Osborn [39] to the 5-point case.

We will perform our analysis in the context of the weight-shifting operator for-

malism developed in [40]. We begin by considering a purely scalar 5-point function

〈φ∆1
φ∆2

Φ∆3
φ∆4

φ∆5
〉. Here we seek to compute the general conformal block for this object,

namely that of arbitrary symmetric traceless tensor exchange in the (12) and (45) OPEs.

We may express this block in terms of the following 5-point conformal integral:

〈φ∆1
(X1)φ∆2

(X2)Φ∆3
(X3)φ∆4

(X4)φ∆5
(X5)〉 =

∑

O∈φ∆1
×φ∆2

∑

O′∈φ∆4
×φ∆5

1

NONO′

∫

DdX

∫

DdY

〈φ∆1
(X1)φ∆2

(X2)OA1...Aℓ
(X)〉〈ÕA1...Aℓ(X)Φ∆3

(X3)O′
B1...Bℓ′

(Y )〉〈Õ′B1...Bℓ′ (Y )φ∆4
(X4)φ∆5

(X5)〉

∣

∣

∣

∣

M

,

(1.1)

where Õ, Õ′ denote the shadow transforms of the operators O, O′, and NOℓ , NOℓ′ are the

appropriate shadow normalization factors. The
∣

∣

M
indicates that we must project onto the

appropriate monodromy-invariant subspace to extract the physical block. Here we choose

to work in a channel where the middle scalar operator occupies a special place in the

correlator, which is often referred to as the comb channel. The 3-point functions on either

side are then treated on the same footing, both being of the type (scalar)-(scalar)-(spin),

while the central 3-point correlator is distinct and takes the form (spin)-(scalar)-(spin) or

more generally (spin)-(spin)-(spin) if we promote Φ to a spinning operator.

This paper is organized as follows. In section 2, we review the result for the scalar

exchange 5-point block, summarizing the general properties of 5-point functions and their

cross-ratios as well as the calculation of scalar-exchange blocks performed in [25]. We
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next give an overview of the weight-shifting operator formalism in section 3. Here we

describe the weight-shifting differential operators, characterizing their properties and their

action on correlation functions. Along the way, we recall the convenient diagrammatic

notation introduced by [40]. We then summarize the 2- and 3-point crossing relations,

which constitute the main computational tools of the weight-shifting formalism, along

with the construction of conformal blocks. We additionally discuss how to derive recursion

relations which lower the spin of the exchanged operators, reviewing the derivation of

analogous recursion relations for 4-point functions.

In section 4 we give our derivation of new recursion relations which can compute arbi-

trary conformal blocks appearing in 5-point functions of scalar operators, capturing general

symmetric traceless tensor exchange. We present two distinct kinds of recursion relations,

representing two different ways of encoding the same information. We also perform several

explicit checks that our 5-point recursion relations are consistent with known properties of

4-point functions by taking appropriate limits. In section 4.3, we discuss the special case

of conserved tensor exchange, focusing on the case of conserved vector and spin-2 tensor

operators.

In section 4.4, we consider promoting the middle scalar operator Φ to a spin-1 vector.

We detail how to encode the corresponding blocks for symmetric traceless tensor exchange

in terms of appropriate combinations of weight-shifting operators acting on lower-spin

blocks for a 5-point function of purely scalar external operators. The latter objects act

as the seed blocks and may in turn be computed with the aid of the recursion relations

described in the previous section. Next, in section 4.5, we discuss how to further promote

Φ from a vector to a spin-2 tensor operator. Here the procedure is completely analogous to

the previous one, with the difference that the seed blocks are now the ones for symmetric

traceless tensor exchange in the corresponding 5-point function featuring a spin-1 operator.

In section 5, we discuss a possible application of these results in the context of the

averaged null energy condition (ANEC). In particular, they empower us to apply the OPE

to compute the expectation value of the ANEC operator in bilocal states. Invoking the

ANEC positivity condition, one may extract constraints on the OPE coefficients. Here we

provide an initial discussion of the resulting constraints. We conclude in section 6, giving

a discussion of directions for future work. A brief description of the box tensor basis and

as well as various coefficients derived in this work are included in a number of appendices.

2 5-point functions

In this section, we give a broad overview of what is known about 5-point correlation func-

tions up to this point. We begin by describing the general form of a 5-point correlation

function of symmetric traceless primary operators, then proceed to discuss 5-point confor-

mal blocks, and last review the prototypical case of scalar exchange in the purely scalar

5-point correlator. Throughout, we work in the index-free embedding formalism of [41, 42].

Let us label spin-ℓ primaries by their dimension and spin as χ ≡ [∆, ℓ]. Then, conformal

invariance fixes a generic 5-point function of spin-ℓ primaries to be of the form

G̃χ1,...,χ5 = 〈O1(X1; Z1) · · · O5(X5; Z5)〉 =
5
∏

i<j

X
−αij

ij

∑

k

fk(ua) Q(k)
χ1,...,χ5

({Xi; Zi}) , (2.1)

– 3 –



J
H
E
P
1
0
(
2
0
2
1
)
1
6
0

where

αij =
1

3

(

τi + τj −
1

4

5
∑

k=1

τk

)

, (2.2)

with τi = ∆i + ℓi. Here fk(ua) represents some function of the conformal cross-ratios ua.

In this case, there are five such invariants which we will explicitly describe below.1

The factors Xij in the overall prefactor in eq. (2.1) carry powers that are fixed by

the homogeneity requirement of having proper behavior under scale transformations. To

be precise, the transformation of a primary field O∆,ℓ of scaling dimension ∆ and spin ℓ

may be encoded by a polynomial F (X, Z) in its position X and the polarization vector Z,

subject to the constraint

F (λX; αZ + βX) = λ−∆αℓF (X; Z) . (2.3)

In general, the powers αij in eq. (2.2) depend on the external operator scaling dimensions

∆i and the spins ℓi; in the scalar case, they depend exclusively on the ∆i. By extracting the

above prefactor, we have ensured that the Q(k) have weight ℓi in each point Xi. Moreover,

they are required to be identically transverse:

Q(k)
χ1,...,χ5

({λiXi; αiZi + βiXi}) = Q(k)
χ1,...,χ5

({Xi; Zi})
∏

i

(λiαi)
ℓi . (2.4)

We may construct these polynomials from the basic building blocks Vi,jk and Hij of the

standard box tensor basis, which we review in appendix A.

In a nutshell, using the embedding formalism the most general form of the 5-point

correlator 〈O1(X1; Z1) · · · O5(X5; Z5)〉 compatible with conformal invariance is simply a

linear combination of homogeneous polynomials of degree ℓi in each Zi. These constituent

polynomials are in turn constructed from products of appropriate powers of Vi,jk and Hij .

Finally, the Xi dependence is fixed by the scaling requirement of eq. (2.3).

We may expand the
∑

k

[

. . .
]

in eq. (2.1) in a basis of so-called conformal blocks,

which capture the exchange of specific primary operators in the operator product expansion

(OPE). Let us briefly recall the fundamental concept of the OPE. This is the statement

that, inside an appropriate correlation function, the product of any two local primary

operators at two distinct spacetime points may be replaced by an infinite sum over primaries

at a single point. In position space, we may express the OPE of two scalar operators φ∆1

and φ∆2
as

φ∆1
(x1)φ∆2

(x2) =
∑

O

λφ∆1
φ∆2

OC(x12, ∂x2)e1...eℓ
Oe1...eℓ(x2) , (2.5)

where the sum ranges over the infinite set of primary operators which appear in the

φ∆1
× φ∆2

OPE. In the case of two scalars, these operators are just the traceless sym-

metric tensors of arbitrary spin ℓ. Here the function C(x12, ∂x2)e1...eℓ is a power series in

∂x2 that encodes the contribution of the infinite tower of descendant operators correspond-

ing to each primary. It is fixed entirely by conformal invariance in terms of the operator

1See e.g. [34, 41, 43, 44] for general discussions of n-point functions and their cross ratios.
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scaling dimensions. Finally, the OPE coefficients λφ∆1
φ∆2

O are undetermined numerical

coefficients (effectively the structure constants of the operator algebra).

While in a general QFT the OPE converges only in the asymptotic short distance

limit, in a CFT it can give a convergent series expansion at finite separation, owing to

the enhanced symmetry of the theory. This absolute convergence renders the OPE a

well-defined quantity in a conformally invariant theory and lends it additional power. In

particular, in a CFT, the OPE may be applied to recursively reduce n-point correlation

functions to (n − 1)-point functions, all the way down to 2-point and 3-point functions.

For simplicity, let us restrict our attention to the 5-point function with external scalar

operators 〈φ∆1
(x1)φ∆2

(x2)Φ∆3
(x3)φ∆4

(x4)φ∆5
(x5)〉. Here we label each scalar by its scal-

ing dimension ∆i, and the notation is meant to highlight the distinct role of the middle

operator Φ∆3
in the OPE channels we will consider. A single application of the OPE in

the channel (12) enables us to cast this object as a sum of 4-point functions. In particular,

〈φ∆1
(x1)φ∆2

(x2)Φ∆3
(x3)φ∆4

(x4)φ∆5
(x5)〉

=
∑

O∆,ℓ

λφ∆1
φ∆2

O∆,ℓ
C(x12, ∂x2)e1...eℓ

〈Oe1...eℓ

∆,ℓ (x2)Φ∆3
(x3)φ∆4

(x4)φ∆5
(x5)〉 , (2.6)

where the sum runs over primary operators O∆,ℓ.

Alternatively, exploiting the OPE twice, for example, in the double OPE channel

(12)(45), permits us to express this same object as a double sum over derivatives of 3-point

functions. That is, we have

〈φ∆1
(x1)φ∆2

(x2)Φ∆3
(x3)φ∆4

(x4)φ∆5
(x5)〉

=
∑

O∆,ℓ,O′
∆′,ℓ′

λφ∆1
φ∆2

O∆,ℓ
λφ∆4

φ∆5
O′

∆′,ℓ′

× C(x12, ∂x2)e1...eℓ
C(x45, ∂x5)f1...fℓ′ 〈O

e1...eℓ

∆,ℓ (x2)Φ(x3)O
′f1...fℓ′

∆′,ℓ′ (x5)〉 , (2.7)

where now we sum over two sets of primary operators O∆,ℓ and O′
∆′,ℓ′ .

In an analogous manner as for the familiar 4-point function, this double OPE expansion

recasts the 5-point object in terms of an expansion in conformal blocks. The conformal

blocks are the building blocks of CFT correlation functions that effectively encode the

kinematical contribution of the descendant operators in terms of the primary operators,

which is fixed by the conformal algebra. In this paper, we primarily choose to compute

the conformal blocks in the double OPE channel (12)(45) applied to a 5-point function of

scalar operators, as shown above.

Individual terms in this sum could be picked out by inserting a projector |O∆,ℓ| onto

the conformal multiplet of O∆,ℓ (and similarly for O′
∆′,ℓ′) into the 5-point function. Note

that each 3-point function appearing in (2.7) can in turn be expanded in a basis of tensor

structures, which are readily described in the embedding space formalism. Labeling the

tensor structures by an index a, each comes with an independent coefficient λa
O∆,ℓΦ∆3

O′
∆′,ℓ′

,

and a 5-point conformal block will similarly be labeled by the index a. Thus, moving to

– 5 –
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embedding space notation, we have:

〈φ∆1
(X1)φ∆2

(X2)|O∆,ℓ|Φ∆3
(X3)|O′

∆′,ℓ′ |φ∆4
(X4)φ∆5

(X5)〉 =
∑

a

λφ∆1
φ∆2

O∆,ℓ
λa

O∆,ℓΦ∆3
O′

∆′,ℓ′
λφ∆4

φ∆5
O′

∆′,ℓ′
W

(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) , (2.8)

where

W
(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) = P∆i
(Xi)G

(a)
∆,ℓ,∆′,ℓ′(ui) . (2.9)

The object W
(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) is comprised of an external-dimension-dependent prefactor

P∆i
(Xi) and the 5-point conformal block G

(a)
∆,ℓ,∆′,ℓ′(ui), which is a function exclusively of

the conformally-invariant cross-ratios ui. In the case of the 5-point function, there are

generically five independent cross-ratios ui,
2 and different choices of bases can be made for

them. In addition, there are multiple forms of the prefactor P∆i
(Xi) that are consistent

with homogeneity, leading to another convention choice. Sometimes referred to as the “leg

factor”, this prefactor encodes the scaling properties in an explicit coordinate dependence

of the 5-point function, but it is ambiguous because it can be multiplied by various com-

binations of the cross-ratios. We will intentionally choose to write these coordinates and

functions in a convention-independent way as much as possible.

Various sets of conventions for these quantities exist in the literature. For instance,

in [27] the external prefactor is given by

P∆i
(Xi) =

(

X25

X15X12

)

∆1
2
(

X14

X15X45

)

∆5
2
(

X15

X12X25

)

∆2
2
(

X15

X13X35

)

∆3
2
(

X15

X14X45

)

∆4
2

,

(2.10)

where Xij = −2Xi · Xj . This is coupled to the basis of cross-ratios

u1 =
X12X35

X25X13
, u2 =

X13X45

X35X14
, w2;3 =

X15X23

X25X13
, w2;4 =

X15X24

X25X14
, w3;4 =

X15X34

X35X14
.

(2.11)

Another convention is that of [25], where the prefactor and cross-ratios are given by

P∆i
(Xi) =

1

(X12)
∆1+∆2

2 (X34)
∆3
2 (X45)

∆4+∆5
2

(

X23

X13

)

∆12
2
(

X24

X23

)

∆3
2
(

X35

X34

)

∆45
2

(2.12)

and

u′
1 =

X12X34

X13X24
, v′

1 =
X14X23

X13X24
, u′

2 =
X23X45

X24X35
, v′

2 =
X25X34

X24X35
, w′ =

X15X23X34

X24X13X35
,

(2.13)

respectively.

2More precisely, there are 5 independent cross-ratios for sufficiently large values of the spacetime dimen-

sion d, in particular for d ≥ 3. For lower d, some of the cross-ratios become dependent, leaving us with only

5d − (d + 2)(d + 1)/2 independent cross-ratios.
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Lastly, according to the conventions of [35], the external prefactor is given by

P∆i
(Xi) =

(

X45

X14X15

)∆1/2( X34

X23X24

)∆2/2( X24

X23X34

)∆3/2( X35

X34X45

)∆4/2( X14

X45X15

)∆5/2

,

(2.14)

while the conformal cross-ratios are

u5
1 =

X23X45

X24X35
, u5

2 =
X34X15

X35X14
, v5

11 =
X25X34

X35X24
, v5

12 =
X13X45

X14X35
, v5

22 =
X12X45X34

X14X35X24
.

(2.15)

Once the conventions are chosen, the next issue is how to explicitly compute the confor-

mal blocks. Of these, two prominent approaches are to solve the conformal Casimir equa-

tion and express the block as a conformal integral.3 We summarize each of these in turn.

The conformal Casimir approach relies on the property that 3-point functions of pri-

mary operators furnish natural eigenvectors of the quadratic conformal Casimir, defined as
1

2
LABLAB, with LAB denoting the generators of the conformal algebra. Let us represent

the action of LAB on an operator O(Xi) by the differential operator Li
AB. If we consider

the scalar 3-point function 〈φ∆1
φ∆2

O〉, conformal covariance of this object leads to

(L1
AB + L2

AB)〈φ∆1
(X1)φ∆2

(X2)O(X3)〉 = −L3
AB〈φ∆1

(X1)φ∆2
(X2)O(X3)〉 . (2.16)

The content of this statement is that the action of the conformal Casimir on X1, X2 is

equivalent to its action on X3, which simply yields the eigenvalue CO. That is,

1

2
(L1AB +L2AB)(L1

AB +L2
AB)〈φ∆1

(X1)φ∆2
(X2)O(X3)〉

=
1

2
L3ABL3

AB〈φ∆1
(X1)φ∆2

(X2)O(X3)〉

= CO〈φ∆1
(X1)φ∆2

(X2)O(X3)〉 . (2.17)

By solving the Casimir eigenvalue equation, Dolan and Osborn succeeded in deriving com-

pact expressions for even-dimensional symmetric traceless exchange conformal blocks for

scalar 4-point functions [39, 52].

Another leading method for determining conformal blocks is the conformal integral

approach, as described e.g. in [53]. In this approach, one introduces a projector onto the

conformal multiplet of O, defined by

|O| ≡
1

NO

∫

DdX|O(X)〉〈Õ(X)| , (2.18)

3Another approach, which we do not pursue in this paper, is to develop Zamolodchikov-like recursion

relations for the block, making use of its expansion in poles in the exchanged operator dimension [45–51].
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where Õ denotes the corresponding shadow operator with scaling dimension d − ∆:

Õ(X) =

∫

DdY
1

(−2X · Y )d−∆
O(Y ) . (2.19)

The approach then entails inserting the projector |O| inside a correlator 〈φ∆1
. . . φ∆m

φ∆m+1

. . . φ∆n
〉, thus forming a conformal integral of a product of correlators, supplemented by

the appropriate monodromy projections

〈φ∆1
. . .φ∆m

|O|φ∆m+1
. . .φ∆n

〉 ≡
1

NO

∫

DdX〈φ∆1
. . .φ∆m

O(X)〉〈Õ(X)φ∆m+1
. . .φ∆n

〉

∣

∣

∣

∣

M=e2πiϕ

.

(2.20)

Here M denotes the monodromy factor that arises under the mapping Xij → e4πiXij for

i, j ≤ m, while keeping the other Xij invariant. The value of ϕ is fixed by demanding

consistency with the OPE, which gives ϕ = ∆ −
∑

i≤m ∆i. For example, the 4-point

conformal block for scalar exchange may be expressed as the following conformal integral:

W∆,0;∆i
(Xi) =

1

NO

∫

DdX〈φ∆1
(X1)φ∆2

(X2)O(X)〉〈Õ(X)φ∆3
(X3)φ∆4

(X4)〉

∣

∣

∣

∣

M=e2πiϕ

.

(2.21)

The purpose of the M projection is to restrict the conformal integral onto the proper mon-

odromy invariant subspace, thus removing the contribution of the unphysical shadow block.

Each of these two methods may be exploited in the context of the scalar 5-point func-

tion in order to compute 5-point conformal blocks. From the perspective of the conformal

Casimir, we would need to simultaneously solve two eigenvalue equations obeyed by the

block, subject to appropriate boundary conditions.

In particular, the 5-point function satisfies

0 =

[

1

2
(L1

AB + L2
AB)(L1,AB + L2,AB) − C∆,ℓ

]

W
(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) , (2.22)

0 =

[

1

2
(L4

AB + L5
AB)(L4,AB + L5,AB) − C∆′,ℓ′

]

W
(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) , (2.23)

where

C∆,ℓ = ∆(∆ − d) + ℓ(ℓ + d − 2) . (2.24)

This directly leads to a system of differential equations for the conformal blocks which take

the form

D12G
(a)
∆,ℓ,∆′,ℓ′(ui) = C∆,ℓG

(a)
∆,ℓ,∆′,ℓ′(ui) , (2.25)

D45G
(a)
∆,ℓ,∆′,ℓ′(ui) = C∆′,ℓ′G

(a)
∆,ℓ,∆′,ℓ′(ui) , (2.26)
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where D12 and D45 are appropriate second-order differential operators in the conformal

cross-ratios. This approach was used in [26] when developing holographic representations

of 5-point blocks, and in [9], in the context of developing a series expansion for 5-point

blocks. An interesting related approach was recently proposed in [32], which advocated for

combining these equations with those arising from fourth-order differential operators and

mapping the resulting system to a Gaudin model.

Alternatively, we may express our object of interest as a conformal integral of a product

of 3-point functions in the following fashion:

W
(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) =
1

NO∆,ℓ
NO′

∆′,ℓ′

∫

DdXI

∫

DdXJ

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ(XI)〉〈Õ∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)〈Õ′
∆′,ℓ′(XJ)φ∆4

(X4)φ∆5
(X5)〉

∣

∣

∣

∣

M

,

(2.27)

where we have expanded the 5-point correlator in terms of the exchanged operators O∆,ℓ

and O′
∆′,ℓ′ , both symmetric traceless tensors. The indices have been suppressed for brevity.

Here
∣

∣

M
denotes an appropriate monodromy projection which removes the shadow contribu-

tions. Note that the integrand contains two kinds of 3-point functions, namely the familiar

(scalar)-(scalar)-(spin-ℓ) correlator, which features just a single 3-point structure, and the

(spin-ℓ)-(scalar)-(spin-ℓ′) correlator, which consists of multiple independent structures.

For the case of scalar exchange, it is convenient to exploit the conformal integral

approach to obtain the 5-point block. A straightforward application of the method renders

the extraction of the block quite effortless owing to the appearance of Mellin-Barnes type

integrals, which are simple to evaluate. This was first carried out in [25], where the author

employed the conformal integral technique to obtain the 5-point conformal block for scalar

exchange. The result is given by

G∆,0,∆′,0(u′
1,v′

1,u′
2,v′

2,w′) = u′
1

∆/2u′
2

∆′/2
∞
∑

ni=0

u′
1

n1

n1!

(1−v′
1)n2

n2!

(1−w′)n3

n3!

(1−v′
2)n4

n4!

u′
2

n5

n5!

×

(

∆+∆′−∆3

2

)

∑5

i=1
ni

(

∆+∆12

2

)

n1+n2+n3

(

∆−∆12

2

)

n1+n4

(∆)2n1+n2+n3+n4

(

∆′−∆45

2

)

n3+n4+n5

(

∆′+∆45

2

)

n2+n5

(∆′)2n5+n2+n3+n4

×

(

∆−∆′+∆3

2

)

n1

(

∆′−∆+∆3

2

)

n5
(

1−d/2+∆

)

n1

(

1−d/2+∆′

)

n5

3F2

[

−n1,−n5, 2−d+∆+∆′−∆3
2

∆−∆′−∆3
2 +1−n5, ∆′−∆−∆3

2 +1−n1
;1

]

. (2.28)

Subsequent studies employed the AdS/CFT correspondence [27] or the embedding space

OPE formalism [35], confirming and extending this result, thus placing the form of the

five- and higher-point blocks corresponding to scalar exchange on a strong footing.
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The explicit result obtained by [27] is given by

G∆,0,∆′,0(ui) =
Γ
(

1
2 (−∆−∆1+∆2)+1

)

Γ
(

1
2 (−∆+∆3−∆′)+1

)

Γ
(

1
2 (∆4−∆5−∆′)+1

)

Γ(1−∆)Γ(1−∆′)Γ
(

1
2 (−∆1+∆2+∆3+∆4−∆5)+1

)

×
∞
∑

k1,k2,
j〈2|3〉,j〈2|4〉,j〈3|4〉=0

1
(

∆− d
2 +1

)

k1

(

∆′− d
2 +1

)

k2

u
∆
2

+k1

1

k1!

u
∆′

2
+k2

2

k2!

(1−w2;3)j〈2|3〉

j〈2|3〉!

(1−w2;4)j〈2|4〉

j〈2|4〉!

(1−w3;4)j〈3|4〉

j〈3|4〉!

×

(

1

2
(∆−∆1−∆2)+1

)

k1

(

1

2
(−∆+∆1+∆2)

)

−k1

(

1

2

(

∆−∆3−∆′)+1

)

k1

×

(

1

2

(

∆4+∆5−∆′)
)

−k2

(

1

2

(

−∆−∆3+∆′)+1

)

k2

(

1

2

(

−∆4−∆5+∆′)+1

)

k2

×

(

1

2
(∆1−∆2−∆3−∆4+∆5)

)

−j〈2|3〉−j〈2|4〉−j〈3|4〉

(

1

2
(∆−∆1+∆2)

)

j〈2|3〉+j〈2|4〉+k1

×

(

1

2

(

∆+∆3−∆′)
)

j〈2|3〉+k1−k2

(

1

2

(

−∆+∆3+∆′)
)

j〈3|4〉−k1+k2

(

1

2

(

∆4−∆5+∆′)
)

j〈2|4〉+j〈3|4〉+k2

×

(

1
2 (∆+∆1+∆2)

)

k2+j〈2|4〉

(

1
2 (∆+∆3+∆′)

)

k2+j〈2|4〉

(

1
2 (∆4+∆5+∆′)

)

k2+j〈2|4〉

(∆)2k1+j〈2|3〉+j〈2|4〉
(∆1)2k1+j〈2|3〉+j〈2|4〉

(∆′)2k1+j〈2|3〉+j〈2|4〉

×3F2

(

−k1,−k2,−
d

2
+

∆′

2
+

∆

2
+

∆3

2
;−

∆′

2
+

∆

2
+

∆3

2
−k2,

∆′

2
−

∆

2
+

∆3

2
−k1;1

)

. (2.29)

In [27] it was established that this form is equivalent to eq. (2.28). In particular, the two

forms match to arbitrary numerical precision in the mutual regime of convergence of the

two series expansions.

An alternate form of the series expansion was also obtained in [35]. This is given by

G
(d,h2,h3,h4;p2,p3,p4)
5 (u5

1,u5
2,v5

11,v5
12,v5

22) =
∑

{ma,mab}≥0

(p3)m1+m11+m22(p4−m1)m2

×
(p2+h2)m1+m12(p̄3+h̄3)m1+m2+m11+m12+m22(p̄4+h̄4)m2+m12+m22

(p̄3+h2)2m1+m11+m12+m22(p̄4+h̄3)2m2+m11+m12+m22

×
(−h3)m1(−h4)m2(−h4+m2)m11

(p̄3+h2+1−d/2)m1(p̄4+h̄3+1−d/2)m2

3F2

[

−m1,−m2,−p̄3−h2+d/2−m1

p4−m1,h3+1−m1
;1

]

×
(u5

1)m1

m1!

(u5
2)m2

m2!

(1−v5
11)m11

m11!

(1−v5
12)m12

m12!

(1−v5
22)m22

m22!
, (2.30)

where

p2 = ∆i3 , 2p3 = ∆i2 + ∆k1 − ∆i3 , 2p4 = ∆i4 + ∆k2 − ∆k1 ,

2h2 = ∆k1 − ∆i2 − ∆i3 , 2h3 = ∆k2 − ∆k1 − ∆i4 , 2h4 = ∆k3 − ∆k2 − ∆i5 , (2.31)

and p̄a =
∑a

b=2 pb and h̄a =
∑a

b=2 hb. Here the ∆ij
for j = 1, . . . , 5 denote the scaling

dimensions of the five external scalar operators, while ∆k1 and ∆k2 represent the dimensions

of the two exchanged scalar primaries. The authors analytically showed this form to be

equivalent to the one of eq. (2.28) using a sequence of hypergeometric identities.

If we attempt to extend the conformal integral approach to the case of the exchange of

arbitrary operators of spin ℓ, ℓ′, we find almost immediately that the natural generalization
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by introducing shifts in the powers of the Xij is of little advantage to us, as the integrals

quickly become unmanageable. Instead, we turn to the convenient and elegant framework

afforded by the weight-shifting operator formalism [40]. This approach empowers us to

derive a set of efficient recursion relations for generating the 5-point conformal blocks for

the case of arbitrary symmetric traceless exchange. In the next section, we give a brief

overview of this formalism, highlighting some of its essential features and laying out the

basic method for obtaining recursion relations for conformal blocks.

3 Review of the weight-shifting operator formalism

We begin by giving a brief description of the weight-shifting operator formalism, a frame-

work originally presented in [40] and further developed in [54–57]. In this formalism, a

large class of conformally-covariant differential operators is introduced along with a cross-

ing equation that they respect. Referred to as weight-shifting operators, these operators

may be used to relate correlation functions of operators in different representations of the

conformal group. A crucial advantage of this approach is the substantial simplification

it lends to the computation of conformal blocks involving external operators with spin.

Notably, this method allows one to find expressions for seed conformal blocks as well as for

more general blocks. This is in contrast to the differential basis approach [42], which gives

a prescription for computing more general blocks from a set of simpler seed blocks but does

not allow one to determine the seed blocks themselves, which are left to be extracted using

other methods [53, 58, 59]. The weight-shifting formalism may therefore be regarded as

an extension of the differential basis approach, since it enables one to alter the exchanged

representation when desired.

Another convenient aspect of the framework is that it allows one to derive recursion

relations for conformal blocks quite efficiently, a feature which is essentially built into

the formalism. An inherent property of this formalism is that it naturally packages the

conformal blocks into the form of a linear combination of some differential operators acting

on some set of seed blocks, e.g. the conformal blocks for symmetric traceless exchange in

a purely scalar 4-point function. Thus, the conformal blocks are naturally expressed in a

differential operator basis in the context of this framework.

We next briefly introduce the weight-shifting differential operators themselves.

3.1 Weight-shifting operators

The general construction of the weight-shifting operator formalism reveals a large class

of conformally covariant differential operators, which correspond to tensor products with

different finite-dimensional representations W. That is, each set of operators {D
(v)A
x } is

associated with a particular representation W, where A = 1, . . . , dim W is an index for W,

while v refers to a weight vector of W (i.e., a common eigenvector of the Cartan subalgebra).

We may regard the finite-dimensional representation W as a vector space with basis eA. For

example, we may consider W to be the fundamental vector representation, W = V = �.

Following [40], we denote the representation of a given operator by the pairing [∆, ρ], where
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∆ labels the scaling dimension, while ρ stands for the Lorentz quantum numbers of the

representation, often simply the spin.

In particular, the operators D
(v)A
x : [∆, ρ] → [∆−δ∆v, λ] associated with W for generic

∆ are in one-to-one correspondence with the irreducible components in the tensor product

decomposition of W∗ ⊗ V∆,ρ, where V∆,ρ is the representation in which a given operator

O(x) transforms. Aptly named weight-shifting operators, the operators D
(v)A
x act on O(x)

by shifting the weights of O by the weights of v, while introducing a free A index. For

example, they may increase or decrease the spin or dimension of O. Roughly speaking,

when D
(v)A
x lowers the spin of O, its missing degrees of freedom are transferred to the index

A for W.

Such operators can be constructed explicitly using the embedding space formalism.

The weight-shifting formalism, however, is completely general and can be used without

reference to the embedding space framework. Here we will be primarily interested in the

case of symmetric traceless tensors of SO(d) in general spacetime dimensions. For the

vector representation, we can build differential operators {D
(δ∆,δℓ)A
X } with a vector index

in the embedding space, which map

D
(−0)A
X : [∆, ℓ] → [∆ − 1, ℓ] ,

D
(0+)A
X : [∆, ℓ] → [∆, ℓ + 1] ,

D
(0−)A
X : [∆, ℓ] → [∆, ℓ − 1] ,

D
(+0)A
X : [∆, ℓ] → [∆ + 1, ℓ] . (3.1)

As explained in [40], the differential operators D
(δ∆,δℓ)A
X may be determined by as-

suming a suitable ansatz and then fixing the coefficients by demanding that they preserve

the ring of functions R of X, Z ∈ R
d+1,1 that are invariant under Z → Z + λX (ie. they

must map R → R) and also preserve the ideal R ∩ I, where I is the ideal generated by

{X2, X · Z, Z2}. That is, the operators must be well-defined on R/(R ∩ I).

In particular, there are four weight-shifting operators for the vector representation

W = V. These are explicitly given by4

D
(−0)A
X = XA ,

D
(0+)A
X =

(

(ℓ + ∆)δA
B + XA∂XB

)

ZB ,

D
(0−)A
X =

(

(∆ − d + 2 − ℓ)δA
B + XA∂XB

)(

(d − 4 + 2ℓ)δB
C − ZB∂ZC

)

∂C
Z ,

D
(+0)A
X =

1

2

(

c1δA
B + XA∂XB

)(

c2δB
C + ZB∂ZC

)(

c3δC
D − ∂C

Z ZD

)

∂D
X , (3.2)

where

c1 = 2 − d + 2∆ , c2 = 2 − d + ∆ − ℓ , c3 = ∆ + ℓ , (3.3)

and ∆ and ℓ label the dimension and spin, respectively, of the operator in question.

4We follow the normalization conventions of [40].
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A crucial aspect of this construction is that differential operators of this type obey a

type of crossing relation, which we may schematically denote by

D
(v)A
X1

〈O′
1(X1)O2(X2)O3(X3)〉(a) =

∑

O′
2,v′,b

{. . . }D
(v′)A
X2

〈O1(X1)O′
2(X2)O3(X3)〉(b) , (3.4)

where a and b label conformally-invariant 3-point structures that appear in a correlation

function of the given operators. The {. . . } represent group-theoretic expansion coefficients,

which are examples of 6j symbols (or Racah-Wigner coefficients) for the conformal group.

The function of eq. (3.4) is to relate weight-shifting operators acting on 3-point structures at

different points to each other, thus enabling us to re-express a covariant differential operator

acting on X1 as a linear combination of operators acting on X2. There is also a variety

of this crossing relation for 2-point structures, which leads to a convenient integration-by-

parts rule in the context of the conformal integral.

By judiciously selecting suitable combinations of weight-shifting operators and apply-

ing the two- and three-point crossing relations where appropriate, we are able to derive

various recursion relations for conformal blocks quite efficiently. The bulk of the computa-

tion involves extracting the relevant 6j symbols, which may be time consuming for more

complicated cases. However, this is the only potentially challenging part of the calculation.

Having given a broad overview of the formalism, we next take a closer look at the

crossing relations for weight-shifting operators.

3.2 Crossing relations for weight-shifting operators

We now proceed to describe the action of the weight-shifting operators on conformally-

invariant correlation functions of local operators. Acting with such a differential operator

on an arbitrary n-point correlator produces a conformally-covariant n-point function. The

resulting object has an additional interpretation as a conformally-invariant (n + 1)-point

function that includes a basis element of a given finite-dimensional representation W of the

conformal group SO(d + 1, 1). In particular, we may represent this invariant (n + 1)-point

function as a n-point correlation function with the formal insertion of a basis element eA

of W:

D
(a)A
X 〈O(X) . . .〉 ∼ 〈eAO′(X) . . .〉 . (3.5)

Here we find it convenient to employ the diagrammatic language introduced in [40].

Following [40], we symbolize such a conformally-covariant differential operator by

D
(a)A
X = a

O

O′

W , (3.6)

where a wavy line is used to denote the finite-dimensional representation W.
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We next consider the action of such an operator on two- and three-point correlation

functions in turn. We represent a conformally-invariant 2-point structure by

〈O1(X1)O2(X2)〉 = O1 O2
, (3.7)

where the dot may be seen as separating the representation at the first point from that at

the second point. That is, we regard the part of the diagram to the left (right) of the dot

in the direction indicated by the arrow as being at point X1 (X2). It is well known that

there is at most one such structure consistent with conformal invariance. In particular, this

object is nonvanishing provided that O1 and O2 are in what are sometimes referred to as

the contragredient or dual-reflected representations with respect to each other, which we

denote by ρ1 = (ρP
2 )∗. In Lorentzian signature, this is the same as the complex conjugate

representation, (ρP
2 )∗ = ρ†

2. Moreover, the dimensions of the operators should match,

∆1 = ∆2; otherwise, the 2-point function vanishes.

We now consider acting with a weight-shifting operator on the 2-point function. It is

straightforward to infer and verify a suggestive crossing relation that encodes the relation

between 2-point correlators of the operators O and O′. This relation assumes the form [40]

mO† O′

W

O
=

{

O†

O′

}(m)

(m̄)
m̄O† O′

W

O′†

. (3.8)

For symmetric traceless operators, this diagrammatic statement corresponds to the

equation

D
(m)A
X2

〈O(X1)O(X2)〉 =

{

O†

O′

}(m)

(m̄)

D
(m̄)A
X1

〈O′(X1)O′(X2)〉 , (3.9)

where m̄ labels the relevant weight-shifting operator carrying a shift opposite to m. This

equation is referred to as the “2-point crossing relation”. Here O† represents the operator

with which O has a nonvanishing 2-point function, which is the complex conjugate in

Lorentzian signature. In the special case of CFT weight-shifting operators in the vector

representation given in eq. (3.2), one finds that eq. (3.8) reads [40]

D
(δ∆,δℓ)A
X2

〈O∆,ℓ(X1)O∆,ℓ(X2)〉

=

{

O∆,ℓ

O∆+δ∆,ℓ+δℓ

}(δ∆,δℓ)

(−δ∆,−δℓ)

D
(−δ∆,−δℓ)A
X1

〈O∆+δ∆,ℓ+δℓ(X1)O∆+δ∆,ℓ+δℓ(X2)〉 .

In this case, we have that D
(m)A
Xi

= D
(−0)A
Xi

implies D
(m̄)A
Xi

= D
(+0)A
Xi

and vice versa; similarly,

D
(m)A
Xi

= D
(0+)A
Xi

corresponds to D
(m̄)A
Xi

= D
(0−)A
Xi

and vice versa.
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The 6j symbols appearing in the 2-point crossing relation for the vector case are

explicitly given by

{

O∆,ℓ

O∆,ℓ+1

}(0+)

(0−)

=





{

O∆,ℓ+1

O∆,ℓ

}(0−)

(0+)





−1

=
∆ + ℓ

(ℓ + 1)(d + 2ℓ − 2)(∆ + 1 − d − ℓ)
,

{

O∆,ℓ

O∆+1,ℓ

}(+0)

(−0)

=





{

O∆+1,ℓ

O∆,ℓ

}(−0)

(+0)





−1

= 2(d − ∆ + ℓ − 2)(∆ − 1)(∆ + ℓ)
(

d − 2(∆ + 1)
)

.

(3.10)

These will be used repeatedly in the analysis that follows.

We now turn to the 3-point structures. A conformally invariant 3-point function is a

linear combination of 3-point tensor structures, with each individual structure weighted by

a different OPE coefficient λa:

〈O1(X1)O2(X2)O3(X3)〉 =
N123
∑

a=1

λa 〈O1(X1)O2(X2)O3(X3)〉(a) , (3.11)

where the sum runs from 1 to the total number of structures N123, which corresponds to

the dimension of the tensor product of the representations of the three operators (ρ1 ⊗ρ2 ⊗

ρ3)SO(d−1), N123 = dim(ρ1 ⊗ ρ2 ⊗ ρ3)SO(d−1). The index a is in place to label the particular

3-point structure of interest. In the case that there is only a single such structure, the label

a will be omitted.

We represent such a conformally invariant 3-point structure by the vertex

〈O1(X1)O2(X2)O3(X3)〉(a) = a

O1

O2

O3
, (3.12)

with the label a enumerating all the singlets in the tensor product decomposition of (ρ1 ⊗

ρ2 ⊗ ρ3)SO(d−1). Just as for the 2-point functions, here the arrows diverge from the center

of the diagram, indicating that each operator is inserted at a different point.

Let us next consider acting with some weight-shifting operator D
(b)A
X3

on an invariant

3-point structure 〈O1O2O′
3〉(a), with O′

3 transforming in the representation [∆3 + i, λ] so

that the label a runs over the singlets in (ρ1 ⊗ ρ2 ⊗ λ)SO(d−1). This generates an associ-

ated covariant 3-point structure for 〈O1O2O3eA〉. We may represent the action of D
(b)A
X3

symbolically by

D
(b)A
X3

〈O1(X1)O2(X2)O′
3(X3)〉(a) = a b

O1

O2 O3

W

O′
3

. (3.13)
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Every such conformally-covariant 3-point structure can be constructed through the

action of some differential operators on some conformally-invariant 3-point structures,

as established in [40]. A powerful consequence is that the diagrams in eq. (3.13) com-

prise a particular basis for the finite-dimensional space of covariant 3-point structures

〈O1O2O3eA〉. This basis is special in that it singles out a specific operator O′
3 contributing

to the O1 ×O2 OPE. Alternatively, we may instead choose to select an operator in another

channel, for instance, by considering the structure 〈O′
1O2O3〉(m) and feeding it to the op-

erator D
(n)A
X1

: O′
1 → O1. In this way, we would generate another basis of covariant 3-point

structures, this time, a set composed of the objects D
(n)A
X1

〈O′
1(X1)O2(X2)O3(X3)〉(m).

These two bases are linked by a linear transformation, which leads to a crossing relation

for differential operators. Diagrammatically, this is encoded by

a m

O1

O2 O3

W

O′
3

=
∑

O′
1,b,n

{

O1 O2 O′
1

O3 W O′
3

}(a)(m)

(b)(n)

b

n

O1

O2 O3

W

O′
1

. (3.14)

This diagrammatic statement corresponds to the equation

D
(m)A
X3

〈O1(X1)O2(X2)O′
3(X3)〉(a) =

∑

O′
1,b,n

{

O1 O2 O′
1

O3 W O′
3

}(a)(m)

(b)(n)

D
(n)A
X1

〈O′
1(X1)O2(X2)O3(X3)〉(b) .

(3.15)

Effectively, this relation constitutes a change-of-basis equation between different bases of

covariant 3-point structures, each generated by the action of some particular weight-shifting

operator at a given point X1 or X3. Here the sum over the operator O′
1 is finite, with its

value ranging over the operators in the tensor product O1 ⊗ W.

The transformation coefficients in this equation are referred to as the Racah coefficients

or 6j symbols. Since one of the representations is finite-dimensional here, these coefficients

have a degenerate form. It can be shown explicitly that they are intimately connected to

the algebra of conformally covariant differential operators.

The above 3-point crossing equation empowers us to move weight-shifting operators

from one leg (or, equivalently, operator) to another. As such, this relation constitutes the

primary computational tool in the weight-shifting operator formalism. In practice, we may

apply it in a variety of settings, such as in the derivation of conformal block recursion

relations.

Note that this equation reduces to the 2-point crossing relation if we take the operator

O2 to be the identity. In particular, the 3-point 6j symbols coincide with the corresponding

2-point 6j symbols if O2 = 1:
{

O1 1 O3

O3 W O1

}·(m)

·(m̄)

=

{

O1

O3

}(m)

(m̄)

. (3.16)
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Further, if we consider contracting both sides of the 3-point relation eq. (3.15) with

the weight-shifting operator D
(n)
X1 A, we find

D
(n)
X1 AD

(m)A
X3

〈O1(X1)O2(X2)O′
3(X3)〉(a)

=
∑

O′
1,b,p

{

O1 O2 O′
1

O3 W O′
3

}(a)(m)

(b)(p)

D
(n)
X1 AD

(p)A
X1

〈O′
1(X1)O2(X2)O3(X3)〉(b) . (3.17)

We remark here that the right-hand side of this equation features two contracted weight-

shifting operators acting on a single leg (equivalently, at the same point). This composition

D
(n)
X1 AD

(p)A
X1

corresponds to a bubble diagram:

D
(n)
X1 AD

(p)A
X1

=

O′
1

p

n

O′′
1

WO1
=

(

O′
1

O1 W

)(n)(p)

δO′
1O′′

1
, (3.18)

which gives a contribution proportional to the identity in the case that the representations

O′
1 and O′′

1 coincide and vanishes otherwise.

Such bubble coefficients may be determined for a specific set of weight-shifting oper-

ators of our choice by acting with the composition D
(n)
X1 AD

(p)A
X1

on some 2-point function

under consideration. For the case of interest here, we consider the operators in the funda-

mental vector representation and act with eq. (3.18) on the 2-point function of symmetric

traceless operators, which gives

D
(−δ∆,−δℓ)
X1 A D

(δ∆,δℓ)A
X1

〈O∆,ℓ(X1)O∆,ℓ(X2)〉 =

(

O∆,ℓ

O∆+δ∆,ℓ+δℓ V

)(−δ∆,−δℓ)(δ∆,δℓ)

〈O∆,ℓ(X1)O∆,ℓ(X2)〉 .

(3.19)

We find that only the coefficients corresponding to equal and opposite shifts are nonzero;

the rest vanish. The nonzero coefficients are given by
(

O∆,ℓ

O∆+1,ℓ V

)(−0)(+0)

= −(∆ − 1)(∆ + ℓ)(d + ℓ − ∆ − 2)(d − 2∆ − 2) ,

(

O∆,ℓ

O∆−1,ℓ V

)(+0)(−0)

= (2 − ∆ − ℓ)(∆ − ℓ − d)(d − ∆ − 1)(d + 2 − 2∆) ,

(

O∆,ℓ

O∆,ℓ+1 V

)(0−)(0+)

= (∆ + ℓ)(d + 2ℓ)(d + ℓ − ∆)(2 − d − ℓ) ,

(

O∆,ℓ

O∆,ℓ−1 V

)(0+)(0−)

= ℓ(d − 4 + 2ℓ)(2 − ℓ − ∆)(d − 2 + ℓ − ∆) . (3.20)
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These formulas provide the bubble coefficients for the vector representation. They are

ubiquitous in the computations performed here and will be used extensively throughout

this work.

In addition, there is a variant of the 3-point crossing relation for special cases where

the 3-point correlation function of interest features a unique 3-point structure, such as

the (scalar)-(scalar)-(spin-ℓ) 3-point structure. Such a relation involves changing only the

dimension ∆ but not the spin ℓ. In particular, it is given by

D
(δ∆,δℓ)A
X 〈O∆1

(X1)O∆2
(X2)O∆−δ∆,ℓ−δℓ(X)〉

=
∑

δ∆1=±1

{

O∆1
O∆2

O∆1−δ∆1

O∆,ℓ V O∆−δ∆,ℓ−δℓ

}(δ∆,δℓ)

(δ∆1,0)

D
(δ∆1,0)A
X1

〈O∆1−δ∆1
(X1)O∆2

(X2)O∆,ℓ(X)〉

+ (−1)δℓ
∑

δ∆2=±1

{

O∆2
O∆1

O∆2−δ∆2

O∆,ℓ V O∆−δ∆,ℓ−δℓ

}(δ∆,δℓ)

(δ∆2,0)

D
(δ∆2,0)A
X2

〈O∆1
(X1)O∆2−δ∆2

(X2)O∆,ℓ(X)〉 .

(3.21)

Diagrammatically this is the statement

m

O1

O2 O3

W

O′
3

=
∑

O′
1,n

{

O1 O2 O′
1

O3 W O′
3

}·(m)

·(n)
n

O1

O2 O3

W

O′
1

+ (−1)ℓ−ℓ′ ∑

O′
2,n

{

O2 O1 O′
2

O3 W O′
3

}·(m)

·(n)

n

O2

O1 O3

W

O′
2

,

(3.22)

where dashed lines have been used to indicate the scalar operators O1 and O2, while ℓ and

ℓ′ denote the spin of O3 and O′
3, respectively.

It is straightforward to obtain the respective 6j coefficients for the vector representation

W = V. These are given by
{

O∆1
O∆2

O∆1−1

O∆,ℓ V O∆−1,ℓ

}·(+0)

·(+0)

=
(∆−2)(∆−∆1+∆2+ℓ−1)(d−∆+∆1−∆2+ℓ−1)

2(∆1−2)(d−2∆1)(d−∆1−1)
,

{

O∆1
O∆2

O∆1+1

O∆,ℓ V O∆−1,ℓ

}·(+0)

·(−0)

= −
(∆−2)(∆+∆1−∆2+ℓ−1)(−d+∆+∆1−∆2−ℓ+1)

2(d−2∆1)

×(−2d+∆+∆1+∆2−ℓ+1)(−d+∆+∆1+∆2+ℓ−1) ,
{

O∆1
O∆2

O∆1−1

O∆,ℓ V O∆+1,ℓ

}·(−0)

·(+0)

=
1

2(∆−1)(∆1−2)(d−2∆1)(d−∆1−1)
,

{

O∆1
O∆2

O∆1+1

O∆,ℓ V O∆+1,ℓ

}·(−0)

·(−0)

= −
(−∆+∆1+∆2+ℓ−1)(d+∆−∆1−∆2+ℓ−1)

2(∆−1)(d−2∆1)
,

{

O∆1
O∆2

O∆1−1

O∆,ℓ V O∆,ℓ−1

}·(0+)

·(+0)

=
∆−∆1+∆2+ℓ−1

2(∆1−2)ℓ(d−2∆1)(d−∆1−1)
,
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{

O∆1
O∆2

O∆1+1

O∆,ℓ V O∆,ℓ−1

}·(0+)

·(−0)

= −
(∆+∆1−∆2+ℓ−1)(−∆+∆1+∆2+ℓ−1)

2ℓ(d−2∆1)

×(−d+∆+∆1+∆2+ℓ−1) ,
{

O∆1
O∆2

O∆1−1

O∆,ℓ V O∆,ℓ+1

}·(0−)

·(+0)

=
(ℓ+1)(d−∆+∆1−∆2+ℓ−1)

2(∆1−2)(d−2∆1)(d−∆1−1)
,

{

O∆1
O∆2

O∆1+1

O∆,ℓ V O∆,ℓ+1

}·(0−)

·(−0)

= −
(2d−∆−∆1−∆2+ℓ−1)(d+∆−∆1−∆2+ℓ−1)

2(d−2∆1)

×(ℓ+1)(d−∆−∆1+∆2+ℓ−1) . (3.23)

These will also prove useful in the analysis below.

We next review how to construct conformal blocks in the context of the weight-shifting

formalism.

3.3 Gluing 3-point functions to form conformal blocks

A standard way to encode a general conformal block is to express it as the conformal

integral of a product of 3-point functions. For concreteness, let us consider the conformal

block for scalar exchange in a purely scalar 4-point function. As discussed above, this

object has the form

W∆,0;∆i
(Xi) =

1

NO

∫

DdXDdY 〈φ∆1
(X1)φ∆2

(X2)O(X)〉

×
1

(−2X · Y )d−∆
〈O(Y )φ∆3

(X3)φ∆4
(X4)〉

∣

∣

∣

∣

M=e2πiϕ

, (3.24)

where ∆ = ∆O and M = e2πiϕ denotes the projection onto the appropriate monodromy

invariant subspace. By expressing the conformal integral in a manifestly conformally in-

variant way, it becomes transparent that this object is indeed a proper solution to the

conformal Casimir equation with the desired transformation properties expected for a con-

formal block.

In [40], the operation which fuses or “glues” the 3-point correlators 〈φ∆1
(X1)φ∆2

(X2)

O(X)〉 and 〈O(Y )φ∆3
(X3)φ∆4

(X4)〉 together (i.e. two correlators containing O) is symbol-

ized by

|O〉 ⊲⊳ 〈O| ≡
1

NO

∫

DdXDdY |O(X)〉
1

(−2X · Y )d−∆
〈O(Y )| = O O . (3.25)

The normalization factor NO here is fixed by requiring that the action of the shadow

integral on a 2-point function 〈O(X1)O(X2)〉 yield the identity transformation:

O O = O O . (3.26)

For the case of scalar exchange, this condition determines the normalization factor to be

NO =
πdΓ(∆ − d

2)Γ(d
2 − ∆)

Γ(∆)Γ(d − ∆)
. (3.27)

– 19 –



J
H
E
P
1
0
(
2
0
2
1
)
1
6
0

More generally, for spinning operators, the operator O∆,ρ is to be glued to the repre-

sentation with which it has a nonvanishing 2-point function, i.e. the dual-reflected one,

|O∆,ρ〉 ⊲⊳ 〈O†
∆,ρ† |. Again, all we need to determine is the normalization condition for the

spinning operators in question:

O O = O O . (3.28)

In terms of this notation, a general conformal block is given by the following form in this

framework:

W ab ≡ 〈O1O2O〉(a) ⊲⊳ (b)〈O†O3O4〉 = a b

O1

O2 O3

O4

O†O
. (3.29)

In a nutshell, the weight-shifting technique involves acting with specific combinations

of weight-shifting operators on a given conformal block and then applying the two- and

three-point crossing relations as needed in order to re-express the original block in terms of

either (1) linear combinations of compositions of differential operators acting on blocks of

fixed spin with shifted external scaling dimensions, or (2) linear combinations of lower-spin

blocks with shifted external and, potentially, internal dimensions.

The precise form of the compositions of the weight-shifting operators is determined by

the 3-point tensor structures in question. In particular, the results for conformal blocks of

the weight-shifting method may be grouped into two broad classes:

(1) W ab
∆,ℓ;∆i

(Xi) =
∑

j

Aab
j (∆, ∆i, ℓ)DjW seed

∆,ℓ;∆i+δ∆ij
(Xi) ,

(2) W ab
∆,ℓ;∆i

(Xi) =
∑

j

Bj(∆, ∆i, ℓ)W ab
∆+δ∆j ,ℓ+δℓj ;∆i+δ∆ij

(Xi) , (3.30)

where we have focused on 4-point conformal blocks for concreteness. Here δ∆ij , δ∆j ,

and δℓj denote finite shifts in ∆i, ∆, and ℓ, respectively, while Aj and Bj are coefficients

built from products of 6j symbols. The first relation re-expresses a generic block in some

arbitrary representation in terms of a set of differential operators Dj acting on a seed block

with shifted external dimensions but fixed spin, e.g. a block with spin-ℓ exchange. Here

Dj would be built out of the operators D
(m)A
Xi

. Meanwhile, the second relation expands

a higher-spin block in terms of lower-spin ones (assuming δℓj < 0) with shifted external

and possibly exchanged dimensions. This kind of expression is a recursion relation for

conformal blocks.

To implement these types of forms, we require a mechanism for moving differential

operators onto the other side of the shadow integral, that is, effectively for integrating by

parts. For this, there exists a convenient rule that naturally arises in the context of this
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formalism. Diagrammatically, this is the statement that

cO O′†

W

O′

=
∑

m

{

O†
1 O′†

O′ W O

}·(c)

·(m)

mO O′†

W

O†

, (3.31)

which essentially encodes two integrations by parts in eq. (3.25), thus empowering us to

move the operators from one side of the ⊲⊳ to the other.

Symbolically, this has the form

|D(c)AO〉 ⊲⊳ 〈O′†| =
∑

m

{

O†
1 O′†

O′ W O

}·(c)

·(m)

|O〉 ⊲⊳ 〈D(m)AO′†| . (3.32)

This integration-by-parts rule is none other than the aforementioned 2-point crossing rela-

tion eq. (3.8) featuring the operators O and O′. It will prove to be a powerful tool in the

analysis that follows.

4 Recursion relations in the weight-shifting operator formalism

In this section, we derive a set of recursion relations that enable us to build up the 5-

point conformal block for the exchange of a pair of arbitrary symmetric traceless operators

O∆,ℓ, O′
∆′,ℓ′ in terms of the blocks for the exchange of scalar operators O∆+m, O∆′+n with

shifted dimensions. We begin by describing the procedure for extracting recursion relations

within the context of the weight-shifting operator formalism.

4.1 Recursion relations for 4-point conformal blocks

To begin, let us review how to derive the familiar recursion relation for scalar conformal

blocks originally obtained by Dolan and Osborn in [39]. The derivation using weight-

shifting operators was given in [40]. The 4-point scalar conformal block is defined as

〈φ∆1
(X1)φ∆2

(X2)|O∆,ℓ|φ∆3
(X3)φ∆4

(X4)〉 =
1

(X12)
1
2 (∆1+∆2)(X34)

1
2 (∆3+∆4)

×

(

X24

X14

)∆12/2(X14

X13

)∆34/2

G∆,ℓ(u,v) , (4.1)

where Xij = −2Xi · Xj and ∆ij = ∆i − ∆j .

We now consider acting on eq. (4.1) with the combination of operators

−2(D
(−0)
X1

· D
(−0)
X4

) = −2X1 · X4 = X14 , (4.2)

which is formed by contracting D
(−0)
X1

A with D
(−0)
X4 A.

This yields a 4-point function with the operator scaling dimensions at positions 1 and

4 shifted by −1, that is, ∆1 → ∆1 − 1 and ∆4 → ∆4 − 1. These shifts in ∆1 and ∆4 in

turn require a shifted external prefactor. In order to work out the action of the operator
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−2(D
(−0)
X1

· D
(−0)
X4

) on the block G∆,ℓ(u, v), we may accordingly first multiply by X14 and

then remove the external prefactor for the new set of scaling dimensions. This leads to a

new function of cross-ratios given by u−1/2G∆,ℓ(u, v), which can in turn be expanded in con-

formal blocks with shifted weights. This operation can be represented diagramatically by

[∆1 − 1, 0]

[∆1, 0]

[∆2, 0]

[∆, ℓ]

[∆3, 0]

[∆4 − 1, 0]

[∆4, 0]

. (4.3)

It is evident that the weight-shifting operators “dress” the conformal block such that a

component of the tensor product W ⊗O∆,ℓ = �⊗O∆,ℓ propagates from left to right. With

this, one finds that the spin-ℓ block may be expanded in terms of scalar conformal blocks

with shifted dimensions and spins, where the internal representations that appear are the

symmetric traceless tensors appearing in the tensor product decomposition

� ⊗ [∆, ℓ] = [∆ − 1, ℓ] ⊕ [∆, ℓ + 1] ⊕ [∆, ℓ − 1] ⊕ [∆ + 1, ℓ] ⊕ . . . . (4.4)

An application of the three- and two-point crossing relations then gives rise to the

following recursion relation:

G∆,ℓ(u, v) =
1

s(14)

(

u−1/2G∆,ℓ−1(u, v)

∣

∣

∣

∣

∆1→∆1+1,∆4→∆4+1

− G∆−1,ℓ−1(u, v)

−t(14)G∆,ℓ−2(u, v) − u(14)G∆+1,ℓ−1(u, v)

)

, (4.5)

where the coefficients s(14), t(14), u(14) are formed from appropriate combinations of 6j

symbols and are explicitly given by

s(14) =
(∆−∆12+ℓ)(∆+∆34+ℓ)

2(∆+ℓ−1)(∆+ℓ)
,

t(14) =
ℓ(d+ℓ−3)(d−∆+∆12+ℓ−2)(d−∆−∆34+ℓ−2)

2(d+2ℓ−4)(d+2ℓ−2)(d−∆+ℓ−2)(d−∆+ℓ−1)
,

u(14) = −
(∆−1)(d−∆−2)(∆−∆12+ℓ)(∆+∆34+ℓ)(d−∆+∆12+ℓ−2)(d−∆−∆34+ℓ−2)

4(∆+ℓ)(∆+ℓ−1)(d−2∆)(d−2(∆+1))(d−∆+ℓ−2)(d−∆+ℓ−1)
.

(4.6)

After converting to the same conventions,5 we find agreement with the classical result

eq. (4.18) in [39]. In their analysis, Dolan and Osborn determine the values of the param-

eters s, t, and u (which are proportional to the s(14), t(14), u(14) shown here) with r = 1 in

5To match eq. (4.18) in [39], we need to change to their conformal block normalization conventions,

which introduces a factor Nδℓ =
(−2)−δℓ(d + ℓ − 2)δℓ
(

d
2

+ ℓ − 1
)

δℓ

. This gives s = N1s(14), t = N−1t(14), u = N0u(14).
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eq. (4.18) by examining the conformal block’s behavior in the OPE limit u → 0 and v → 1.

Meanwhile, here they arise directly as products of the appropriate expansion coefficients

in the two- and 3-point crossing relations.

The above discussion serves as a concise demonstration of the procedure for deriving

recursion relations for conformal blocks in the context of the weight-shifting operator for-

malism. In the analysis that follows, we will apply an analogous method for establishing

recursion relations for conformal blocks for symmetric traceless tensor exchange in purely

scalar 5-point functions. Indeed, our final results represent natural generalizations of the

above relation eq. (4.5).

4.2 Recursion relations for 5-point conformal blocks

In this section, we derive a variety of recursion relations applicable to the case of symmetric

traceless tensor exchange in a 5-point function of scalar operators. The basic idea is that

such a set of relations would allow one to express the block for ([∆, ℓ], [∆′, ℓ′]) exchange in

terms of lower-spin blocks.

4.2.1 Recursion relations from weight-shifting operators

To begin, we consider acting on the scalar 5-point function

〈φ∆1
(X1)φ∆2

(X2)|O∆,ℓ|Φ∆3
(X3)|O′

∆′,ℓ′ |φ∆4
(X4)φ∆5

(X5)〉

= 〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ 〈O∆,ℓΦ∆3
(X3)O′

∆′,ℓ′〉 ⊲⊳ 〈O′
∆′,ℓ′φ∆4

(X4)φ∆5
(X5)〉

=
∑

a

∑

O∆,ℓ

∑

O′
∆′,ℓ′

λφ∆1
φ∆2

O∆,ℓ
λa

O∆,ℓΦ∆3
O′

∆′,ℓ′
λφ∆4

φ∆5
O′

∆′,ℓ′
W

(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) , (4.7)

where W
(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) has the convention-free form

W
(a)
∆,ℓ,∆′,ℓ′;∆i

(Xi) = P∆i
(Xi)G

(a)
∆,ℓ,∆′,ℓ′(ui) , (4.8)

with the following combination of weight-shifting operators:

−2(D
(−0)
X1

· D
(−0)
X3

)〈φ∆1
(X1)φ∆2

(X2)|O∆,ℓ|Φ∆3
(X3)|O′

∆′,ℓ′ |φ∆4
(X4)φ∆5

(X5)〉

= X13〈φ∆1
(X1)φ∆2

(X2)|O∆,ℓ|Φ∆3
(X3)|O′

∆′,ℓ′ |φ∆4
(X4)φ∆5

(X5)〉 . (4.9)

We set off the procedure by applying the 3-point crossing relation to the leftmost 3-point

structure:

D
(−0)A
X1

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ(XI)〉 =
∑

n

A
(−0)
(n) D

(n)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆−δ∆n,ℓ−δℓn

(XI)〉 ,

(4.10)

where the relevant 6j symbol is given by

A
(−0)
(n) ≡

{

O∆,ℓ φ∆2
O∆−δ∆n,ℓ−δℓn

φ∆1−1 V φ∆1

}·(−0)

·(n)

, (4.11)
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with the shifted dimensions [∆ − δ∆n, ℓ − δℓn] taking on values in the tensor product

� ⊗ [∆, ℓ] = [∆ − 1, ℓ] ⊕ [∆, ℓ + 1] ⊕ [∆, ℓ − 1] ⊕ [∆ + 1, ℓ] ⊕ . . . . (4.12)

The dots refer to all non-symmetric traceless contributions, which are irrelevant here, as

we are considering exclusively scalar external operators. As before, V denotes the vector

representation V = �.

Upon applying the 3-point crossing relation eq. (3.15), we find that the action of D
(−0)A
X1

unwraps into the contributions

D
(−0)A
X1

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ(XI)〉 = A
(−0)
(+0)D

(+0)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆−1,ℓ(XI)〉

+ A
(−0)
(0−)D

(0−)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆,ℓ+1(XI)〉

+ A
(−0)
(0+)D

(0+)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆,ℓ−1(XI)〉

+ A
(−0)
(−0)D

(−0)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆+1,ℓ(XI)〉 ,

(4.13)

where XI denotes the position of the exchanged operator O∆,ℓ(XI), which is an internal

coordinate that is integrated over.

We may extract a given 6j symbol A
(−0)
(n) by acting on both sides of eq. (4.13) with the

weight-shifting operator D
(n̄)
XI A, which carries a shift opposite to n, and then isolating the

coefficient. To give an example, let us consider acting with the simplest operator that can

isolate a term on the right-hand side, namely D
(−0)
XI A = XI A. With this, we find

D
(−0)
XI AD

(−0)A
X1

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ(XI)〉

= A
(−0)
(+0)D

(−0)
XI AD

(+0)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆−1,ℓ(XI)〉

+ A
(−0)
(0−)D

(−0)
XI AD

(0−)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆,ℓ+1(XI)〉

+ A
(−0)
(0+)D

(−0)
XI AD

(0+)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆,ℓ−1(XI)〉

+ A
(−0)
(−0)D

(−0)
XI AD

(−0)A
XI

〈φ∆1−1(X1)φ∆2
(X2)O∆+1,ℓ(XI)〉 , (4.14)

where the right-hand side now involves the bubble coefficients for V, which can be referenced

in eq. (3.20).

The only nonzero bubble coefficient is given by

b
(−0)(+0)
∆,ℓ ≡

(

O∆−1,ℓ

O∆,ℓ V

)(−0)(+0)

= (∆ − 2)(2∆ − d)(∆ + ℓ − 1)(d − ∆ + ℓ − 1) . (4.15)

As discussed above, the other three coefficients that do not involve opposite shifts vanish,

i.e.

b
(−0)(0−)
∆,ℓ = 0 , b

(−0)(0+)
∆,ℓ = 0 , b

(−0)(−0)
∆,ℓ = 0 . (4.16)

With this, we arrive at the statement

D
(−0)
XI AD

(−0)A
X1

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ(XI)〉 = A
(−0)
(+0)b

(−0)(+0)
∆,ℓ 〈φ∆1−1(X1)φ∆2

(X2)O∆−1,ℓ(XI)〉 .

(4.17)

– 24 –



J
H
E
P
1
0
(
2
0
2
1
)
1
6
0

We may now use this equation to determine the 6j symbol A
(−0)
(+0) by invoking the explicit

form of the 3-point structures. This then elucidates the procedure for extracting the

A
(−0)
(n) coefficients. Proceeding in this fashion and solving for the respective 6j symbols, we

ultimately obtain

A
(−0)
(+0) =

1

2(∆ − 2)(d − 2∆)(∆ + ℓ − 1)(d − ∆ + ℓ − 1)
,

A
(−0)
(0−) =

∆12 − (∆ + ℓ)

2(ℓ + 1)(d + 2ℓ − 2)(∆ + ℓ − 1)(d − ∆ + ℓ − 1)
,

A
(−0)
(0+) =

ℓ(d − ∆ + ∆12 + ℓ − 2)

2(d + 2ℓ − 2)(∆ + ℓ − 1)(d − ∆ + ℓ − 1)
,

A
(−0)
(−0) =

(∆ − 1)(∆12 − (∆ + ℓ))(d − ∆ + ∆12 + ℓ − 2)

2(d − 2∆)(∆ + ℓ − 1)(d − ∆ + ℓ − 1)
. (4.18)

The next step in our algorithm is to push each of the operators D
(n)A
XI

in eq. (4.13)

through the shadow integral. To do so, we invoke the integration-by-parts rule in eq. (3.32)

to move the operator in question across ⊲⊳. For example, for the case of D
(+0)A
XI

, the rule

in eq. (3.32) reads

|D
(+0)A
XI

O∆−1,ℓ〉 ⊲⊳ 〈O∆,ℓ| = B(+0)(−0)|O∆−1,ℓ〉 ⊲⊳ 〈D
(−0)A
XI

O∆,ℓ| , (4.19)

where B(+0)(−0) is the 2-point 6j symbol

B(+0)(−0) ≡

{

O∆−1,ℓ

O∆,ℓ

}(+0)

(−0)

. (4.20)

As mentioned above, the 2-point 6j symbols for the vector representation are given by

eq. (3.10). We thus have the respective coefficients

B(+0)(−0) ≡

{

O∆−1,ℓ

O∆,ℓ

}(+0)

(−0)

= 2(∆ − 2)(d − 2∆)(∆ + ℓ − 1)(d − ∆ + ℓ − 1) ,

B(0−)(0+) ≡

{

O∆,ℓ+1

O∆,ℓ

}(0−)

(0+)

=
(ℓ + 1)(d + 2(ℓ − 1))(−d + ∆ − ℓ + 1)

∆ + ℓ
,

B(0+)(0−) ≡

{

O∆,ℓ−1

O∆,ℓ

}(0+)

(0−)

=
∆ + ℓ − 1

ℓ(d + 2(ℓ − 2))(2 − d + ∆ − ℓ)
,

B(−0)(+0) ≡

{

O∆+1,ℓ

O∆,ℓ

}(−0)

(+0)

=
1

2(∆ − 1)(∆ + ℓ)(d − 2(∆ + 1))(d − ∆ + ℓ − 2)
. (4.21)

With these coefficients in hand, at this point, we arrive at

D
(−0)A
X1

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ(XI)〉 ⊲⊳ 〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a) =

A
(−0)
(+0)B(+0)(−0)〈φ∆1−1(X1)φ∆2

(X2)O∆−1,ℓ(XI)〉 ⊲⊳ D
(−0)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)

+ A
(−0)
(0−)B(0−)(0+)〈φ∆1−1(X1)φ∆2

(X2)O∆,ℓ+1(XI)〉 ⊲⊳ D
(0+)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)

+ A
(−0)
(0+)B(0+)(0−)〈φ∆1−1(X1)φ∆2

(X2)O∆,ℓ−1(XI)〉 ⊲⊳ D
(0−)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)

+ A
(−0)
(−0)B(−0)(+0)〈φ∆1−1(X1)φ∆2

(X2)O∆+1,ℓ(XI)〉 ⊲⊳ D
(+0)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a) .

(4.22)
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We next exploit the 3-point crossing relation eq. (3.15) once again, this time to express

each of the 3-point structures D
(b)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a) in terms of a linear

combination of objects D
(n)A
X3

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3−δ∆n,−δℓn

(X3)O′
∆′,ℓ′(XJ)〉(m). The in-

tention is to transform the action of a differential operator at an internal point (XI) into

the appropriate action at an external point (X3). That is,

D
(b)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)

=
∑

m,n

{

Φ∆3
O′

∆′,ℓ′ Φ∆3−δ∆n,−δℓn

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(n)

× D
(n)A
X3

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3−δ∆n,−δℓn

(X3)O′
∆′,ℓ′(XJ)〉(m) , (4.23)

where the shifts [∆3 − δ∆n, −δℓn] take on values in the tensor product

� ⊗ [∆3, 0] = [∆3 − 1, 0] ⊕ [∆3, 1] ⊕ [∆3 + 1, 0] . (4.24)

Explicitly, we have

D
(b)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)

=
∑

m

{

Φ∆3
O′

∆′,ℓ′ Φ∆3−1

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(+0)

D
(+0)A
X3

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3−1(X3)O′

∆′,ℓ′(XJ)〉(m)

+
∑

m

{

Φ∆3
O′

∆′,ℓ′ Φ∆3,1

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(0−)

D
(0−)A
X3

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3,1(X3)O′

∆′,ℓ′(XJ)〉(m)

+
∑

m

{

Φ∆3
O′

∆′,ℓ′ Φ∆3+1

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(−0)

D
(−0)A
X3

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3+1(X3)O′

∆′,ℓ′(XJ)〉(m) .

(4.25)

At this stage, we recall that the operator D
(−0)A
X1

is contracted with D
(−0)
X3 A in our operator

combination of choice eq. (4.9). We therefore act on eq. (4.25) with D
(−0)
X3 A. This leads us to

D
(−0)
X3 AD

(b)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)

=
∑

m

{

Φ∆3
O′

∆′,ℓ′ Φ∆3−1

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(+0)

D
(−0)
X3 AD

(+0)A
X3

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3−1(X3)O′

∆′,ℓ′(XJ)〉(m)

+
∑

m

{

Φ∆3
O′

∆′,ℓ′ Φ∆3,1

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(0−)

D
(−0)
X3 AD

(0−)A
X3

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3,1(X3)O′

∆′,ℓ′(XJ)〉(m)

+
∑

m

{

Φ∆3
O′

∆′,ℓ′ Φ∆3+1

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(−0)

D
(−0)
X3 AD

(−0)A
X3

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3+1(X3)O′

∆′,ℓ′(XJ)〉(m) .

(4.26)

As before, we now observe that all of the bubble coefficients on the right-hand side vanish

with the exception of a single one, namely

b
(−0)(+0)
Φ ≡

(

Φ∆3−1

Φ∆3
V

)(−0)(+0)

= (∆3 − 2)(2∆3 − d)(∆3 − 1)(d − ∆3 − 1) , (4.27)
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which leaves us with

D
(−0)
X3AD

(b)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)

=
∑

m

{

Φ∆3
O′

∆′,ℓ′ Φ∆3−1

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(+0)

b
(−0)(+0)
Φ 〈O∆+δ∆b,ℓ+δℓb

(XI)Φ∆3−1(X3)O′
∆′,ℓ′(XJ)〉(m) .

(4.28)

Here the label a enumerates the possible constituent 3-point tensor structures in the con-

formal 3-point function 〈O∆,ℓΦ∆3
O′

∆′,ℓ′〉.

Here we will focus on the case where this 3-point structure is even under parity, in

which case we can describe the structures using monomials of Vij,k, Hij in the box tensor

basis (see appendix A). We may parameterize these structures by the index nIJ , which takes

on values in the range 0 ≤ nIJ ≤ min(ℓ, ℓ′). The label m can be similarly parameterized

by some mIJ . We further remark that each of the 3-point structures that appears here is

a (spin)-(scalar)-(spin) structure. This means that we can label these structures by their

respective nIJ and mIJ parameters.

To illustrate this, let us restrict attention to just one of the contributions in eq. (4.28),

namely the one with (b) = (0+):

D
(−0)
X3 AD

(0+)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(nIJ )

=

min(ℓ+1,ℓ′)
∑

mIJ =0

B
nIJ (0+)
mIJ (+0)b

(−0)(+0)
Φ 〈O∆,ℓ+1(XI)Φ∆3−1(X3)O′

∆′,ℓ′(XJ)〉(mIJ ) , (4.29)

where we have defined

B
nIJ (0+)
mIJ (+0) ≡

{

Φ∆3
O′

∆′,ℓ′ Φ∆3−1

O∆,ℓ+1 V O∆,ℓ

}(nIJ )(0+)

(mIJ )(+0)

. (4.30)

We next select a particular 3-point structure labeled by nIJ = n, where n is some

nonnegative integer n ∈ (0, min(ℓ, ℓ′)):

D
(−0)
X3 AD

(0+)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(n)

=
n−1
∑

mIJ =0

B
n(0+)
mIJ (+0)b

(−0)(+0)
Φ 〈O∆,ℓ+1(XI)Φ∆3−1(X3)O′

∆′,ℓ′(XJ)〉(mIJ )

+ B
n(0+)
n(+0)b

(−0)(+0)
Φ 〈O∆,ℓ+1(XI)Φ∆3−1(X3)O′

∆′,ℓ′(XJ)〉(n)

+

min(ℓ+1,ℓ′)
∑

mIJ =n+1

B
n(0+)
mIJ (+0)b

(−0)(+0)
Φ 〈O∆,ℓ+1(XI)Φ∆3−1(X3)O′

∆′,ℓ′(XJ)〉(mIJ ) . (4.31)

Evaluating the left-hand side explicitly and matching coefficients, we find that only two of

these 6j symbols are nonvanishing. They are given by

B
n(0+)
n(+0) =

∆3 − 2n − (∆ + ℓ) − (∆′ − ℓ′)

2(∆3 − 2)(∆3 − 1)(d − 2∆3)(d − ∆3 − 1)
,

B
n(0+)
n+1(+0) =

ℓ′ − n

2(∆3 − 2)(∆3 − 1)(d − 2∆3)(d − ∆3 − 1)
. (4.32)

– 27 –



J
H
E
P
1
0
(
2
0
2
1
)
1
6
0

In particular, all other 6j symbols for which mIJ 6= n, n + 1 are identically zero, since the

corresponding structures do not appear on the left-hand side. That is,

B
n(0+)
mIJ (+0) = 0 , mIJ 6= n, n + 1 . (4.33)

We now proceed to check the endpoint values, nIJ = 0 and nIJ = min(ℓ, ℓ′). For nIJ = 0,

the nonzero coefficients are B
0(0+)
0(+0) and B

0(0+)
1(+0). Next, we observe that for nIJ = min(ℓ, ℓ′),

there are two cases:

(1) If ℓ′ ≤ ℓ, then nIJ = ℓ′. Since the sum over mIJ ranges from 0 to min(ℓ + 1, ℓ′), we

expect the symbol B
nIJ (0+)
mIJ (+0) = B

nIJ (0+)
nIJ +1(+0) to vanish, since in that case mIJ = ℓ′ + 1.

From the form of B
n(0+)
n+1(+0) in eq. (4.32), we find that this is indeed the case for n = ℓ′.

(2) If ℓ′ > ℓ, then nIJ = ℓ. In this case, we expect the value of B
ℓ(0+)
ℓ+1(+0) to be nonvan-

ishing, which is in fact true.

We may now continue in the same style for the remaining three equations, thus ob-

taining all the relevant 6j symbols. In particular, it transpires that only the following ones

are nonzero a priori:

B
nIJ (−0)
nIJ (+0) ,

B
nIJ (0+)
nIJ (+0) , B

nIJ (0+)
nIJ +1(+0) ,

B
nIJ (0−)
nIJ −1(+0) , B

nIJ (0−)
nIJ (+0) , B

nIJ (0−)
nIJ +1(+0) ,

B
nIJ (+0)
nIJ −1(+0) , B

nIJ (+0)
nIJ (+0) , B

nIJ (+0)
nIJ +1(+0) , B

nIJ (+0)
nIJ +2(+0) . (4.34)

Here the parameter nIJ takes on values within the interval [0, min(ℓ, ℓ′)], while mIJ takes

on values within [0, min(ℓ + 1, ℓ′)]. It follows that the 6j symbols B
nIJ (a)
mIJ (b) are nonvanishing

provided that for any allowed value of nIJ , the parameter mIJ satisfies mIJ ∈ [0, min(ℓ +

1, ℓ′)], i.e. it does not fall outside its range of definition. Otherwise, the 6j symbol vanishes.

For example, if ℓ < ℓ′, then for nIJ = min(ℓ, ℓ′) = ℓ, the symbol B
nIJ (+0)
nIJ +2(+0) = B

ℓ(+0)
ℓ+2(+0)

must be forced to vanish by definition, since mIJ = ℓ + 2 6∈ [0, min(ℓ + 1, ℓ′)], even if it is

nonzero for nIJ = ℓ a priori.

Combining all of the above results, we ultimately arrive at the following relation:

− 2(D
(−0)
X1

· D
(−0)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=

− 2b
(−0)(+0)
Φ

(

A
(−0)
(+0)B(+0)(−0)B

nIJ (−0)
nIJ (+0)W

(nIJ )
∆−1,ℓ,∆′,ℓ′;∆1−1,∆2,∆3−1,∆4,∆5

+
nIJ +1
∑

mIJ =nIJ

A
(−0)
(0−)B(0−)(0+)B

nIJ (0+)
mIJ (+0)W

(mIJ )
∆,ℓ+1,∆′,ℓ′;∆1−1,∆2,∆3−1,∆4,∆5

+
nIJ +1
∑

mIJ =nIJ −1

A
(−0)
(0+)B(0+)(0−)B

nIJ (0−)
mIJ (+0)W

(mIJ )
∆,ℓ−1,∆′,ℓ′;∆1−1,∆2,∆3−1,∆4,∆5

+
nIJ +2
∑

mIJ =nIJ −1

A
(−0)
(−0)B(−0)(+0)B

nIJ (+0)
mIJ (+0)W

(mIJ )
∆+1,ℓ,∆′,ℓ′;∆1−1,∆2,∆3−1,∆4,∆5

)

, (4.35)
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which is evidently a recursion relation in the spin ℓ, with the spin ℓ′ held fixed. We note

that the scaling dimension of the exchanged operator O∆,ℓ shifts as well, as is clear from

the presence of terms involving ∆ + 1 and ∆ − 1.

Just like in the case of the 4-point function, the action of the operator combina-

tion −2(D
(−0)
X1

· D
(−0)
X3

) = X13 on the 5-point function results in another 5-point function

with scaling dimensions at positions 1 and 3 shifted by −1, that is, ∆1 → ∆1 − 1 and

∆3 → ∆3 − 1. We may accordingly extract the relevant external-dimension-dependent

prefactor for these shifted scaling dimensions. The resulting prefactor depends on the

conformal cross-ratios and is determined by our choice of the external prefactor P∆i
(Xi)

and the basis of cross-ratios.

We next proceed to apply an exactly analogous approach to the other spin, this time

keeping ℓ (and ∆) fixed and varying ℓ′ (and ∆′). To this end, we consider acting on the

5-point function with the combination of operators:

−2(D
(−0)
X3

· D
(−0)
X5

)〈φ∆1
(X1)φ∆2

(X2)|O∆,ℓ|Φ∆3
(X3)|O′

∆′,ℓ′ |φ∆4
(X4)φ∆5

(X5)〉

= X35〈φ∆1
(X1)φ∆2

(X2)|O∆,ℓ|Φ∆3
(X3)|O′

∆′,ℓ′ |φ∆4
(X4)φ∆5

(X5)〉 . (4.36)

The procedure is in fact the mirror image of the above algorithm and leads to the direct

analog of eq. (4.35), but this time with the spin ℓ held fixed, while the spin ℓ′ (as well as the

exchanged operator dimension ∆′) is allowed to vary. This analogous relation is identical

in form to eq. (4.35) up to the replacements ∆ ↔ ∆′, ℓ ↔ ℓ′, ∆12 → −∆45. In this case,

acting with the operators D
(−0)A
X3

and D
(−0)A
X5

again shifts the external operator dimensions

∆3 and ∆5 down by 1, resulting in an overall external prefactor.

We now examine the relations eq. (4.35) and its spin-ℓ′ analog as a unit. For conve-

nience, we implement several shifts in the spins and dimensions. In particular, we take

∆1 → ∆1 + 1 in eq. (4.35) and ∆5 → ∆5 + 1 in the spin-ℓ′ analog, as well as ∆3 → ∆3 + 1

in both relations. Further, in order to place the two relations on an equal footing, we shift

ℓ → ℓ − 1 in eq. (4.35) and ℓ′ → ℓ′ − 1 in the spin-ℓ′ relation. For convenience, we adopt

some shorthand notation:

G
(n)
(ℓ,ℓ′;δ0,δ′

0) ≡ G
(n)
∆+δ0,ℓ,∆′+δ′

0,ℓ′(ui) . (4.37)

With this, we are left with the following two recursion relations for the 5-point conformal

blocks for ([∆, ℓ], [∆′, ℓ′]) exchange:

G
(nIJ )
(ℓ,ℓ′;0,0) =

1

snIJ

(

f(ui)G
(nIJ )
(ℓ−1,ℓ′;0,0)

∣

∣

∣

∣

∆1→∆1+1,∆3→∆3+1

−G
(nIJ )
(ℓ−1,ℓ′;−1,0)−snIJ +1G

(nIJ +1)
(ℓ,ℓ′;0,0)

−tnIJ −1G
(nIJ −1)
(ℓ−2,ℓ′;0,0)−tnIJ

G
(nIJ )
(ℓ−2,ℓ′;0,0)−tnIJ +1G

(nIJ +1)
(ℓ−2,ℓ′;0,0)

−unIJ −1G
(nIJ −1)
(ℓ−1,ℓ′;1,0)−unIJ

G
(nIJ )
(ℓ−1,ℓ′;1,0)−unIJ +1G

(nIJ +1)
(ℓ−1,ℓ′;1,0)−unIJ +2G

(nIJ +2)
(ℓ−1,ℓ′;1,0)

)

,

(4.38)
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and

G
(nIJ )
(ℓ,ℓ′;0,0) =

1

s′
nIJ

(

f ′(ui)G
(nIJ )
(ℓ,ℓ′−1;0,0)

∣

∣

∣

∣

∆3→∆3+1,∆5→∆5+1

−G
(nIJ )
(ℓ,ℓ′−1;0,−1)−s′

nIJ +1G
(nIJ +1)
(ℓ,ℓ′;0,0)

−t′
nIJ −1G

(nIJ −1)
(ℓ,ℓ′−2;0,0)−t′

nIJ
G

(nIJ )
(ℓ,ℓ′−2;0,0)−t′

nIJ +1G
(nIJ +1)
(ℓ,ℓ′−2;0,0)

−u′
nIJ −1G

(nIJ −1)
(ℓ,ℓ′−1;0,1)−u′

nIJ
G

(nIJ )
(ℓ,ℓ′−1;0,1)−u′

nIJ +1G
(nIJ +1)
(ℓ,ℓ′−1;0,1)−u′

nIJ +2G
(nIJ +2)
(ℓ,ℓ′−1;0,1)

)

.

(4.39)

Both recursion relations are defined in a convention-independent way, where f(ui) and

f ′(ui) represent the leftover cross-ratio-dependent prefactors that arise upon removing the

external prefactor for the relevant shifted scaling dimensions. We expect each of these

prefactors to be built from powers of the ui. We may readily determine the form of the

f(ui) and f ′(ui) for the three different sets of conventions mentioned above. For the

set (2.10), (2.11), we find

f(ui) = (u1)−1/2, f ′(ui) = (u2)−1/2 (4.40)

Further, for the set (2.12), (2.13), we have

f(ui) = (u′
1)−1/2, f ′(ui) = (u′

2)−1/2 (4.41)

Lastly, for the set (2.14), (2.15), we find

f(ui) = v5
12(u5

1)−1/2(u5
2)−1/2, f ′(ui) = (u5

1)−1/2(u5
2)−1/2. (4.42)

The coefficients in eq. (4.38) are built from products of the various 6j symbols. In partic-

ular, we have

smIJ
≡ −2A

(−0)
(0−)B(0−)(0+)B

nIJ (0+)
mIJ (+0)b

(−0)(+0)
Φ

∣

∣

∣

∣

∆1→∆1+1,∆3→∆3+1,ℓ→ℓ−1

,

tmIJ
≡ −2A

(−0)
(0+)B(0+)(0−)B

nIJ (0−)
mIJ (+0)b

(−0)(+0)
Φ

∣

∣

∣

∣

∆1→∆1+1,∆3→∆3+1,ℓ→ℓ−1

,

umIJ
≡ −2A

(−0)
(−0)B(−0)(+0)B

nIJ (+0)
mIJ (+0)b

(−0)(+0)
Φ

∣

∣

∣

∣

∆1→∆1+1,∆3→∆3+1,ℓ→ℓ−1

, (4.43)

while in eq. (4.39), the respective coefficients are given by

s′
mIJ

= smIJ

∣

∣

∣

∣

∆↔∆′,ℓ↔ℓ′,∆12→−∆45

,

t′
mIJ

= tmIJ

∣

∣

∣

∣

∆↔∆′,ℓ↔ℓ′,∆12→−∆45

,

u′
mIJ

= umIJ

∣

∣

∣

∣

∆↔∆′,ℓ↔ℓ′,∆12→−∆45

, (4.44)

where ∆ij ≡ ∆i − ∆j .
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The explicit form of the coefficients in eq. (4.43) can be found in appendix B. When used

in succession, the two recursion relations eq. (4.38) and eq. (4.39) enable us to construct

the 5-point blocks for general symmetric traceless tensor exchange in the comb channel.

These may be regarded as two independent results. One re-expresses a given block for

[∆, ℓ], [∆′, ℓ′] exchange in terms of a linear combination of (ℓ, ℓ′), (ℓ − 1, ℓ′), and (ℓ − 2, ℓ′)

blocks with ℓ′ held fixed, and the other does the same for spin-ℓ′, with ℓ held fixed.

Note that the contributions on the right-hand side of the relations eq. (4.38) and

eq. (4.39) all feature terms involving lower spins with the exception of the ones labeled

by the coefficients snIJ +1 and s′
nIJ +1. The latter terms carry the same spins (ℓ, ℓ′) as the

conformal block we are after. However, at the same time, they exhibit a larger value of the

3-point structure index, namely nIJ + 1. Closer inspection reveals that these coefficients

in fact vanish when nIJ takes on its maximal value, which is either ℓ or ℓ′. It follows that

we may therefore generate the various block structures by starting from the seed value

nIJ = min(ℓ, ℓ′) and iterating down to nIJ = 0. Thus, these two recursion relations can

be exploited in conjunction to recursively generate 5-point conformal blocks with arbitrary

values of ℓ and ℓ′, starting from the seeds ℓ = ℓ′ = 0.

More precisely, we can first apply eq. (4.38) to raise nIJ to its maximal value, after

which further recursion will bring down the spin ℓ, thus expressing our blocks of interest

purely in terms of (ℓ = 0, ℓ′) objects, while keeping ℓ′ fixed. The result is a linear combina-

tion of blocks
∑

i αiG
(ni)
(0,ℓ′;δ0i

,0). Thereafter, for each term αiG
(ni)
(0,ℓ′;δ0i

,0), we apply the relation

eq. (4.39), which accordingly acts to lower the spin ℓ′ down to zero, ultimately yielding the

desired general block for spin-ℓ, spin-ℓ′ exchange in the form
∑

ij βijG
(0)
(0,0;δ0i

,δ′
0j

). Note that

for the case of ℓ = 0, nIJ = 0 (ℓ′ = 0, nIJ = 0), the coefficients tnIJ −1, tnIJ
, and tnIJ +1

(t′
nIJ −1, t′

nIJ
= 0, and t′

nIJ +1 = 0) all vanish, exactly as expected.

We remark that the above method treats the middle operator Φ as special, while

the pairs {φ∆1
(X1), φ∆2

(X2)} and {φ∆4
(X4), φ∆5

(X5)} are considered on an equal foot-

ing. From our choice of the weight-shifting operator combinations (D
(−0)
X1

· D
(−0)
X3

) and

(D
(−0)
X3

· D
(−0)
X5

), it is evident that X3 serves as a “junction point”, with the two resulting

relations obviously symmetric with respect to each other. This symmetry is reflected in

the structure of the coefficients. In particular, if we relabel the external and exchanged

spins and dimensions appropriately, we obtain the coefficients {s′
mIJ

, t′
mIJ

, u′
mIJ

} from the

coefficients {smIJ
, tmIJ

, umIJ
}, as is apparent from eq. (4.44).

It is straightforward to implement the recursion relations eq. (4.38) and eq. (4.39)

within a symbolic computing environment, e.g. Mathematica. Doing so enables us to

effortlessly generate any symmetric traceless conformal block of interest by specifying a

handful of input parameters, namely {nIJ , ℓ, ℓ′}. To sum up, at this point, we have given

an explicit prescription for deriving the spin-ℓ, spin-ℓ′ exchange blocks in a purely scalar

5-point function.

Next we would like to understand if we can further simplify the recursion relations

by eliminating terms involving shifts in the exchanged operator dimensions. In order to

achieve such a simplification, it is useful to first establish some identities describing how

the blocks transform under various permutations.
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4.2.2 Exchange symmetries

The 5-point conformal blocks for ([∆, ℓ], [∆′, ℓ′]) exchange satisfy some simple symmetry

relations under the exchanges 1 ↔ 2 and 4 ↔ 5. For concreteness, let us follow the

conventions eq. (2.10) and eq. (2.11) for the external prefactor and basis of cross-ratios,

respectively. With these choices, we find that the symmetry relations assume the form

G
(nIJ )
∆,ℓ,∆′,ℓ′

(

u1

w2;3
,
u2w2;3

w2;4
,

1

w2;3
,

1

w2;4
,
w3;4

w2;4

)

= (−1)ℓw
−∆3/2
2;3 w

1
2

(−∆4+∆5)
2;4 G

(nIJ )
∆,ℓ,∆′,ℓ′(u1, u2, w2;3, w2;4, w3;4)

∣

∣

∣

∣

∆1↔∆2

, (4.45)

G
(nIJ )
∆,ℓ,∆′,ℓ′

(

u1w3;4

w2;4
,

u2

w3;4
,
w2;3

w2;4
,

1

w2;4
,

1

w3;4

)

= (−1)ℓ′
w

1
2

(∆1−∆2)
2;4 w

−∆3/2
3;4 G

(nIJ )
∆,ℓ,∆′,ℓ′(u1, u2, w2;3, w2;4, w3;4)

∣

∣

∣

∣

∆4↔∆5

, (4.46)

and

G
(nIJ )
∆,ℓ,∆′,ℓ′

(

u1w3;4

w2;3
,
u2w2;3

w3;4
,
w2;4

w2;3
, w2;4,

w2;4

w3;4

)

= (−1)ℓ+ℓ′
w

−∆3/2
2;3 w

1
2

(∆1−∆2+∆3−∆4+∆5)
2;4 w

−∆3/2
3;4

× G
(nIJ )
∆,ℓ,∆′,ℓ′(u1, u2, w2;3, w2;4, w3;4)

∣

∣

∣

∣

∆1↔∆2,∆4↔∆5

. (4.47)

Moreover, we have the following symmetry relations under 1 ↔ 5, 2 ↔ 4:

G
(nIJ )
∆,ℓ,∆′,ℓ′(u2,u1,w3;4,w2;4,w2;3) = G

(nIJ )
∆,ℓ,∆′,ℓ′(u1,u2,w2;3,w2;4,w3;4)

∣

∣

∣

∣

∆1↔∆5,∆2↔∆4

,

(4.48)

G
(nIJ )
∆,ℓ,∆′,ℓ′

(

1

u1
,

1

u2
,
w2;3

u1
,

w2;4

u1u2
,
w3;4

u2

)

= (u1u2)
∆1+∆5

2 G
(nIJ )
∆,ℓ,∆′,ℓ′(u1,u2,w2;3,w2;4,w3;4)

∣

∣

∣

∣

∆1↔∆5

,

(4.49)

G
(nIJ )
∆,ℓ,∆′,ℓ′

(

1

u2
,

1

u1
,
w3;4

u2
,

w2;4

u1u2
,
w2;3

u1

)

= (u1u2)
∆1+∆5

2 G
(nIJ )
∆,ℓ,∆′,ℓ′(u1,u2,w2;3,w2;4,w3;4)

∣

∣

∣

∣

∆2↔∆4

.

(4.50)

In deriving the above relations, we recalled that the 5-point block of interest is related

to the conformal integral

G
(nIJ )
∆,ℓ,∆′,ℓ′(ui) (4.51)

∝ 〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ 〈O∆,ℓΦ∆3
(X3)O′

∆′,ℓ′〉(nIJ ) ⊲⊳ 〈O′
∆′,ℓ′φ∆4

(X4)φ∆5
(X5)〉 ,

along with our knowledge of the transformation properties of the 3-point functions. In

particular, one may readily apply the known properties of 3-point functions under permu-

tations to conclude that the three-point functions of the type (scalar)-(scalar)-(spin-ℓ) pick
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up a factor of (−1)ℓ upon interchanging the two scalar operators. It is then trivial to assign

the appropriate factors of (−1)ℓ and (−1)ℓ′
as needed for the exchanges 1 ↔ 2; 4 ↔ 5; and

1 ↔ 2, 4 ↔ 5.

Further, it is immediately apparent that the blocks are invariant under the simultane-

ous interchanges 1 ↔ 5, 2 ↔ 4, which corresponds to a simple relabeling of the operators.

That is, under 1 ↔ 5, 2 ↔ 4 we have that

G
(nIJ )
∆,ℓ,∆′,ℓ′(ui)

∣

∣

∣

∣

1↔5,2↔4

(4.52)

∝ 〈φ∆5
(X5)φ∆4

(X4)O∆,ℓ〉 ⊲⊳ 〈O∆,ℓΦ∆3
(X3)O′

∆′,ℓ′〉(nIJ ) ⊲⊳ 〈O′
∆′,ℓ′φ∆2

(X2)φ∆1
(X1)〉.

Furthermore, we observe that we may reduce this conformal integral to the original one in

eq. (4.51) if we also relabel [∆, ℓ] ↔ [∆′, ℓ′].

In addition, the symmetry relation eq. (4.48) makes it manifest why the coefficients

of the recursion relation eq. (4.39) coincide with those featured in eq. (4.38) up to the

replacements ∆ ↔ ∆′, ℓ ↔ ℓ′, ∆12 → −∆45, as exemplified in eq. (4.44). That is, the

relation eq. (4.44) between the two sets of coefficients arises precisely due to the symmetry

eq. (4.48). Moreover, we note that the interchanges 1 ↔ 5, 2 ↔ 4 indeed exchange

f(ui) ↔ f ′(ui), which allows us to map eq. (4.38) to eq. (4.39). It therefore emerges that

we may obtain eq. (4.39) from eq. (4.38) via eq. (4.39) = eq. (4.38)

∣

∣

∣

∣

∆↔∆′, ℓ↔ℓ′, ∆12→−∆45

.

Now, in light of the symmetry relations eq. (4.45)–eq. (4.46), we proceed to write

down additional recursion relations similar to eq. (4.38) and eq. (4.39) in the same spirit

as in [39]. To begin with, we rewrite eq. (4.38) and eq. (4.39) in a form analogous to that

of eq. (4.18) for 4-point symmetric traceless blocks in [39]. To emphasize the dependence

of the blocks on the external scaling dimensions, we include the explicit dependence next

to each block in parentheses, e.g. (∆12, ∆3, ∆45). We obtain

u
−1/2
1 G

(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 + 1, ∆3 + 1, ∆45)

= G
(nIJ )
(ℓ−1,ℓ′;−1,0)(∆12, ∆3, ∆45) + snIJ

G
(nIJ )
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45)

+ snIJ +1G
(nIJ +1)
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45) + tnIJ −1G

(nIJ −1)
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45)

+ tnIJ
G

(nIJ )
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45) + tnIJ +1G

(nIJ +1)
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45)

+ unIJ −1G
(nIJ −1)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) + unIJ

G
(nIJ )
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45)

+ unIJ +1G
(nIJ +1)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) + unIJ +2G

(nIJ +2)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) (4.53)

and

u
−1/2
2 G

(nIJ )
(ℓ,ℓ′−1;0,0)(∆12, ∆3 + 1, ∆45 − 1)

= G
(nIJ )
(ℓ,ℓ′−1;0,−1)(∆12, ∆3, ∆45) + s′

nIJ
G

(nIJ )
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45)

+ s′
nIJ +1G

(nIJ +1)
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45) + t′

nIJ −1G
(nIJ −1)
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45)

+ t′
nIJ

G
(nIJ )
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45) + t′

nIJ +1G
(nIJ +1)
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45)

+ u′
nIJ −1G

(nIJ −1)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) + u′

nIJ
G

(nIJ )
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45)

+ u′
nIJ +1G

(nIJ +1)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) + u′

nIJ +2G
(nIJ +2)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) . (4.54)
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With this, we now consider interchanging X1 ↔ X2, which takes

u1 →
u1

w2;3
, u2 →

u2w2;3

w2;4
, w2;3 →

1

w2;3
, w2;4 →

1

w2;4
, w3;4 →

w3;4

w2;4
. (4.55)

This means that each of the conformal block terms of the type G
(m)
(ℓ,ℓ′;0,0)(u1, u2, w2;3, w2;4, w3;4)

in the above two equations gets mapped to

G
(m)
(ℓ,ℓ′;0,0)(u1, u2, w2;3, w2;4, w3;4) → G

(m)
(ℓ,ℓ′;0,0)

(

u1

w2;3
,
u2w2;3

w2;4
,

1

w2;3
,

1

w2;4
,
w3;4

w2;4

)

. (4.56)

We next observe that according to eq. (4.45), we have

G
(m)
(ℓ,ℓ′;0,0)

(

u1

w2;3
,
u2w2;3

w2;4
,

1

w2;3
,

1

w2;4
,
w3;4

w2;4

)

= (−1)ℓw
−∆3/2
2;3 w

1
2

(−∆4+∆5)
2;4 G

(m)
(ℓ,ℓ′;0,0)(u1, u2, w2;3, w2;4, w3;4)

∣

∣

∣

∣

∆12→−∆12

. (4.57)

Lastly, we relabel ∆12 → −∆12. Noting that the {smIJ
, tmIJ

, umIJ
} coefficients depend

on ∆12 but not on ∆45, while the {s′
mIJ

, t′
mIJ

, u′
mIJ

} coefficients only feature ∆45, we just

need to explicitly exhibit the dependence on ∆12 or ∆45 in the respective sets. In this way,

we arrive at

− u
−1/2
1 G

(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 − 1, ∆3 + 1, ∆45)

= −G
(nIJ )
(ℓ−1,ℓ′;−1,0)(∆12, ∆3, ∆45)

+ snIJ
(−∆12)G

(nIJ )
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45) + snIJ +1(−∆12)G

(nIJ +1)
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45)

+ tnIJ −1(−∆12)G
(nIJ −1)
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45) + tnIJ

(−∆12)G
(nIJ )
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45)

+ tnIJ +1(−∆12)G
(nIJ +1)
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45) − unIJ −1(−∆12)G

(nIJ −1)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45)

− unIJ
(−∆12)G

(nIJ )
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) − unIJ +1(−∆12)G

(nIJ +1)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45)

− unIJ +2(−∆12)G
(nIJ +2)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) (4.58)

and

w−1
2;3w2;4u

−1/2
2 G

(nIJ )
(ℓ,ℓ′−1;0,0)(∆12, ∆3 + 1, ∆45 − 1)

= G
(nIJ )
(ℓ,ℓ′−1;0,−1)(∆12, ∆3, ∆45)

+ s′
nIJ

G
(nIJ )
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45) + s′

nIJ +1G
(nIJ +1)
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45)

+ t′
nIJ −1G

(nIJ −1)
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45) + t′

nIJ
G

(nIJ )
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45)

+ t′
nIJ +1G

(nIJ +1)
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45) + u′

nIJ −1G
(nIJ −1)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45)

+ u′
nIJ

G
(nIJ )
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) + u′

nIJ +1G
(nIJ +1)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45)

+ u′
nIJ +2G

(nIJ +2)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) . (4.59)
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We next repeat the identical procedure for the interchange X4 ↔ X5 with the associ-

ated symmetry relation eq. (4.46). We find

w2;4w−1
3;4u

−1/2
1 G

(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 + 1, ∆3 + 1, ∆45)

= G
(nIJ )
(ℓ−1,ℓ′;−1,0)(∆12, ∆3, ∆45)

+ snIJ
G

(nIJ )
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45) + snIJ +1G

(nIJ +1)
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45)

+ tnIJ −1G
(nIJ −1)
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45) + tnIJ

G
(nIJ )
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45)

+ tnIJ +1G
(nIJ +1)
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45) + unIJ −1G

(nIJ −1)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45)

+ unIJ
G

(nIJ )
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) + unIJ +1G

(nIJ +1)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45)

+ unIJ +2G
(nIJ +2)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) (4.60)

and

− u
−1/2
2 G

(nIJ )
(ℓ,ℓ′−1;0,0)(∆12, ∆3 + 1, ∆45 + 1)

= −G
(nIJ )
(ℓ,ℓ′−1;0,−1)(∆12, ∆3, ∆45)

+ s′
nIJ

(−∆45)G
(nIJ )
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45) + s′

nIJ +1(−∆45)G
(nIJ +1)
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45)

+ t′
nIJ −1(−∆45)G

(nIJ −1)
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45) + t′

nIJ
(−∆45)G

(nIJ )
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45)

+ t′
nIJ +1(−∆45)G

(nIJ +1)
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45) − u′

nIJ −1(−∆45)G
(nIJ −1)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45)

− u′
nIJ

(−∆45)G
(nIJ )
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) − u′

nIJ +1(−∆45)G
(nIJ +1)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45)

− u′
nIJ +2(−∆45)G

(nIJ +2)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) . (4.61)

These respective relations are directly analogous to the second line in eq. (4.22) of [39].

Next, we may consider starting from the first equation in each of eq. (4.58) and eq. (4.59)

and interchanging X4 ↔ X5 in each term. This maps

u1 →
u1w3;4

w2;4
, u2 →

u2

w3;4
, w2;3 →

w2;3

w2;4
, w2;4 →

1

w2;4
, w3;4 →

1

w3;4
. (4.62)

Proceeding in the same fashion as before, we then invoke the symmetry relation eq. (4.46)

and further relabel ∆45 → −∆45 to obtain

− u
−1/2
1 w−1

3;4G
(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 − 1, ∆3 + 1, ∆45)

= −G
(nIJ )
(ℓ−1,ℓ′;−1,0)(∆12, ∆3, ∆45)

+ snIJ
(−∆12)G

(nIJ )
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45) + snIJ +1(−∆12)G

(nIJ +1)
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45)

+ tnIJ −1(−∆12)G
(nIJ −1)
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45) + tnIJ

(−∆12)G
(nIJ )
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45)

+ tnIJ +1(−∆12)G
(nIJ +1)
(ℓ−2,ℓ′;0,0)(∆12, ∆3, ∆45) − unIJ −1(−∆12)G

(nIJ −1)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45)

− unIJ
(−∆12)G

(nIJ )
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) − unIJ +1(−∆12)G

(nIJ +1)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45)

− unIJ +2(−∆12)G
(nIJ +2)
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) (4.63)
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and

− u
−1/2
2 w−1

2;3G
(nIJ )
(ℓ,ℓ′−1;0,0)(∆12, ∆3 + 1, ∆45 + 1)

= −G
(nIJ )
(ℓ,ℓ′−1;0,−1)(∆12, ∆3, ∆45)

+ s′
nIJ

(−∆45)G
(nIJ )
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45) + s′

nIJ +1(−∆45)G
(nIJ +1)
(ℓ,ℓ′;0,0)(∆12, ∆3, ∆45)

+ t′
nIJ −1(−∆45)G

(nIJ −1)
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45) + t′

nIJ
(−∆45)G

(nIJ )
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45)

+ t′
nIJ +1(−∆45)G

(nIJ +1)
(ℓ,ℓ′−2;0,0)(∆12, ∆3, ∆45) − u′

nIJ −1(−∆45)G
(nIJ −1)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45)

− u′
nIJ

(−∆45)G
(nIJ )
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) − u′

nIJ +1(−∆45)G
(nIJ +1)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45)

− u′
nIJ +2(−∆45)G

(nIJ +2)
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45) . (4.64)

These last two relations are analogous to the last relation in eq. (4.22) of [39].

Armed with the additional recursion relations eq. (4.58)–eq. (4.61) as well as eq. (4.63)–

eq. (4.64), we may use them to eliminate the [∆−1, ℓ], [∆′ −1, ℓ′] or the [∆+1, ℓ], [∆′ +1, ℓ′]

contributions from eq. (4.53) and eq. (4.54). In particular, we can consider the sums of

eq. (4.53) and eq. (4.58) as well as of eq. (4.54) and eq. (4.61), which give

u
−1/2
1 (G

(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 + 1, ∆3 + 1, ∆45) − G

(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 − 1, ∆3 + 1, ∆45))

=
(

snIJ
+ snIJ

∣

∣

∆12→−∆12

)

G
(nIJ )
(ℓ,ℓ′;0,0) +

(

snIJ +1 + snIJ +1

∣

∣

∆12→−∆12

)

G
(nIJ +1)
(ℓ,ℓ′;0,0)

+
(

tnIJ −1 + tnIJ −1

∣

∣

∆12→−∆12

)

G
(nIJ −1)
(ℓ−2,ℓ′;0,0) +

(

tnIJ
+ tnIJ

∣

∣

∆12→−∆12

)

G
(nIJ )
(ℓ−2,ℓ′;0,0)

+
(

tnIJ +1 + tnIJ +1

∣

∣

∆12→−∆12

)

G
(nIJ +1)
(ℓ−2,ℓ′;0,0) +

(

unIJ
− unIJ

∣

∣

∆12→−∆12

)

G
(nIJ −1)
(ℓ−1,ℓ′;1,0)

+
(

unIJ
− unIJ

∣

∣

∆12→−∆12

)

G
(nIJ )
(ℓ−1,ℓ′;1,0) +

(

unIJ +1 − unIJ +1

∣

∣

∆12→−∆12

)

G
(nIJ +1)
(ℓ−1,ℓ′;1,0)

+
(

unIJ +2 − unIJ +2

∣

∣

∆12→−∆12

)

G
(nIJ +2)
(ℓ−1,ℓ′;1,0) , (4.65)

where the blocks’ dependence on (∆12, ∆3, ∆45) has been suppressed for the unshifted

terms. Further, we have

u
−1/2
2 (G

(nIJ )
(ℓ,ℓ′−1;0,0)(∆12, ∆3 + 1, ∆45 − 1) − G

(nIJ )
(ℓ,ℓ′−1;0,0)(∆12, ∆3 + 1, ∆45 + 1))

=
(

s′
nIJ

+ s′
nIJ

∣

∣

∆45→−∆45

)

G
(nIJ )
(ℓ,ℓ′;0,0) +

(

s′
nIJ +1 + s′

nIJ +1

∣

∣

∆45→−∆45

)

G
(nIJ +1)
(ℓ,ℓ′;0,0)

+
(

t′
nIJ −1 + t′

nIJ −1

∣

∣

∆45→−∆45

)

G
(nIJ −1)
(ℓ,ℓ′−2;0,0) +

(

t′
nIJ

+ t′
nIJ

∣

∣

∆45→−∆45

)

G
(nIJ )
(ℓ,ℓ′−2;0,0)

+
(

t′
nIJ +1 + t′

nIJ +1

∣

∣

∆45→−∆45

)

G
(nIJ +1)
(ℓ,ℓ′−2;0,0) +

(

u′
nIJ −1 − u′

nIJ −1

∣

∣

∆45→−∆45

)

G
(nIJ −1)
(ℓ,ℓ′−1;0,1)

+
(

u′
nIJ

− u′
nIJ

∣

∣

∆45→−∆45

)

G
(nIJ )
(ℓ,ℓ′−1;0,1) +

(

u′
nIJ +1 − u′

nIJ +1

∣

∣

∆45→−∆45

)

G
(nIJ +1)
(ℓ,ℓ′−1;0,1)

+
(

u′
nIJ +2 − u′

nIJ +2

∣

∣

∆45→−∆45

)

G
(nIJ +2)
(ℓ,ℓ′−1;0,1) . (4.66)

Next, we take the linear combinations eq. (4.60) + eq. (4.63) and eq. (4.59) + eq. (4.64),
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which give

u
−1/2
1 (w2;4w−1

3;4G
(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 + 1, ∆3 + 1, ∆45) − w−1

3;4G
(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 − 1, ∆3 + 1, ∆45))

=
(

snIJ
+ snIJ

∣

∣

∆12→−∆12

)

G
(nIJ )
(ℓ,ℓ′;0,0) +

(

snIJ +1 + snIJ +1

∣

∣

∆12→−∆12

)

G
(nIJ +1)
(ℓ,ℓ′;0,0)

+
(

tnIJ −1 + tnIJ −1

∣

∣

∆12→−∆12

)

G
(nIJ −1)
(ℓ−2,ℓ′;0,0) +

(

tnIJ
+ tnIJ

∣

∣

∆12→−∆12

)

G
(nIJ )
(ℓ−2,ℓ′;0,0)

+
(

tnIJ +1 + tnIJ +1

∣

∣

∆12→−∆12

)

G
(nIJ +1)
(ℓ−2,ℓ′;0,0) +

(

unIJ −1 − unIJ −1

∣

∣

∆12→−∆12

)

G
(nIJ −1)
(ℓ−1,ℓ′;1,0)

+
(

unIJ
− unIJ

∣

∣

∆12→−∆12

)

G
(nIJ )
(ℓ−1,ℓ′;1,0) +

(

unIJ +1 − unIJ +1

∣

∣

∆12→−∆12

)

G
(nIJ +1)
(ℓ−1,ℓ′;1,0)

+
(

unIJ +2 − unIJ +2

∣

∣

∆12→−∆12

)

G
(nIJ +2)
(ℓ−1,ℓ′;1,0) (4.67)

and

u
−1/2
2 (w−1

2;3w2;4G
(nIJ )
(ℓ,ℓ′−1;0,0)(∆12, ∆3 + 1, ∆45 − 1) − w−1

2;3G
(nIJ )
(ℓ,ℓ′−1;0,0)(∆12, ∆3 + 1, ∆45 + 1))

=
(

s′
nIJ

+ s′
nIJ

∣

∣

∆45→−∆45

)

G
(nIJ )
(ℓ,ℓ′;0,0) +

(

s′
nIJ +1 + s′

nIJ +1

∣

∣

∆45→−∆45

)

G
(nIJ +1)
(ℓ,ℓ′;0,0)

+
(

t′
nIJ −1 + t′

nIJ −1

∣

∣

∆45→−∆45

)

G
(nIJ −1)
(ℓ,ℓ′−2;0,0) +

(

t′
nIJ

+ t′
nIJ

∣

∣

∆45→−∆45

)

G
(nIJ )
(ℓ,ℓ′−2;0,0)

+
(

t′
nIJ +1 + t′

nIJ +1

∣

∣

∆45→−∆45

)

G
(nIJ +1)
(ℓ,ℓ′−2;0,0) +

(

u′
nIJ −1 − u′

nIJ −1

∣

∣

∆45→−∆45

)

G
(nIJ −1)
(ℓ,ℓ′−1;0,1)

+
(

u′
nIJ

− u′
nIJ

∣

∣

∆45→−∆45

)

G
(nIJ )
(ℓ,ℓ′−1;0,1) +

(

u′
nIJ +1 − u′

nIJ +1

∣

∣

∆45→−∆45

)

G
(nIJ +1)
(ℓ,ℓ′−1;0,1)

+
(

u′
nIJ +2 − u′

nIJ +2

∣

∣

∆45→−∆45

)

G
(nIJ +2)
(ℓ,ℓ′−1;0,1) . (4.68)

The four relations eq. (4.65)–eq. (4.68) all involve blocks with exchanged dimensions ∆,

∆ + 1 or ∆′, ∆′ + 1 alone. The block contributions carrying dimensions ∆ − 1 and ∆′ − 1

have been eliminated.

Upon taking the difference between eq. (4.65) and eq. (4.67), we find that both r.h.s.’s

cancel. We thus obtain the simple identity

(1−w2;4w−1
3;4)G

(nIJ )
(ℓ−1,ℓ′;0,0)(∆12+1,∆3+1,∆45) = (1−w−1

3;4)G
(nIJ )
(ℓ−1,ℓ′;0,0)(∆12−1,∆3+1,∆45) .

(4.69)

Similarly, upon subtracting eq. (4.68) from eq. (4.66), we obtain

(1−w−1
2;3w2;4)G

(nIJ )
(ℓ,ℓ′−1;0,0)(∆12,∆3+1,∆45−1) = (1−w−1

2;3)G
(nIJ )
(ℓ,ℓ′−1;0,0)(∆12,∆3+1,∆45+1) .

(4.70)

These relations arise due to the fact that the s, t, and u coefficients are all independent

of ∆45, while the s′, t′, and u′ coefficients do not contain ∆12. These two relations are

reminiscent of the following identity for 4-point blocks:

Fλ1+ 1
2

λ2+ 1
2

(

a ±
1

2
, b ∓

1

2

)

= Fλ1+ 1
2

λ2+ 1
2

(

a +
1

2
, b +

1

2

)

, (4.71)

which comes from the first line in eq. (4.22) in [39], once (xx̄)−1/2Fλ1 λ2(a, b) has been

replaced by the r.h.s. of eq. (4.18). Such relations may be used to replace blocks with
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shifted ∆45 by the corresponding blocks with ∆45 shifted up or down by 2, a convenient

feature which is useful for combining terms inside the recursion relations.

Alternatively, we may consider taking combinations eq. (4.53) + c1 eq. (4.63) and

eq. (4.54) + c2 eq. (4.64), with c1 and c2 chosen such that block pieces carrying exchanged

dimensions ∆ + 1 and ∆′ + 1, specifically terms of the type G
(mIJ )
(ℓ−1,ℓ′;1,0)(∆12, ∆3, ∆45) and

G
(mIJ )
(ℓ,ℓ′−1;0,1)(∆12, ∆3, ∆45), are eliminated. We ultimately find

u
−1/2
1

(

G
(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 +1,∆3 +1,∆45)−c1w−1

3;4G
(nIJ )
(ℓ−1,ℓ′;0,0)(∆12 −1,∆3 +1,∆45)

)

= (1−c1)G
(nIJ )
(ℓ−1,ℓ′;−1,0) +

(

snIJ
+c1snIJ

∣

∣

∆12→−∆12

)

G
(nIJ )
(ℓ,ℓ′;0,0)

+
(

snIJ +1 +c1snIJ +1

∣

∣

∆12→−∆12

)

G
(nIJ +1)
(ℓ,ℓ′;0,0) +

(

tnIJ −1 +c1tnIJ −1

∣

∣

∆12→−∆12

)

G
(nIJ −1)
(ℓ−2,ℓ′;0,0)

+
(

tnIJ
+c1tnIJ

∣

∣

∆12→−∆12

)

G
(nIJ )
(ℓ−2,ℓ′;0,0) +

(

tnIJ +1 +c1tnIJ +1

∣

∣

∆12→−∆12

)

G
(nIJ +1)
(ℓ−2,ℓ′;0,0) ,

(4.72)

where

c1 = −
(∆ − ∆12 + ℓ − 1) (d − ∆ + ∆12 + ℓ − 1)

(∆ + ∆12 + ℓ − 1) (d − ∆ − ∆12 + ℓ − 1)
, (4.73)

and

u
−1/2
2

(

G
(nIJ )
(ℓ,ℓ′−1;0,0)(∆12,∆3 +1,∆45 −1)−c2w−1

2;3G
(nIJ )
(ℓ,ℓ′−1;0,0)(∆12,∆3 +1,∆45 +1)

)

= (1−c2)G
(nIJ )
(ℓ,ℓ′−1;0,−1) +

(

s′
nIJ

+c2s′
nIJ

∣

∣

∆45→−∆45

)

G
(nIJ )
(ℓ,ℓ′;0,0)

+
(

s′
nIJ +1 +c2s′

nIJ +1

∣

∣

∆45→−∆45

)

G
(nIJ +1)
(ℓ,ℓ′;0,0) +

(

t′
nIJ −1 +c2t′

nIJ −1

∣

∣

∆45→−∆45

)

G
(nIJ −1)
(ℓ,ℓ′−2;0,0)

+
(

t′
nIJ

+c2t′
nIJ

∣

∣

∆45→−∆45

)

G
(nIJ )
(ℓ,ℓ′−2;0,0) +

(

t′
nIJ +1 +c2t′

nIJ +1

∣

∣

∆45→−∆45

)

G
(nIJ +1)
(ℓ,ℓ′−2;0,0) ,

(4.74)

with

c2 = −
(∆′ + ∆45 + ℓ′ − 1) (d − ∆′ − ∆45 + ℓ′ − 1)

(∆′ − ∆45 + ℓ′ − 1) (d − ∆′ + ∆45 + ℓ′ − 1)
. (4.75)

It turns out that the simplest set of recursion relations we are able to write down only

involve the exchanged operators {[∆, ℓ], [∆ − 1, ℓ], [∆, ℓ − 1], [∆, ℓ − 2]} and {[∆′, ℓ′], [∆′ −

1, ℓ′], [∆′, ℓ′ − 1], [∆′, ℓ′ − 2]}, without any blocks carrying the exchanged dimensions ∆ + 1

and ∆′+1. This result only partially achieves the goal of eliminating shifts in the exchanged

operator dimensions. Although we would ideally like to obtain a set of recursion relations

purely involving the exchanged operators {[∆, ℓ], [∆, ℓ − 1], [∆, ℓ − 2]} and {[∆′, ℓ′], [∆′, ℓ′ −

1], [∆′, ℓ′ −2]}, we find that, unlike in the 4-point case, this is not possible with the current

approach. The reason is that the right-hand sides of relations eq. (4.60) and eq. (4.59) are

identical to those of eq. (4.53) and eq. (4.54), respectively. In contrast, in the case of the

4-point blocks, the symmetry relations that arise from separately interchanging 1 ↔ 2 and

3 ↔ 4 are necessarily distinct. In particular, the respective block contributions feature

different coefficients. However, this is no longer true in the five-point case for the set of
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recursion relations eq. (4.53) and eq. (4.54). For example, the r.h.s. of eq. (4.53) is invariant

under the interchange of 4 ↔ 5, since as mentioned, its coefficients are independent of ∆45.

Ultimately, we find that the simplest form for the first recursion relation eq. (4.53) is

as follows:

G
(nIJ )
(ℓ,ℓ′;0,0) =

(∆+ℓ−1)(∆+ℓ)(d−∆−∆12+ℓ−1)

∆12 (∆−∆12+ℓ−1)(∆′+∆−∆3+2nIJ −ℓ′+ℓ−1)

×

[

u
−1/2
1 G

(nIJ )
(ℓ−1,ℓ′;0,0)(∆12+1,∆3+1,∆45)

+
(∆−∆12+ℓ−1)(d−∆+∆12+ℓ−1)

(∆+∆12+ℓ−1)(d−∆−∆12+ℓ−1)
u

−1/2
1 w−1

3;4G
(nIJ )
(ℓ−1,ℓ′;0,0)(∆12−1,∆3+1,∆45)

−
2(∆+ℓ−1)(d−∆+ℓ−1)−2∆2

12

(∆+∆12+ℓ−1)(d−∆−∆12+ℓ−1)
G

(nIJ )
(ℓ−1,ℓ′;−1,0)

+
∆12 (∆−∆12+ℓ−1)(ℓ′−nIJ)

(∆+ℓ−1)(∆+ℓ)(d−∆−∆12+ℓ−1)
G

(nIJ +1)
(ℓ,ℓ′;0,0)

−
∆12nIJ (d+2nIJ −4)(d−∆+∆12+ℓ−1)(2d−∆′−∆+∆3−2nIJ +ℓ′+3ℓ−3)

(d+2ℓ−4)(d+2ℓ−2)(∆+∆12+ℓ−1)(d−∆+ℓ−2)(d−∆+ℓ−1)
G

(nIJ −1)
(ℓ−2,ℓ′;0,0)

+
∆12 (ℓ−nIJ)(d−∆+∆12+ℓ−1)

(d+2ℓ−4)(d+2ℓ−2)(∆+∆12+ℓ−1)(d−∆+ℓ−2)(d−∆+ℓ−1)

×

(

d2+d
(

−∆′−∆+∆3+nIJ +2ℓ−4
)

+3
(

∆′+∆−∆3+1
)

−nIJ

(

∆′+∆−∆3+4nIJ −3ℓ′+1
)

−ℓ
(

∆′+∆−∆3−3nIJ +ℓ′−ℓ+4
)

+ℓ′
)

G
(nIJ )
(ℓ−2,ℓ′;0,0)

+
∆12 (d−∆+∆12+ℓ−1)(−nIJ +ℓ−1)(ℓ−nIJ)(nIJ −ℓ′)

(d+2ℓ−4)(d+2ℓ−2)(∆+∆12+ℓ−1)(d−∆+ℓ−2)(d−∆+ℓ−1)
G

(nIJ +1)
(ℓ−2,ℓ′;0,0)

]

. (4.76)

We may then make the replacements ∆ ↔ ∆′, ℓ ↔ ℓ′, ∆12 → −∆45 as well as u1 → u2 and

w3;4 → w2;3, inside this result to obtain the corresponding form for the second relation,

which holds the spin ℓ fixed while varying ℓ′.

In the following subsection, we derive a different recursion relation for the symmetric

traceless five-point blocks G
(nIJ )
∆,ℓ,∆′,ℓ′(ui). As we will see, this relation involves blocks with

shifted external dimensions ∆1 and ∆5 only, while ∆3 is held fixed. This feature makes it

possible to analyze the “natural” 4-point limit ∆3 → 0 in the context of such a relation.

4.2.3 Recursion relations at fixed ∆3

We may proceed to write down an alternative recursion relation which holds ∆3 fixed as

follows. We consider acting on the 5-point function with the combination of operators

(D
(−0)
X1

· D
(−0)
X5

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

. (4.77)

The calculations are identical to the above analysis through eq. (4.22). We subsequently

use the crossing relation for 3-point structures to move the operators D
(b)A
XI

in each of the
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middle 3-point structures D
(b)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(a) onto the O∆′,ℓ′(XJ) via

D
(b)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(a)

=
∑

m,n

{

O′
∆′,ℓ′ Φ∆3

O′
∆′−δ∆n,ℓ′−δℓn

O∆+δ∆b,ℓ+δℓb
V O∆,ℓ

}(a)(b)

(m)(n)

× D
(n)
XJ

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3

(X3)O′
∆′−δ∆n,ℓ′−δℓn

(XJ)〉(m) . (4.78)

Upon expanding the n sum and labeling the structures using the box tensor basis, we

obtain

D
(b)A
XI

〈O∆,ℓ(XI)Φ∆3
(X3)O′

∆′,ℓ′(XJ)〉(nIJ )

=

min(ℓ+δℓb,ℓ′)
∑

mIJ =0

E
nIJ (b)
mIJ (+0)D

(+0)A
XJ

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3

(X3)O′
∆′−1,ℓ′(XJ)〉(mIJ )

+

min(ℓ+δℓb,ℓ′+1)
∑

mIJ =0

E
nIJ (b)
mIJ (0−)D

(0−)A
XJ

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3

(X3)O′
∆′,ℓ′+1(XJ)〉(mIJ )

+

min(ℓ+δℓb,ℓ′−1)
∑

mIJ =0

E
nIJ (b)
mIJ (0+)D

(0+)A
XJ

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3

(X3)O′
∆′,ℓ′−1(XJ)〉(mIJ )

+

min(ℓ+δℓb,ℓ′)
∑

mIJ =0

E
nIJ (b)
mIJ (−0)D

(−0)A
XJ

〈O∆+δ∆b,ℓ+δℓb
(XI)Φ∆3

(X3)O′
∆′+1,ℓ′(XJ)〉(mIJ ) , (4.79)

where the E coefficients label the relevant 3-point 6j symbols.

The next step is to integrate by parts using the rule eq. (3.32) in order to move the

D
(c)A
XJ

onto the rightmost 3-point structure exactly as before. Once we collect the entire

resulting expression, we reach the following result:

G
(nIJ +1)
(ℓ,ℓ′;0,0) =

1

s
(0+)
2nIJ +1

(

f̃(ui)G
(nIJ )
(ℓ−1,ℓ′−1;0,0)

∣

∣

∣

∣

∆1→∆1+1,∆5→∆5+1

−

[

G
(nIJ )
(ℓ−1,ℓ′−1;−1,−1)

+
nIJ +1
∑

mIJ =nIJ

r
(−0)
1mIJ

G
(mIJ )
(ℓ−1,ℓ′;−1,0)+

nIJ +1
∑

mIJ =nIJ −1

r
(−0)
2mIJ

G
(mIJ )
(ℓ−1,ℓ′−2;−1,0)+

nIJ +2
∑

mIJ =nIJ −1

r
(−0)
3mIJ

G
(mIJ )
(ℓ−1,ℓ′−1;−1,1)

+
nIJ +1
∑

mIJ =nIJ

s
(0+)
1mIJ

G
(mIJ )
(ℓ,ℓ′−1;0,−1)+s

(0+)
2nIJ

G
(nIJ )
(ℓ,ℓ′;0,0)+s

(0+)
2nIJ +2G

(nIJ +2)
(ℓ,ℓ′;0,0)+

nIJ +2
∑

mIJ =nIJ −1

s
(0+)
3mIJ

G
(mIJ )
(ℓ,ℓ′−2;0,0)

+
nIJ +3
∑

mIJ =nIJ −1

s
(0+)
4mIJ

G
(mIJ )
(ℓ,ℓ′−1;0,1)+

nIJ +1
∑

mIJ =nIJ −1

t
(0−)
1mIJ

G
(mIJ )
(ℓ−2,ℓ′−1;0,−1)+

nIJ +2
∑

mIJ =nIJ −1

t
(0−)
2mIJ

G
(mIJ )
(ℓ−2,ℓ′;0,0)

+
nIJ +2
∑

mIJ =nIJ −2

t
(0−)
3mIJ

G
(mIJ )
(ℓ−2,ℓ′−2;0,0)+

nIJ +2
∑

mIJ =nIJ −2

t
(0−)
4mIJ

G
(mIJ )
(ℓ−2,ℓ′−1;0,1)+

nIJ +2
∑

mIJ =nIJ −1

u
(+0)
1mIJ

G
(mIJ )
(ℓ−1,ℓ′−1;1,−1)

+
nIJ +3
∑

mIJ =nIJ −1

u
(+0)
2mIJ

G
(mIJ )
(ℓ−1,ℓ′;1,0)+

nIJ +3
∑

mIJ =nIJ −2

u
(+0)
3mIJ

G
(mIJ )
(ℓ−1,ℓ′−2;1,0)+

nIJ +4
∑

mIJ =nIJ −2

u
(+0)
4mIJ

G
(mIJ )
(ℓ−1,ℓ′−1;1,1)

])

,

(4.80)
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where f̃(ui) is again a convention-dependent prefactor. Here both spins vary simultane-

ously, while ∆3 is held fixed.

For the set of conventions eq. (2.10)–eq. (2.11), this prefactor is given by

f̃(ui) = (u1u2)−1/2 , (4.81)

while for the set eq. (2.12)–eq. (2.13), we have

f̃(ui) = w′(u′
1u′

2)−1/2 . (4.82)

Lastly, for the set eq. (2.14)–eq. (2.15), we find

f̃(ui) = 1. (4.83)

In contrast to the previous set of relations eq. (4.38) and eq. (4.39), this recursion

relation treats the spins ℓ and ℓ′ on an equal footing, allowing both of them to shift. The

coefficients appearing in this recursion relation are somewhat cumbersome, but they are

all given explicitly in a supplementary Mathematica file attached to this paper.

As we did previously, we may combine eq. (4.80) with the symmetry relations

eq. (4.45)–eq. (4.46) to construct a set of similar equations with different shifts. We write

these explicitly in appendix C.

In the next subsection, we perform several checks in order to verify that these relations

collapse to the expected forms in various 4-point limits.

4.2.4 Checks: 4-point limits

Due to the symmetry of the 5-point function under the interchanges 1 ↔ 2 and 4 ↔ 5, we

expect that there are only three independent four-point limits to consider. In particular,

we first check the simple cases of φ∆2
→ 1 (∆2 → 0, X2 → X3) and φ∆4

→ 1 (∆4 →

0, X4 → X3). Further, we seek to analyze the “natural” 4-point function limit Φ∆3
→ 1

(so that ∆3 → 0, X3 → X4). However, since the relations eq. (4.38) and eq. (4.39) both

involve 5-point blocks with shifted dimension ∆3 in one of the terms, taking this limit is

less natural in the context of these relations. On the other hand, it is straightforward to

apply it to eq. (4.80).

We begin by considering the case φ∆2
→ 1:

lim
φ∆2

→1,X2→X3

〈φ∆1
(X1)φ∆2

(X2)Φ∆3
(X3)φ∆4

(X4)φ∆5
(X5)〉 = 〈φ∆1

(X1)Φ∆3
(X3)φ∆4

(X4)φ∆5
(X5)〉 .

(4.84)

To directly derive the recursion relation for the 4-point function 〈φ∆1
(X1)Φ∆3

(X3)φ∆4
(X4)

φ∆5
(X5)〉, we simply act on the correlator with the combination D

(−0)
X3

· D
(−0)
X5

(at positions

2 and 4). This leads to the result

G∆,ℓ(u, v) =
1

s(24)

(

u−1/2G∆,ℓ−1(u, v)

∣

∣

∣

∣

∆3→∆3+1,∆5→∆5+1

− G∆−1,ℓ−1(u, v)

−t(24)G∆,ℓ−2(u, v) − u(24)G∆+1,ℓ−1(u, v)

)

, (4.85)
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where we make the replacements X2 → X3, X3 → X4, X4 → X5 in u and v. Explicitly, in

this case, we have that

u →
X13X45

X14X35
, v →

X15X34

X14X35
. (4.86)

It is straightforward to extract the respective coefficients. It turns out that these are related

to the coefficients eq. (4.6) from the standard relation eq. (4.5) in the following way:

s(24) = −

(

s(14)

∣

∣

∣

∣

∆12→−∆12

)∣

∣

∣

∣

∆2→∆3,∆3→∆4,∆4→∆5

, (4.87)

t(24) = −

(

t(14)

∣

∣

∣

∣

∆12→−∆12

)∣

∣

∣

∣

∆2→∆3,∆3→∆4,∆4→∆5

, (4.88)

u(24) =

(

u(14)

∣

∣

∣

∣

∆12→−∆12

)∣

∣

∣

∣

∆2→∆3,∆3→∆4,∆4→∆5

. (4.89)

Equipped with this result, we next demonstrate explicitly that the 5-point recursion rela-

tions eq. (4.38) and eq. (4.39) indeed reduce to this form in the appropriate limit. We will

take φ∆2
→ 1 and O∆,ℓ → φ∆1

in our 4-point limit of interest so that we should also take

∆2 → 0, ∆ → ∆1, ℓ → 0, and nIJ → 0.

Upon fixing nIJ = 0 and ℓ = 0, we find that eq. (4.38) is irrelevant, as ℓ = 0 already,

while eq. (4.39) assumes the form

G
(0)
(0,ℓ′;0,0) =

1

s′
0

(

u
−1/2
2 G

(0)
(0,ℓ′−1;0,0)(u2, w3;4)

∣

∣

∣

∣

∆3→∆3+1,∆5→∆5+1

− G
(0)
(0,ℓ′−1;0,−1)(u2, w3;4)

− t′
0G

(0)
(0,ℓ′−2;0,0)(u2, w3;4) − u′

0G
(0)
(0,ℓ′−1;0,1)(u2, w3;4)

)

, (4.90)

where we have fixed the choice of conventions to eq. (2.10)–eq. (2.11).

We may now directly compare the two relations eq. (4.85) and eq. (4.90) and conclude

that they do in fact match. Further, upon checking the respective coefficients, we may

readily verify that

s′
0 = s(24), t′

0 = t(24), u′
0 = u(24) , (4.91)

after setting nIJ = 0, ∆2 = 0, ∆ = ∆1, ℓ = 0.

Here each of the contributions G
(0)
(0,ℓ′;0,0) corresponds to a 4-point block. With this,

we have shown directly that the 5-point recursion relations indeed reduce to the 4-point

relation eq. (4.85) in the limit φ∆2
→ 1.

One may examine the case of φ∆4
→ 1 in the exact same manner. This time, we

consider the limit

lim
φ∆4

→1,X4→X3

〈φ∆1
(X1)φ∆2

(X2)Φ∆3
(X3)φ∆4

(X4)φ5(X5)〉 = 〈φ∆1
(X1)φ∆2

(X2)Φ∆3
(X3)φ5(X5)〉 .

(4.92)
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Here the associated recursion relation is directly extracted by acting with D
(−0)
X1

· D
(−0)
X3

. It

is effortless to obtain

G∆,ℓ(u, v) =
1

s(13)

(

u−1/2G∆,ℓ−1(u, v)

∣

∣

∣

∣

∆1→∆1+1,∆3→∆3+1

− G∆−1,ℓ−1(u, v)

−t(13)G∆,ℓ−2(u, v) − u(13)G∆+1,ℓ−1(u, v)

)

, (4.93)

where we replace X4 → X5 inside u and v. In particular, we have

u →
X12X35

X13X25
, v →

X15X23

X13X25
. (4.94)

Here the coefficients are given by

s(13) = −

(

s(14)

∣

∣

∣

∣

∆34→−∆34

)∣

∣

∣

∣

∆4→∆5

, (4.95)

t(13) = −

(

t(14)

∣

∣

∣

∣

∆34→−∆34

)∣

∣

∣

∣

∆4→∆5

, (4.96)

u(13) =

(

u(14)

∣

∣

∣

∣

∆34→−∆34

)∣

∣

∣

∣

∆4→∆5

. (4.97)

Turning to the 5-point relations, we note that we now have φ∆4
→ 1 and O′

∆′,ℓ′ → φ∆5
so

that ∆4 → 0, ∆′ → ∆5, ℓ′ → 0, and nIJ → 0. Taking X4 → X3 inside the cross-ratios, we

find that this time eq. (4.39) is irrelevant, while eq. (4.38) takes on the form

G
(0)
(ℓ,0;0,0) =

1

s0

(

u
−1/2
1 G

(0)
(ℓ−1,0;0,0)(u1, w2;3)

∣

∣

∣

∣

∆1→∆1+1,∆3→∆3+1

− G
(0)
(ℓ−1,0;−1,0)(u1, w2;3)

− t0G
(0)
(ℓ−2,0;0,0)(u1, w2;3) − u0G

(0)
(ℓ−1,0;1,0)(u1, w2;3)

)

, (4.98)

where we have again chosen the conventions eq. (2.10)–eq. (2.11). It is straightforward to

see that the form of the two relations eq. (4.93) and eq. (4.98) is identical. Upon matching

coefficients, we find that indeed

s0 = s(13), t0 = t(13), u0 = u(13), (4.99)

as expected and desired. Once again, we see that our 5-point result in fact reduces to the

appropriate 4-point relation in this limit.

Lastly, we wish to check that the alternate recursion relation eq. (4.80) reproduces the

original 4-point relation due to Dolan and Osborn, namely eq. (4.5) for the 4-point function

〈φ∆1
φ∆2

φ∆4
φ∆5

〉 in the limit Φ∆3
→ 1. That is, we expect that

lim
Φ∆3

→1,X3→X2

〈φ∆1
(X1)φ∆2

(X2)Φ∆3
(X3)φ∆4

(X4)φ∆5
(X5)〉 = 〈φ∆1

(X1)φ∆2
(X2)φ∆4

(X4)φ∆5
(X5)〉 .

(4.100)
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In particular, we expect to verify that the five-point relation reduces to

G∆,ℓ(u, v) =
1

s(15)

(

u−1/2G∆,ℓ−1(u, v)

∣

∣

∣

∣

∆1→∆1+1,∆5→∆5+1

− G∆−1,ℓ−1(u, v)

−t(15)G∆,ℓ−2(u, v) − u(15)G∆+1,ℓ−1(u, v)

)

, (4.101)

where the coefficients are given by

s(15) = s(14)

∣

∣

∣

∣

∆3→∆4,∆4→∆5

, (4.102)

t(15) = t(14)

∣

∣

∣

∣

∆3→∆4,∆4→∆5

, (4.103)

u(15) = u(14)

∣

∣

∣

∣

∆3→∆4,∆4→∆5

. (4.104)

Further, we make the replacements X3 → X4, X4 → X5 inside u and v. In particular,

we have

u →
X12X45

X14X25
, v →

X15X24

X14X25
. (4.105)

We next note that in the 4-point function limit Φ∆3
→ 1, we have X3 → X2 and ∆3 = 0,

while the exchanged operators coincide, i.e. ∆′ = ∆, ℓ′ = ℓ, and nIJ = ℓ. With this, the

original recursion relation eq. (4.80) reduces to

G
(ℓ+1)
(ℓ,ℓ;0,0) =

1

s
(0+)
2 ℓ+1

(

(u1u2)−1/2G
(ℓ)
(ℓ−1,ℓ−1;0,0)

∣

∣

∣

∣

∆1→∆1+1,∆5→∆5+1

(u1u2, w2;4)

− G
(ℓ)
(ℓ−1,ℓ−1;−1,−1)(u1u2, w2;4) − t

(0−)
3 ℓ−1G

(ℓ−1)
(ℓ−2,ℓ−2;0,0)(u1u2, w2;4)

− u
(+0)
4 ℓ G

(ℓ)
(ℓ−1,ℓ−1;1,1)(u1u2, w2;4)

)

, (4.106)

where we have yet again fixed the conventions to eq. (2.10)–eq. (2.11). Once again, a

direct comparison between the forms of eq. (4.101) and eq. (4.106) reveals a perfect match.

Specifically, we verify that

s
(0+)
2 ℓ+1 = s(15) , t

(0−)
3 ℓ−1 = t(15) , u

(+0)
4 ℓ = u(15) . (4.107)

The above checks help establish the validity of the recursion relations eq. (4.38), eq. (4.39),

and eq. (4.80). We have also checked that the five-point blocks obtained by means of

these relations indeed reduce to the appropriate four-point blocks in these various four-

point limits.

In the next section, we will apply the results eq. (4.38) and eq. (4.39) to determine

the 5-point conformal blocks for various cases of interest involving exchanged conserved

operators.
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4.3 Exchange of conserved operators

Our next objective is to analyze the situation of exchanged conserved operators in the

scalar 5-point function. Before examining the 5-point blocks in this context, we first recall

some essential features of the treatment of conserved operators in the embedding space

formalism.

It is well known that in unitary conformal field theories, the scaling dimensions of

spin-ℓ primary operators respect the unitarity bound

∆ ≥ ℓ + d − 2 (ℓ ≥ 1) . (4.108)

If ∆ saturates this d-dimensional bound for a given ℓ, i.e. ∆ = ℓ + d − 2, the corresponding

operator is a conserved spin-ℓ primary. Prominent examples of conserved operators include

the energy-momentum tensor (spin-2) and global symmetry currents (spin-1). In these

cases, imposing the conservation condition serves to restrict the form of three- and higher-

point functions beyond the constraints from conformal symmetry alone. The corresponding

unitarity bound for scalars is

∆ ≥ (d − 2)/2 . (4.109)

However, there is little motivation for analyzing the case of conserved scalars, since this

bound is saturated exclusively by free fields.

A convenient consequence of the OPE is that requiring the satisfaction of the full set of

3-point function conservation conditions guarantees the automatic conservation of higher-

point functions. It is therefore sufficient to impose such constraints just at the level of the

3-point functions. Demanding operator conservation has the consequence that some 3-point

coefficients λa in the sum eq. (3.11) are correlated with each other. Such relations among

the coefficients imply that particular elementary structures that are a priori independent

ultimately get merged into single overall structures. Subsequently, we convert the resulting

constraints into relations among the corresponding structures inside the conformal block

decomposition.

It was shown in [41] how the conservation conditions could be fruitfully analyzed in the

context of the index-free embedding space formalism. Let us assume that the conserved

operator in question is at position Xi (with i = 1, 2, or 3) inside the 3-point function

〈Φ1(X1; Z1)Φ2(X2; Z2)Φ3(X3; Z3)〉. We define the divergence operator

∂Xi
· D ≡

∂

∂XiA
DA , (4.110)

where DA is the Todorov operator [60, 61]

DA ≡

(

d

2
− 1 + Zi ·

∂

∂Zi

)

∂

∂ZA
i

−
1

2
ZiA

∂2

∂Zi · ∂Zi
. (4.111)

We may readily accommodate the conservation condition by demanding that the action of

the divergence operator ∂Xi
· D on the 3-point function 〈Φ1(X1; Z1)Φ2(X2; Z2)Φ3(X3; Z3)〉

given by eq. (A.1) yields zero, assuming the presence of a conserved operator at the point
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(Xi; Zi). The conservation condition acts to restrict the possible structures appearing in a

given 3-point function. These types of constraints were investigated in some detail in the

embedding space setting in [41, 42, 62].

We expect these constraints to imply that the constituent blocks in the complete

linear combination of 5-point blocks are not all independent. A priori, the full contribution

of the 5-point blocks for some particular values of (∆, ℓ, ∆′, ℓ′) may be expressed in the

following way:

min(ℓ,ℓ′)
∑

nIJ =0

αnIJ
W

(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

, (4.112)

where W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

(Xi) ∝ G
(nIJ )
∆,ℓ,∆′,ℓ′(ui). Now, if we suppose that one of the

exchanged operators is conserved, then there would be relations among the parameters

αnIJ
, which would force some of these block structures to merge.

With this in mind, we now turn to the 5-point conformal blocks G
(a)
∆,ℓ,∆′,ℓ′(ui). We

consider the constituent 3-point correlator 〈O∆,ℓΦ∆3
O′

∆′,ℓ′〉 and study various cases of

interest. In particular, we take the exchanged operators (O∆,ℓ, O′
∆′,ℓ′) to belong to the set

{(φ, va), (φ, T ab), (va, vb), (va, T bc), (T ab, T cd)}, where φ, va, and T ab represent scalars, spin-

1 currents, and spin-2 tensors, respectively. In our analysis of these cases, we suppose that

either one or both of the exchanged operators are conserved. In the examples below, we’ll

focus exclusively on parity-even structures and we’ll adopt the notation Q(ℓ,0,ℓ′)(Xi; Zi) for

the 3-point functions in contracted form.

As a first example, let us begin by examining the case where both O∆,ℓ and O′
∆′,ℓ′ are

spin-1 currents so that ℓ = 1, ℓ′ = 1. For simplicity, we consider the symmetric situation,

assuming that the currents are identical. Prior to imposing conservation, we expect to find

two independent structures appearing in the 3-point function 〈va(X1)Φ∆3
(X2)vb(X3)〉. In

particular, we have the two constituent 3-point structures {V1V3, H13}. With this, the

embedding space 3-point function in contracted form is given by

Q(1,0,1)(X1, X2, X3; Z1, Z3) =
αV1V3 + βH13

(X12)
1
2 (∆+∆3−∆′)(X13)

1
2 (∆+∆′−∆3+2)(X23)

1
2 (∆3+∆′−∆)

,

(4.113)

where α and β are a priori independent coefficients. Hereupon we impose conservation,

assuming that both spin-1 currents are conserved so that ∆ = d − 1, ∆′ = d − 1.

By symmetry, it is sufficient to impose conservation at X1. Acting with the divergence

operator eq. (4.110) on the 3-point function eq. (4.113), one obtains

(∂X1 · DZ1)Q(1,0,1)(X1, X2, X3; Z1, Z3)

→

(

d

2
− 1

)

(α(d − 1 − ∆3) + β∆3)
V3

(X12)
∆3
2 (X13)d−

∆3
2 (X23)

∆3
2

. (4.114)

After requiring current conservation, namely,

(∂X1 · DZ1)Q(1,0,1)(X1, X2, X3; Z1, Z3) = 0 , (4.115)
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it transpires that α and β must be related to each other in the following way:

α(d − 1 − ∆3) + β∆3 = 0 ⇒ β = −
(d − 1 − ∆3)

∆3
α . (4.116)

At this point, we are left with the single structure

Q(1,0,1)(X1, X2, X3; Z1, Z3) =

α

(

V1V3 −
(d − 1 − ∆3)

∆3
H13

)

(X12)
∆3
2 (X13)d−

∆3
2 (X23)

∆3
2

, (4.117)

so that the number of independent structures drops from two to one. The two allowed

structures {V1V3, H13} still both appear, but they are no longer independent. Rather, they

merge into one overall structure. If only one of the spin-1 operators is conserved, say

O∆,1 = Od−1,1, the result is the same, but in this case O∆′,1 carries an unrestricted value

of the scaling dimension ∆′, up to the unitarity bound. It is apparent from this example

how the conservation condition can be directly implemented in the embedding space.

The relation eq. (4.116) thus serves to restrict the form of the 5-point conformal block

for (ℓ, ℓ′) = (1, 1) exchange to

1
∑

nIJ =0

αnIJ
W

(nIJ )
∆,1,∆′,1;∆1,∆2,∆3,∆4,∆5

(Xi) =

α0

(

W
(0)
d−1,1,d−1,1;∆1,∆1,∆3,∆4,∆4

(Xi)−
(d − 1 − ∆3)

∆3
W

(1)
d−1,1,d−1,1;∆1,∆1,∆3,∆4,∆4

(Xi)

)

,

(4.118)

where, for convenience we have written our expression in terms of W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

(Xi).

Moreover, note that we must have ∆1 = ∆2, ∆4 = ∆5 due to the Ward identity constraints

on 〈φ∆1
φ∆2

va〉 and 〈vbφ∆4
φ∆5

〉.

Next, we consider the case ℓ = 0, ℓ′ = 1, which gives us a (scalar)-(scalar)-(vector)

3-point function 〈φ(X1)Φ∆3
(X2)vb(X3)〉. Clearly, there is only a single allowed structure,

namely V3. In particular, we have (in contracted form)

Q(0,0,1)(X1, X2, X3; Z3) =
αV3

(X12)
1
2

(∆+∆3−∆′−1)(X13)
1
2

(∆+∆′−∆3+1)(X23)
1
2

(∆3+∆′−∆+1)
.

(4.119)

Assuming that the vector is a conserved current then constrains ∆′ = d − 1, ∆3 = ∆, and

∆4 = ∆5. In particular, imposing the conservation of φ forces the dimension of the middle

operator Φ to match that of φ due to the Ward identity constraint on 〈φΦ∆3
vb〉. The block

is then restricted to the form

α0W
(0)
∆,0,d−1,1;∆1,∆2,∆,∆4,∆4

(Xi) . (4.120)

Next, we turn to the case of a (scalar)-(scalar)-(tensor) 3-point function 〈φ(X1)Φ∆3
(X2)

T ab(X3)〉, with ℓ = 0, ℓ′ = 2. This time, we have the unique structure

Q(0,0,2)(X1, X2, X3; Z3) =
αV 2

3

(X12)
1
2

(∆+∆3−∆′−2)(X13)
1
2

(∆+∆′−∆3+2)(X23)
1
2

(∆3+∆′−∆+2)
.

(4.121)
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If we demand that the tensor is conserved, we require that ∆′ = d. In addition, Ward iden-

tity constraints ensure that ∆3 = ∆ and ∆4 = ∆5. The allowed block then takes the form

α0W
(0)
∆,0,d,2;∆1,∆2,∆,∆4,∆4

(Xi) . (4.122)

Proceeding to another case of interest, we take ℓ = 1 and ℓ′ = 2. A priori, we find two

independent tensor structures appearing, namely {V1V 2
3 , V3H13}. In particular, we have

the (vector)-(scalar)-(tensor) 3-point function 〈vA(X1)Φ∆3
(X2)T ab(X3)〉, which takes the

contracted form

Q(1,0,2)(X1, X2, X3; Z1, Z3) =
αV1V 2

3 + βV3H13

(X12)
1
2

(∆+∆3−∆′−1)(X13)
1
2

(∆+∆′−∆3+3)(X23)
1
2

(∆3+∆′−∆+1)
.

(4.123)

This time, we find that imposing conservation of the vector va gives ∆ = d−1 and requires

the linear combination

Q(1,0,2)(X1, X2, X3; Z1, Z3) =
α

(X12)
1
2

(d+∆3−∆′−2)(X13)
1
2

(d+∆′−∆3+2)(X23)
1
2

(∆3+∆′−d+2)
×

(

V1V 2
3 +

∆′ − ∆3

∆′ − ∆3 − d
V3H13

)

, (4.124)

which corresponds to the block

1
∑

nIJ =0

αnIJ
W

(nIJ )
∆,1,∆′,2;∆1,∆2,∆3,∆4,∆5

(Xi) =

α0

(

W
(0)
d−1,1∆′,2;∆1,∆1,∆3,∆4,∆4

(Xi) +
∆′ − ∆3

∆′ − ∆3 − d
W

(1)
d−1,1,∆′,2;∆1,∆1,∆3,∆4,∆4

(Xi)

)

.

(4.125)

On the other hand, demanding that the tensor T ab is conserved fixes ∆′ = d and yields

Q(1,0,2)(X1, X2, X3; Z1, Z3) =
1

(X12)
1
2

(∆+∆3−d−1)(X13)
1
2

(∆−∆3+d+3)(X23)
1
2

(∆3−∆+d+1)
×

α

(

V1V 2
3 +

2((d − 1)(∆ − ∆3) + 1)

(d − 2)(∆ − ∆3 − d − 1)
V3H13

)

, (4.126)

which corresponds to

1
∑

nIJ =0

αnIJ
W

(nIJ )
∆,1,∆′,1;∆1,∆2,∆3,∆4,∆5

(Xi) =

α0

(

W
(0)
∆,1,d,1;∆1,∆1,∆3,∆4,∆4

(Xi)+
2((d−1)(∆−∆3)+1)

(d−2)(∆−∆3 −d−1)
W

(1)
∆,1,d,1;∆1,∆1,∆3,∆4,∆4

(Xi)

)

.

(4.127)

Note that requiring both conservation conditions simultaneously is only possible for the

special values ∆3 = 2 or ∆3 = d − 2.
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Finally, we consider the nontrivial special case of ℓ = 2, ℓ′ = 2, namely 〈T abΦ∆3
T cd〉.

Here O∆,ℓ and O′
∆′,ℓ′ are both spin-2 tensors so that there are three independent tensor

structures to begin with. In particular, we have {V 2
1 V 2

3 , H13V1V3, H2
13}, as these are the

only allowed structures that are symmetric under the exchange of {X1, Z1}, {X3, Z3}. In

this case, imposing conservation at X1 (again, this is sufficient, by symmetry) results in

the reduction of the three independent structures to just one, namely

Q(2,0,2)(X1,X2,X3;Z1,Z3) =
α

(d−2)(∆3+2)

1

(X12)
∆3
2 (X13)(d+2−

∆3
2

)(X23)
∆3
2

×

(

V 2
1 V 2

3 −2(∆3+2+d(d−(∆3+1)))H13V1V3+

(

(d−1)(∆3−2d)+
d(d−2)(d+1)

∆3

)

H2
13

)

,

(4.128)

where we have fixed ∆ = d and ∆′ = d. Again, if only one of these is conserved, then

the scaling dimension of the other is arbitrary (up to unitarity), but the final form of the

3-point function is the same. With both operators conserved, we obtain the block

2
∑

nIJ =0

αnIJ
W

(nIJ )
d,2;d,2;∆1,∆1,∆3,∆4,∆4

=

α0

[

W
(0)
d,2;d,2;∆1,∆1,∆3,∆4,∆4

−
2 (∆3 + 2 + d(d − (∆3 + 1)))

(∆3 + 2)(d − 2)
W

(1)
d,2;d,2;∆1,∆1,∆3,∆4,∆4

+
((d − 1)∆3(∆3 − 2d) + d(d − 2)(d + 1))

∆3(∆3 + 2)(d − 2)
W

(2)
d,2;d,2;∆1,∆1,∆3,∆4,∆4

]

. (4.129)

In the following two sections, we consider promoting the middle external operator Φ

in our 5-point function to a spin-1 or a spin-2 operator, respectively. This will allow us to

obtain conformal blocks for arbitrary symmetric traceless tensor exchange in the correlators

〈φ∆1
(X1)φ∆2

(X2)vA(X3)φ∆4
(X4)φ∆5

(X5)〉 and 〈φ∆1
(X1)φ∆2

(X2)T AB(X3)φ∆4
(X4)φ∆5

(X5)〉,

where vA and T AB each carries some dimension ∆3 a priori. Throughout, we restrict our

attention to parity-even correlators which exist in generic dimensions.

4.4 Promoting Φ to a vector operator

We first undertake the case of the promotion of Φ∆3
to a vector operator. Our intention is

to cast the result for (O∆,ℓ, O′
∆′,ℓ′) exchange in this block exclusively in terms of seed blocks

we already know, namely those appearing in the scalar 5-point function. In particular, we

will write the resulting blocks in terms of a linear combination of some weight-shifting

operators acting on the symmetric traceless exchange blocks appearing in scalar 5-point

functions with shifted quantum numbers. That is, we expect to cast the final result in a

differential basis.

We recall our definition of the 5-point symmetric traceless exchange conformal block,

namely

G
(nIJ )
∆,ℓ,∆′,ℓ′(ui) ∝ W

(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

(Xi)

= 〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ 〈O∆,ℓΦ∆3
(X3)O′

∆′,ℓ′〉(nIJ ) ⊲⊳ 〈O′
∆′,ℓ′φ∆4

(X4)φ∆5
(X5)〉,

(4.130)
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where G
(nIJ )
∆,ℓ,∆′,ℓ′(ui) and W

(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

(Xi) are related by a 5-point external

leg factor.

If we promote the middle scalar Φ∆3
to a vector operator vA, we will take

〈O∆,ℓ(X1)Φ∆3
(X2)O′

∆′,ℓ′(X3)〉 → 〈O∆,ℓ(X1)vA(X2)O′
∆′,ℓ′(X3)〉 , (4.131)

where, for convenience, we have taken the positions of O∆,ℓ, Φ∆3
, and O′

∆′,ℓ′ to be X1, X2,

and X3, respectively.

This tells us that we need to map a (spin)-(scalar)-(spin) 3-point function to a (spin)-

(vector)-(spin) one. There are three distinct classes of constituent 3-point tensor structures

in this case. In particular, our basis of allowed structures is

Q(ℓ,1,ℓ′)(X1, X2, X3; Z1, Z2, Z3) =
3
∑

i=1

λi,nIJ
Q

(i,nIJ )
(ℓ,1,ℓ′) , (4.132)

where nIJ is a parameter that enumerates the various tensor structures, with

Q
(i,nIJ )
(ℓ,1,ℓ′) =

q
(i,nIJ )
(ℓ,1,ℓ′)

(X12)
1
2 (∆+∆3−∆′+ℓ−ℓ′+1)(X13)

1
2 (∆−∆3+∆′+ℓ+ℓ′−1)(X23)

1
2 (−∆+∆3+∆′−ℓ+ℓ′+1)

,

(4.133)

where the structures q
(i,nIJ )
(ℓ,1,ℓ′) are given by

q
(1,nIJ )
(ℓ,1,ℓ′) = V ℓ−nIJ

1 V2V ℓ′−nIJ
3 HnIJ

13 ,

q
(2,nIJ )
(ℓ,1,ℓ′) = V ℓ−nIJ

1 V
(ℓ′−1)−nIJ

3 HnIJ
13 H23 ,

q
(3,nIJ )
(ℓ,1,ℓ′) = V

(ℓ−1)−nIJ

1 V ℓ′−nIJ
3 H12HnIJ

13 . (4.134)

We remark that the structures q
(1,nIJ )
(ℓ,1,ℓ′) , q

(2,nIJ )
(ℓ,1,ℓ′) , and q

(3,nIJ )
(ℓ,1,ℓ′) exist for nIJ ∈ [0, min(ℓ, ℓ′)],

nIJ ∈ [0, min(ℓ, ℓ′ − 1)], and nIJ ∈ [0, min(ℓ − 1, ℓ′)], respectively.

With this, we consider the quantity

W
(V )(i,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

≡ 〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ 〈O∆,ℓv(X3)O′
∆′,ℓ′〉(i,nIJ ) ⊲⊳ 〈O′

∆′,ℓ′φ∆4
(X4)φ∆5

(X5)〉 ,

(4.135)

where we have suppressed indices for brevity. Here i enumerates three classes of 3-point ten-

sor structures for 〈O∆,ℓv(X3)O′
∆′,ℓ′〉 and hence runs over i = 1, 2, 3, while nIJ parametrizes

different possible structures within each class.

We start by expressing the middle 3-point structure for some fixed i in terms of com-

binations of weight-shifting operators acting on 〈O∆,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ ). Since

the spin of the middle operator v = [∆3, 1] is shifted up by 1 with respect to the original
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scalar Φ = [∆3, 0], we may use either one of the combinations

(D
(−0)
XI

· D
(0+)
X3

) or (D
(−0)
XJ

· D
(0+)
X3

) ,

(D
(+0)
XI

· D
(0+)
X3

) or (D
(+0)
XJ

· D
(0+)
X3

) ,

(D
(0−)
XI

· D
(0+)
X3

) or (D
(0−)
XJ

· D
(0+)
X3

) ,

(D
(0+)
XI

· D
(0+)
X3

) or (D
(0+)
XJ

· D
(0+)
X3

) . (4.136)

This list spans all the possible weight-shifting operators for the vector representation given

in eq. (3.2). As these four operators form a differential basis for W = V, we expect to be

able to construct the complete solution purely in terms of these objects. Note that it makes

no difference whether we act with one of the operators of a given combination (D
(m)
X ·D

(n)
X3

)

at X = XI or X = XJ . Both choices give equivalent results.

For example, for X = XI , acting with each of the four independent combinations on

the appropriately shifted 3-point structure, we straightforwardly obtain

(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

= α1Q
(1,nIJ )
(ℓ,1,ℓ′) + β1Q

(2,nIJ )
(ℓ,1,ℓ′) + γ1Q

(3,nIJ )
(ℓ,1,ℓ′) , (4.137)

(D
(0+)
X3

· D
(0+)
XI

)〈O∆,ℓ−1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

= α2Q
(1,nIJ )
(ℓ,1,ℓ′) + α3Q

(1,nIJ +1)
(ℓ,1,ℓ′) + β2Q

(2,nIJ )
(ℓ,1,ℓ′)

+ β3Q
(2,nIJ +1)
(ℓ,1,ℓ′) + γ2Q

(3,nIJ )
(ℓ,1,ℓ′) + γ3Q

(3,nIJ +1)
(ℓ,1,ℓ′) , (4.138)

(D
(0+)
X3

· D
(0−)
XI

)〈O∆,ℓ+1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

= α4Q
(1,nIJ −1)
(ℓ,1,ℓ′) + α5Q

(1,nIJ )
(ℓ,1,ℓ′) + α6Q

(1,nIJ +1)
(ℓ,1,ℓ′)

+ β4Q
(2,nIJ −1)
(ℓ,1,ℓ′) + β5Q

(2,nIJ )
(ℓ,1,ℓ′) + β6Q

(2,nIJ +1)
(ℓ,1,ℓ′)

+ γ4Q
(3,nIJ −1)
(ℓ,1,ℓ′) + γ5Q

(3,nIJ )
(ℓ,1,ℓ′) + γ6Q

(3,nIJ +1)
(ℓ,1,ℓ′) , (4.139)

and

(D
(0+)
X3

· D
(+0)
XI

)〈O∆−1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

= α7Q
(1,nIJ −1)
(ℓ,1,ℓ′) + α8Q

(1,nIJ )
(ℓ,1,ℓ′) + α9Q

(1,nIJ +1)
(ℓ,1,ℓ′) + α10Q

(1,nIJ +2)
(ℓ,1,ℓ′)

+ β7Q
(2,nIJ −1)
(ℓ,1,ℓ′) + β8Q

(2,nIJ )
(ℓ,1,ℓ′) + β9Q

(2,nIJ +1)
(ℓ,1,ℓ′) + β10Q

(2,nIJ +2)
(ℓ,1,ℓ′)

+ γ7Q
(3,nIJ −1)
(ℓ,1,ℓ′) + γ8Q

(3,nIJ )
(ℓ,1,ℓ′) + γ9Q

(3,nIJ +1)
(ℓ,1,ℓ′) + γ10Q

(3,nIJ +2)
(ℓ,1,ℓ′) , (4.140)

where αi, βi, γi are 6j coefficients that are functions of the parameters {∆, ℓ, ∆′, ℓ′, ∆3, nIJ}.

Since there are only three independent 3-point structures, we just need three equations.

For simplicity, we choose to restrict attention to the set eq. (4.137)–eq. (4.139). The

relevant coefficients αj , βj , γj for j = 1, . . . , 6 are listed in appendix D. We may now reuse

these multiple times to generate a system of equations involving Q
(i,nIJ −1)
(ℓ,1,ℓ′) , Q

(i,nIJ )
(ℓ,1,ℓ′) , and

Q
(i,nIJ +1)
(ℓ,1,ℓ′) , where i = 1, 2, 3.
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In particular, we have three equations from eq. (4.137). These feature

Q
(i,nIJ −1)
(ℓ,1,ℓ′) ; Q

(i,nIJ )
(ℓ,1,ℓ′) ; Q

(i,nIJ +1)
(ℓ,1,ℓ′) . (4.141)

Further, from eq. (4.138) we have two equations containing

Q
(i,nIJ −1)
(ℓ,1,ℓ′) , Q

(i,nIJ )
(ℓ,1,ℓ′) ; Q

(i,nIJ )
(ℓ,1,ℓ′) , Q

(i,nIJ +1)
(ℓ,1,ℓ′) . (4.142)

Next, from eq. (4.139), we have just one equation involving

Q
(i,nIJ −1)
(ℓ,1,ℓ′) , Q

(i,nIJ )
(ℓ,1,ℓ′) , Q

(i,nIJ +1)
(ℓ,1,ℓ′) . (4.143)

We note that there are nine 3-point structures appearing here, namely

Q
(i,nIJ −1)
(ℓ,1,ℓ′) , Q

(i,nIJ )
(ℓ,1,ℓ′) , Q

(i,nIJ +1)
(ℓ,1,ℓ′) , i = 1, 2, 3 . (4.144)

To determine the structures of interest, we first apply eq. (4.137) to solve for Q
(1,nIJ )
(ℓ,1,ℓ′) .

We then generate the corresponding relations for Q
(1,nIJ −1)
(ℓ,1,ℓ′) and Q

(1,nIJ +1)
(ℓ,1,ℓ′) . Upon inserting

these relations inside eq. (4.138), many cancellations occur and we are left with an explicit

expression for Q
(3,nIJ )
(ℓ,1,ℓ′) in terms of the structures where Φ is a scalar.

Further, we may then substitute these results inside the last equation, namely

eq. (4.139), which leads to a recursive relation for Q
(2,nIJ )
(ℓ,1,ℓ′) in terms of Q

(2,nIJ +1)
(ℓ,1,ℓ′) , which

terminates at nIJ = min(ℓ, ℓ′ − 1). Thereafter, we may apply this equation to recursively

determine Q
(2,nIJ )
(ℓ,1,ℓ′) .

In particular, we find

Q
(1,nIJ )
(ℓ,1,ℓ′) =

(ℓ′ − nIJ)

∆′ − ∆ + ∆3 − ℓ′ + ℓ − 1
Q

(2,nIJ )
(ℓ,1,ℓ′)

+ a1(D
(0+)
X3

· D
(0+)
XI

)〈O∆,ℓ−1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

+ a2(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ +1)

+ a3(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ ) . (4.145)

Next, we have

Q
(3,nIJ )
(ℓ,1,ℓ′) = c1(D

(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

+ c2(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ +1)

+ c3(D
(0+)
X3

· D
(0+)
XI

)〈O∆,ℓ−1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ ) . (4.146)

– 52 –



J
H
E
P
1
0
(
2
0
2
1
)
1
6
0

Finally, we have

Q
(2,nIJ )
(ℓ,1,ℓ′) =

(nIJ − ℓ) (nIJ − ℓ′ + 1)

(nIJ + 1) (∆′ − ∆ + ∆3 − 2nIJ + ℓ′ + ℓ − 1)
Q

(2,nIJ +1)
(ℓ,1,ℓ′)

+ b1(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ +2)

+ b2(D
(0+)
X3

· D
(0−)
XI

)〈O∆,ℓ+1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ +1)

+ b3(D
(0+)
X3

· D
(0+)
XI

)〈O∆,ℓ−1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

+ b4(D
(0+)
X3

· D
(0+)
XI

)〈O∆,ℓ−1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ +1)

+ b5(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

+ b6(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ +1) . (4.147)

The coefficients in these formulas are all given explicitly in appendix E.

We observe that this is an increasing recursion relation in nIJ for Q
(2,nIJ )
(ℓ,1,ℓ′) . It is evident

that the coefficient of Q
(2,nIJ +1)
(ℓ,1,ℓ′) vanishes identically for nIJ = min(ℓ, ℓ′ − 1). Hence, we

may first determine the form of Q
(2,min(ℓ,ℓ′−1))
(ℓ,1,ℓ′) and then apply eq. (4.147) to extract the

remaining structures Q
(2,nIJ )
(ℓ,1,ℓ′) for 0 ≤ nIJ < min(ℓ, ℓ′ − 1).

At this stage, we have expressed each of Q
(1,nIJ )
(ℓ,1,ℓ′) , Q

(2,nIJ )
(ℓ,1,ℓ′) , and Q

(3,nIJ )
(ℓ,1,ℓ′) in terms of the

structures

(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ ) ,

(D
(0+)
X3

· D
(0+)
XI

)〈O∆,ℓ−1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ ) ,

(D
(0+)
X3

· D
(0−)
XI

)〈O∆,ℓ+1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ ) . (4.148)

We next remark that we may invoke the integration-by-parts rule eq. (3.32) to rewrite

each of these as

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ (D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

= C(−0)(+0)D
(0+)
X3 A〈φ∆1

(X1)φ∆2
(X2)D

(+0)A
XI

O∆,ℓ(XI)〉 ⊲⊳ 〈O∆+1,ℓΦ∆3
(X3)O∆′,ℓ′〉(nIJ ) ,

(4.149)

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ (D
(0+)
X3

· D
(0+)
XI

)〈O∆,ℓ−1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

= C(0+)(0−)D
(0+)
X3 A〈φ∆1

(X1)φ∆2
(X2)D

(0−)A
XI

O∆,ℓ(XI)〉 ⊲⊳ 〈O∆,ℓ−1Φ∆3
(X3)O∆′,ℓ′〉(nIJ ) ,

(4.150)

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ (D
(0+)
X3

· D
(0−)
XI

)〈O∆,ℓ+1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

= C(0−)(0+)D
(0+)
X3 A〈φ∆1

(X1)φ∆2
(X2)D

(0+)A
XI

O∆,ℓ(XI)〉 ⊲⊳ 〈O∆,ℓ+1Φ∆3
(X3)O∆′,ℓ′〉(nIJ ) ,

(4.151)
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where the relevant 2-point 6j symbols are given by

C(−0)(+0) =
1

2(∆ − 1)(d − 2(∆ + 1))(∆ + ℓ)(d − ∆ + ℓ − 2)
,

C(0+)(0−) = −
∆ + ℓ − 1

ℓ(d + 2ℓ − 4)(d − ∆ + ℓ − 2)
,

C(0−)(0+) = −
(ℓ + 1)(d + 2ℓ − 2)(d − ∆ + ℓ − 1)

∆ + ℓ
. (4.152)

At this point, one of the weight shifting operators acts on the 3-point structure

〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉, which is of the type (scalar)-(scalar)-(spin) and hence unique.

We may therefore use the alternative crossing relation eq. (3.21) to rewrite each of the

pieces D
(δ∆,δℓ)A
XI

〈φ∆1
(X1)φ∆2

(X2)O∆−δ∆,ℓ−δℓ(XI)〉 in the following way:

D
(δ∆,δℓ)A
XI

〈O∆1
(X1)O∆2

(X2)O∆−δ∆,ℓ−δℓ(XI)〉

= F
(δ∆,δℓ)
(+0)

(

D
(+0)A
X1

〈φ∆1−1(X1)φ∆2
(X2)O∆,ℓ(XI)〉 + (−1)δℓD

(+0)A
X2

〈φ∆1
(X1)φ∆2−1(X2)O∆,ℓ(XI)〉

)

+ F
(δ∆,δℓ)
(−0)

(

D
(−0)A
X1

〈φ∆1+1(X1)φ∆2
(X2)O∆,ℓ(XI)〉 + (−1)δℓD

(−0)A
X2

〈φ∆1
(X1)φ∆2+1(X2)O∆,ℓ(XI)〉

)

.

(4.153)

Equipped with this, we conclude that in order to obtain the corresponding conformal blocks

from eq. (4.145)–eq. (4.147), we must make the replacements

(D
(0+)
X3

· D
(−0)
XI

)〈O∆+1,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

→ C(−0)(+0)

[

F
(+0)
(+0)

(

(D
(+0)
X1

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+ (D
(+0)
X2

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

)

+ F
(+0)
(−0)

(

(D
(−0)
X1

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+ (D
(−0)
X2

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

)]

, (4.154)

(D
(0+)
X3

· D
(0+)
XI

)〈O∆,ℓ−1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

→ C(0+)(0−)

[

F
(0+)
(+0)

(

(D
(+0)
X1

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

− (D
(+0)
X2

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

)

+ F
(0+)
(−0)

(

(D
(−0)
X1

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

− (D
(−0)
X2

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

)]

, (4.155)
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(D
(0+)
X3

· D
(0−)
XI

)〈O∆,ℓ+1(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ )

→ C(0−)(0+)

[

F
(0−)
(+0)

(

(D
(+0)
X1

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

− (D
(+0)
X2

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

)

+ F
(0−)
(−0)

(

(D
(−0)
X1

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

− (D
(−0)
X2

· D
(0+)
X3

)W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

)]

, (4.156)

where the 3-point 6j symbols for the special crossing relation may be found in eq. (3.23).

In our case, they are given by

F
(+0)
(+0) =

(∆ − 1) (∆ − ∆1 + ∆2 + ℓ) (d − ∆ + ∆1 − ∆2 + ℓ − 2)

2 (∆1 − 2) (d − 2∆1) (d − ∆1 − 1)
,

F
(+0)
(−0) = −

(∆ − 1) (∆ + ∆1 − ∆2 + ℓ) (−d + ∆ + ∆1 − ∆2 − ℓ + 2)

2 (d − 2∆1)

× (−2d + ∆ + ∆1 + ∆2 − ℓ + 2) (−d + ∆ + ∆1 + ∆2 + ℓ) ,

F
(0+)
(+0) =

∆ − ∆1 + ∆2 + ℓ

2 (∆1 − 2) (ℓ + 1) (d − 2∆1) (d − ∆1 − 1)
,

F
(0+)
(−0) = −

(∆ + ∆1 − ∆2 + ℓ) (−∆ + ∆1 + ∆2 + ℓ)

2(ℓ + 1) (d − 2∆1)
(∆ + ∆1 + ∆2 + ℓ − d) ,

F
(0−)
(+0) =

ℓ (d − ∆ + ∆1 − ∆2 + ℓ − 2)

2 (∆1 − 2) (d − 2∆1) (d − ∆1 − 1)
,

F
(0−)
(−0) = −

(2d − ∆ − ∆1 − ∆2 + ℓ − 2) (d + ∆ − ∆1 − ∆2 + ℓ − 2)

2 (d − 2∆1)

× ℓ (d − ∆ − ∆1 + ∆2 + ℓ − 2) . (4.157)

Specifically, we convert the relations eq. (4.145)–eq. (4.147) into the corresponding relations

for the conformal blocks by gluing them between the structures 〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 and

〈O′
∆′,ℓ′φ∆4

(X4)φ∆5
(X5)〉 via

W
(V )(i,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

= 〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ Q
(i,nIJ )
(ℓ,1,ℓ′) ⊲⊳ 〈O′

∆′,ℓ′φ∆4
(X4)φ∆5

(X5)〉 ,

(4.158)

for i = 1, 2, 3, with the replacements eq. (4.154)–eq. (4.156).

Combining everything together, we ultimately arrive at the results

W
(V )(1,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
(ℓ′ − nIJ)

∆′ − ∆ + ∆3 − ℓ′ + ℓ − 1
W

(V )(2,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

+
nIJ +1
∑

m=nIJ

A
(1)(m)
(+0)(0+)(D

(+0)
X1

· D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+ A
(2)(m)
(+0)(0+)(D

(+0)
X2

· D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+ A
(1)(m)
(−0)(0+)(D

(−0)
X1

· D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+ A
(2)(m)
(−0)(0+)(D

(−0)
X2

· D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

, (4.159)
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W
(V )(3,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
nIJ +1
∑

m=nIJ

C
(1)(m)
(+0)(0+)(D

(+0)
X1

· D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+ C
(2)(m)
(+0)(0+)(D

(+0)
X2

· D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+ C
(1)(m)
(−0)(0+)(D

(−0)
X1

· D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+ C
(2)(m)
(−0)(0+)(D

(−0)
X2

· D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

, (4.160)

and

W
(V )(2,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
(nIJ −ℓ)(nIJ −ℓ′+1)

(nIJ +1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ−1)
W

(V )(2,nIJ +1)
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

+
nIJ +2
∑

m=nIJ

B
(1)(m)
(+0)(0+)(D

(+0)
X1

·D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+B
(2)(m)
(+0)(0+)(D

(+0)
X2

·D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+B
(1)(m)
(−0)(0+)(D

(−0)
X1

·D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+B
(2)(m)
(−0)(0+)(D

(−0)
X2

·D
(0+)
X3

)W
(m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

. (4.161)

The respective A, B, and C coefficients are all assembled in appendix F.

4.5 Promoting Φ to a tensor operator

Armed with the above results, we next promote Φ to a spin-2 operator T AB by taking

〈O∆,ℓ(X1)Φ∆3
(X2)O′

∆′,ℓ′(X3)〉 → 〈O∆,ℓ(X1)T AB(X2)O′
∆′,ℓ′(X3)〉 , (4.162)

which again maps a (spin)-(scalar)-(spin) type 3-point function to a (spin)-(spin)-(spin)

type one.

In this case, the set of allowed 3-point structures is

Q(ℓ,2,ℓ′)(X1, X2, X3; Z1, Z2, Z3) =
6
∑

i=1

κi,nIJ
Q

(i,nIJ )
(ℓ,2,ℓ′) (4.163)

with

Q
(i,nIJ )
(ℓ,2,ℓ′) =

q
(i,nIJ )
(ℓ,2,ℓ′)

(X12)
1
2 (∆+∆3−∆′+ℓ−ℓ′+2)(X13)

1
2 (∆−∆3+∆′+ℓ+ℓ′−2)(X23)

1
2 (−∆+∆3+∆′−ℓ+ℓ′+2)

,

(4.164)

where the six structures q
(a,nIJ )
(ℓ,2,ℓ′) are given by

q
(1,nIJ )
(ℓ,2,ℓ′) = V ℓ−nIJ

1 V 2
2 V ℓ′−nIJ

3 HnIJ
13 ,

q
(2,nIJ )
(ℓ,2,ℓ′) = V ℓ−nIJ

1 V2V
(ℓ′−1)−nIJ

3 HnIJ
13 H23 ,

q
(3,nIJ )
(ℓ,2,ℓ′) = V ℓ−nIJ

1 V
(ℓ′−2)−nIJ

3 HnIJ
13 H2

23 ,

q
(4,nIJ )
(ℓ,2,ℓ′) = V

(ℓ−1)−nIJ

1 V2V ℓ′−nIJ
3 H12HnIJ

13 ,

q
(5,nIJ )
(ℓ,2,ℓ′) = V

(ℓ−1)−nIJ

1 V
(ℓ′−1)−nIJ

3 H12HnIJ
13 H23 ,

q
(6,nIJ )
(ℓ,2,ℓ′) = V

(ℓ−2)−nIJ

1 V ℓ′−nIJ
3 H2

12HnIJ
13 . (4.165)
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The structures q
(1,nIJ )
(ℓ,2,ℓ′) , q

(2,nIJ )
(ℓ,2,ℓ′) , q

(3,nIJ )
(ℓ,2,ℓ′) , q

(4,nIJ )
(ℓ,2,ℓ′) , q

(5,nIJ )
(ℓ,2,ℓ′) , and q

(6,nIJ )
(ℓ,2,ℓ′) exist for nIJ in the

ranges [0, min(ℓ, ℓ′)], [0, min(ℓ, ℓ′−1)], [0, min(ℓ, ℓ′−2)], [0, min(ℓ−1, ℓ′)], [0, min(ℓ−1, ℓ′−1)],

and [0, min(ℓ − 2, ℓ′)], respectively.6

Our hope is to recycle much of the calculation for the spin-1 case here. In particular,

we intend to act with the three distinct weight-shifting operator combinations once again,

but this time, on the three structures corresponding to the (spin)-(vector)-(spin) 3-point

structures, rather than on the (spin)-(scalar)-(spin) ones. That is, in this case, we take the

blocks computed in the previous section with Φ → vA to be our seed blocks.

Proceeding in a manner analogous to the spin-1 case, we find three sets of equations

similar to eq. (4.137)–eq. (4.139), corresponding to taking the derivatives

(D
(0+)
X3

· D
(−0)
XI

)Q
(i,nIJ )
(ℓ,1,ℓ′) ,

(D
(0+)
X3

· D
(0+)
XI

)Q
(i,nIJ )
(ℓ,1,ℓ′) ,

(D
(0+)
X3

· D
(0−)
XI

)Q
(i,nIJ )
(ℓ,1,ℓ′) , (4.166)

for i = 1, 2, 3.

However, since we have six different structures here, we just require six independent

equations. In particular, we find that it is sufficient to consider

(D
(0+)
X3

· D
(−0)
XI

)Q
(1,nIJ )
(ℓ,1,ℓ′) = ξ11Q

(1,nIJ )
(ℓ,2,ℓ′) + ξ12Q

(2,nIJ )
(ℓ,2,ℓ′) + ξ14Q

(4,nIJ )
(ℓ,2,ℓ′) , (4.167)

(D
(0+)
X3

· D
(−0)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) = ξ22Q

(2,nIJ )
(ℓ,2,ℓ′) + ξ23Q

(3,nIJ )
(ℓ,2,ℓ′) + ξ25Q

(5,nIJ )
(ℓ,2,ℓ′) , (4.168)

(D
(0+)
X3

· D
(−0)
XI

)Q
(3,nIJ )
(ℓ,1,ℓ′) = ξ34Q

(4,nIJ )
(ℓ,2,ℓ′) + ξ35Q

(5,nIJ )
(ℓ,2,ℓ′) + ξ36Q

(6,nIJ )
(ℓ,2,ℓ′) , (4.169)

(D
(0+)
X3

· D
(0+)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) = κ22Q

(2,nIJ )
(ℓ,2,ℓ′) + λ22Q

(2,nIJ +1)
(ℓ,2,ℓ′) + κ23Q

(3,nIJ )
(ℓ,2,ℓ′)

+ λ23Q
(3,nIJ +1)
(ℓ,2,ℓ′) + κ25Q

(5,nIJ )
(ℓ,2,ℓ′) + λ25Q

(5,nIJ +1)
(ℓ,2,ℓ′) , (4.170)

(D
(0+)
X3

· D
(0+)
XI

)Q
(3,nIJ )
(ℓ,1,ℓ′) = κ34Q

(4,nIJ )
(ℓ,2,ℓ′) + λ34Q

(4,nIJ +1)
(ℓ,2,ℓ′) + κ35Q

(5,nIJ )
(ℓ,2,ℓ′)

+ λ35Q
(5,nIJ +1)
(ℓ,2,ℓ′) + κ36Q

(6,nIJ )
(ℓ,2,ℓ′) + λ36Q

(6,nIJ +1)
(ℓ,2,ℓ′) , (4.171)

and

(D
(0+)
X3

· D
(0−)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) = ρ22Q

(2,nIJ −1)
(ℓ,2,ℓ′) + σ22Q

(2,nIJ )
(ℓ,2,ℓ′) + τ22Q

(2,nIJ +1)
(ℓ,2,ℓ′)

+ ρ23Q
(3,nIJ −1)
(ℓ,2,ℓ′) + σ23Q

(3,nIJ )
(ℓ,2,ℓ′) + τ23Q

(3,nIJ +1)
(ℓ,2,ℓ′)

+ ρ25Q
(5,nIJ −1)
(ℓ,2,ℓ′) + σ25Q

(5,nIJ )
(ℓ,2,ℓ′) + τ25Q

(5,nIJ +1)
(ℓ,2,ℓ′) . (4.172)

The respective coefficients may be found in appendix D.

We next adopt a procedure analogous to the one employed for the vector case discussed

above. In particular, we first apply the three equations in eq. (4.167)–eq. (4.169) to solve for

{Q
(2,nIJ )
(ℓ,2,ℓ′) , Q

(4,nIJ )
(ℓ,2,ℓ′) , Q

(5,nIJ )
(ℓ,2,ℓ′) } in terms of {Q

(1,nIJ )
(ℓ,2,ℓ′) , Q

(3,nIJ )
(ℓ,2,ℓ′) , Q

(6,nIJ )
(ℓ,2,ℓ′) }. We may then generate

6Note that in d = 3 there are redundancies between the structures so that H12H13H23 is not indepen-

dent [41]. This means that the structures q
(5,nIJ )

(ℓ,2,ℓ′) are not independent and this should be taken into account

when applying the results in d = 3.
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the corresponding equivalent statements for the structures labeled by nIJ − 1 and nIJ + 1.

We subsequently insert these expressions into eq. (4.170)–eq. (4.171) and solve for Q
(1,nIJ )
(ℓ,2,ℓ′)

and Q
(6,nIJ )
(ℓ,2,ℓ′) . At this point, the structures Q

(i,nIJ )
(ℓ,2,ℓ′) for i = 1, 2, 4, 5, 6 are expressed purely in

terms of differential operators acting on the spin-1 structures {Q
(1,nIJ )
(ℓ,1,ℓ′) , Q

(2,nIJ )
(ℓ,1,ℓ′) , Q

(3,nIJ )
(ℓ,1,ℓ′) }

as well as the spin-2 structure Q
(3,nIJ )
(ℓ,2,ℓ′) . This remaining structure Q

(3,nIJ )
(ℓ,2,ℓ′) may be extracted

directly by solving the last of the above equations, namely eq. (4.172). This allows us to

express it in the form of a recursion relation, which terminates at nIJ = min(ℓ, ℓ′ − 2).

The explicit results for the structures Q
(i,nIJ )
(ℓ,2,ℓ′) are given below:

Q
(1,nIJ )
(ℓ,2,ℓ′) =

(−nIJ +ℓ′−1)(ℓ′−nIJ)

(∆′−∆+∆3−ℓ′+ℓ)(∆′−∆+∆3−ℓ′+ℓ+2)
Q

(3,nIJ )
(ℓ,2,ℓ′)

+a′
1(D

(0+)
X3

·D
(−0)
XI

)Q
(1,nIJ )
(ℓ,1,ℓ′) +a′

2(D
(0+)
X3

·D
(0+)
XI

)Q
(3,nIJ )
(ℓ,1,ℓ′)

+a′
3(D

(0+)
X3

·D
(−0)
XI

)Q
(3,nIJ +1)
(ℓ,1,ℓ′) +a′

4(D
(0+)
X3

·D
(0+)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′)

+a′
5(D

(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ +1)
(ℓ,1,ℓ′) +a′

6(D
(0+)
X3

·D
(−0)
XI

)Q
(3,nIJ )
(ℓ,1,ℓ′) +a′

7(D
(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) ,

(4.173)

Q
(2,nIJ )
(ℓ,2,ℓ′) =

(−nIJ +ℓ′−1)

∆′−∆+∆3−ℓ′+ℓ+2
Q

(3,nIJ )
(ℓ,2,ℓ′)

+b′
1(D

(0+)
X3

·D
(0+)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) +b′

2(D
(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ +1)
(ℓ,1,ℓ′) +b′

3(D
(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) ,

(4.174)

Q
(3,nIJ )
(ℓ,2,ℓ′) =

(nIJ −ℓ)(nIJ −ℓ′+2)

(nIJ +1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ)
Q

(3,nIJ +1)
(ℓ,2,ℓ′)

+c′
1(D

(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ +2)
(ℓ,1,ℓ′) +c′

2(D
(0+)
X3

·D
(0+)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′)

+c′
3(D

(0+)
X3

·D
(0+)
XI

)Q
(2,nIJ +1)
(ℓ,1,ℓ′) +c′

4(D
(0+)
X3

·D
(0−)
XI

)Q
(2,nIJ +1)
(ℓ,1,ℓ′)

+c′
5(D

(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) +c′

6(D
(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ +1)
(ℓ,1,ℓ′) , (4.175)

Q
(4,nIJ )
(ℓ,2,ℓ′) = d′

1(D
(0+)
X3

·D
(0+)
XI

)Q
(3,nIJ )
(ℓ,1,ℓ′) +d′

2(D
(0+)
X3

·D
(−0)
XI

)Q
(3,nIJ +1)
(ℓ,1,ℓ′)

+d′
3(D

(0+)
X3

·D
(0+)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) +d′

4(D
(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ +1)
(ℓ,1,ℓ′)

+d′
5(D

(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) +d′

6(D
(0+)
X3

·D
(−0)
XI

)Q
(3,nIJ )
(ℓ,1,ℓ′) , (4.176)

Q
(5,nIJ )
(ℓ,2,ℓ′) = e′

1(D
(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) +e′

2(D
(0+)
X3

·D
(−0)
XI

)Q
(2,nIJ +1)
(ℓ,1,ℓ′) +e′

3(D
(0+)
X3

·D
(0+)
XI

)Q
(2,nIJ )
(ℓ,1,ℓ′) ,

(4.177)

Q
(6,nIJ )
(ℓ,2,ℓ′) = f ′

1(D
(0+)
X3

·D
(−0)
XI

)Q
(3,nIJ )
(ℓ,1,ℓ′) +f ′

2(D
(0+)
X3

·D
(−0)
XI

)Q
(3,nIJ +1)
(ℓ,1,ℓ′) +f ′

3(D
(0+)
X3

·D
(0+)
XI

)Q
(3,nIJ )
(ℓ,1,ℓ′) .

(4.178)

The coefficients can be found in appendix E.

We can then proceed to convert these relations into the corresponding statements for

the conformal blocks exactly as before, this time with

W
(T )(a,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

= 〈φ∆1
(X1)φ∆2

(X2)O∆,ℓ〉 ⊲⊳ Q
(a,nIJ )
(ℓ,2,ℓ′) ⊲⊳ 〈O′

∆′,ℓ′φ∆4
(X4)φ∆5

(X5)〉 ,

(4.179)
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for each of a = 1, . . . , 6. Again, we implement a set of substitutions directly analogous to

those in eq. (4.154)–eq. (4.156), with the difference that here we map each of

(D
(0+)
X3

· D
(−0)
XI

)Q
(i,nIJ )
(ℓ,1,ℓ′) , (D

(0+)
X3

· D
(0+)
XI

)Q
(i,nIJ )
(ℓ,1,ℓ′) , (D

(0+)
X3

· D
(0−)
XI

)Q
(i,nIJ )
(ℓ,1,ℓ′) , (4.180)

to the set
{

(D
(+0)
X1

· D
(0+)
X3

)W
(V )(i,nIJ )
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

, (D
(+0)
X2

· D
(0+)
X3

)W
(V )(i,nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

,

(D
(−0)
X1

· D
(0+)
X3

)W
(V )(i,nIJ )
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

, (D
(−0)
X2

· D
(0+)
X3

)W
(V )(i,nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

}

,

(4.181)

with the selfsame 6j coefficients featured in eq. (4.154)–eq. (4.156). That is, these relations

are identical to the ones used in the vector case, up to the replacements

〈O∆,ℓ(XI)Φ∆3
(X3)O∆′,ℓ′(XJ)〉(nIJ ) 7→ Q

(i,nIJ )
(ℓ,1,ℓ′) , (4.182)

W
(nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

7→ W
(V )(i,nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

,

for i = 1, 2, 3.

With this, it is effortless to write down the expressions for the six distinct conformal

block structures for the case where Φ is a spin-2 tensor operator. The results take the form:

W
(T )(1,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
(−nIJ +ℓ′−1)(ℓ′−nIJ )

(∆′−∆+∆3−ℓ′+ℓ)(∆′−∆+∆3−ℓ′+ℓ+2)
W

(T )(3,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

+A
′(1)(1,nIJ )
(+0)(0+) (D

(+0)
X1

·D
(0+)
X3

)W
(V )(1,nIJ )
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+A
′(2)(1,nIJ )
(+0)(0+) (D

(+0)
X2

·D
(0+)
X3

)W
(V )(1,nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+A
′(1)(1,nIJ )
(−0)(0+) (D

(−0)
X1

·D
(0+)
X3

)W
(V )(1,nIJ )
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+A
′(2)(1,nIJ )
(−0)(0+) (D

(−0)
X2

·D
(0+)
X3

)W
(V )(1,nIJ )
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

+
3
∑

i=2

nIJ +1
∑

m=nIJ

A
′(1)(i,m)
(+0)(0+)(D

(+0)
X1

·D
(0+)
X3

)W
(V )(i,m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+A
′(2)(i,m)
(+0)(0+)(D

(+0)
X2

·D
(0+)
X3

)W
(V )(i,m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+A
′(1)(i,m)
(−0)(0+)(D

(−0)
X1

·D
(0+)
X3

)W
(V )(i,m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+A
′(2)(i,m)
(−0)(0+)(D

(−0)
X2

·D
(0+)
X3

)W
(V )(i,m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

, (4.183)

W
(T )(2,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
(−nIJ +ℓ′−1)

∆′−∆+∆3−ℓ′+ℓ+2
W

(T )(3,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

+
nIJ +1
∑

m=nIJ

B
′(1)(2,m)
(+0)(0+)(D

(+0)
X1

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+B
′(2)(2,m)
(+0)(0+)(D

(+0)
X2

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+B
′(1)(2,m)
(−0)(0+)(D

(−0)
X1

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+B
′(2)(2,m)
(−0)(0+)(D

(−0)
X2

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

, (4.184)
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W
(T )(3,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
(nIJ −ℓ)(nIJ −ℓ′+2)

(nIJ +1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ)
W

(T )(3,nIJ +1)
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

+
nIJ +2
∑

m=nIJ

C
′(1)(2,m)
(+0)(0+)(D

(+0)
X1

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+C
′(2)(2,m)
(+0)(0+)(D

(+0)
X2

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+C
′(1)(2,m)
(−0)(0+)(D

(−0)
X1

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+C
′(2)(2,m)
(−0)(0+)(D

(−0)
X2

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

, (4.185)

W
(T )(4,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
3
∑

i=2

nIJ +1
∑

m=nIJ

D
′(1)(i,m)
(+0)(0+)(D

(+0)
X1

·D
(0+)
X3

)W
(V )(i,m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+D
′(2)(i,m)
(+0)(0+)(D

(+0)
X2

·D
(0+)
X3

)W
(V )(i,m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+D
′(1)(i,m)
(−0)(0+)(D

(−0)
X1

·D
(0+)
X3

)W
(V )(i,m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+D
′(2)(i,m)
(−0)(0+)(D

(−0)
X2

·D
(0+)
X3

)W
(V )(i,m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

, (4.186)

W
(T )(5,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
nIJ +1
∑

m=nIJ

E
′(1)(2,m)
(+0)(0+)(D

(+0)
X1

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+E
′(2)(2,m)
(+0)(0+)(D

(+0)
X2

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+E
′(1)(2,m)
(−0)(0+)(D

(−0)
X1

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+E
′(2)(2,m)
(−0)(0+)(D

(−0)
X2

·D
(0+)
X3

)W
(V )(2,m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

, (4.187)

W
(T )(6,nIJ )
∆,ℓ;∆′,ℓ′;∆1,∆2,∆3,∆4,∆5

=
nIJ +1
∑

m=nIJ

F
′(1)(3,m)
(+0)(0+)(D

(+0)
X1

·D
(0+)
X3

)W
(V )(3,m)
∆,ℓ,∆′,ℓ′;∆1−1,∆2,∆3,∆4,∆5

+F
′(2)(3,m)
(+0)(0+)(D

(+0)
X2

·D
(0+)
X3

)W
(V )(3,m)
∆,ℓ,∆′,ℓ′;∆1,∆2−1,∆3,∆4,∆5

+F
′(1)(3,m)
(−0)(0+)(D

(−0)
X1

·D
(0+)
X3

)W
(V )(3,m)
∆,ℓ,∆′,ℓ′;∆1+1,∆2,∆3,∆4,∆5

+F
′(2)(3,m)
(−0)(0+)(D

(−0)
X2

·D
(0+)
X3

)W
(V )(3,m)
∆,ℓ,∆′,ℓ′;∆1,∆2+1,∆3,∆4,∆5

. (4.188)

The coefficients are given explicitly in appendix F.

In the next section, we consider applying the above results for the 5-point conformal

blocks for the purpose of extracting a set of novel sum rules for the CFT data.

5 The averaged null energy condition: an application

All QFTs are now known to respect a special positivity condition known as the averaged null

energy condition (ANEC). This condition states that the energy flux operator, defined as

E =

∫ ∞

−∞
dx− T−−(x−, 0) , (5.1)

where the integral is over a complete null line, has a nonnegative expectation value in any

state, 〈Ψ|E|Ψ〉 ≥ 0.
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This positivity condition was originally explored at length in [14] for the purpose of

deriving universal bounds on 3-point functions. Since then, the ANEC has been rigor-

ously established by means of two distinct methods, namely through arguments based on

causality in [20] and through monotonicity of relative entropy in [19].

In the context of CFTs, this statement enforces nontrivial bounds on OPE coefficients.

For 4d CFTs, demanding that the ANEC hold for the energy flux operator E in wavepacket

states of the form

|Ψ〉 =

∫

d4x e−iqte−(t2+~x2))/R2
ǫµνT µν(x)|0〉 , Rq ≫ 1 , (5.2)

where q > 0 is the state’s energy, ǫµν is a polarization tensor, and R ≫ q−1 is a long-

distance cutoff, leads to the famous “conformal collider” constraints originally proposed by

Hofman and Maldacena [14].

The energy flux may be determined by considering the 3-point function of the energy-

momentum tensor 〈TTT 〉. Since 〈TTT 〉 contains three linearly independent tensor struc-

tures by conformal invariance, it may be parameterized in terms of the 3-point structures

which appear in a free field theory:

〈TTT 〉 = nb〈TTT 〉b + nf 〈TTT 〉f + nv〈TTT 〉v , (5.3)

where 〈TTT 〉b, 〈TTT 〉f , and 〈TTT 〉v correspond to 3-point structures for the free scalar,

free Dirac fermion, and free vector theories. Here the OPE coefficients nb, nf , and nv are

the numbers of bosons, fermions, and vectors in a free CFT but are arbitrary parameters

in an interacting theory. The collider bounds may be simply and suggestively stated as

nb, nf , nv ≥ 0 . (5.4)

These bounds are respected by any unitary parity-preserving 4d CFT. Effectively, they

are in place to ensure that the energy flux measured by an idealized calorimeter cell at

infinity is nonnegative. Such bounds were generalized to other dimensions in [15, 16, 21].

An independent proof of the bounds was given in [18, 24], where they were shown to follow

from the conformal bootstrap. More recently, a higher-spin version of the ANEC and

corresponding bounds were established in [20, 23] and a detailed discussion of more general

light-ray operators was given in [55, 63, 64].

One obtains these and similar constraints by studying 3-point conformal correlation

functions, such as 〈OJ (s)O〉, where in general J (s) denotes the lightest even spin-s operator

appearing on the Regge trajectory of the stress tensor [23]. Additional constraints on cou-

plings 〈TTO〉 were shown to arise from considering states corresponding to a superposition

of the stress tensor T and a scalar O [22]. Here we wish to explore the question of whether

one may derive novel constraints by studying ANEC positivity in higher-point correlation

functions. The analysis of the 5-point function, which we sketch in this section, will be a

first step in this direction.

Both the ANEC and its higher spin generalizations may be conveniently couched in

a Minkowski space setup [20] via the notion of Rindler positivity. In particular, one may
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state the ANEC by invoking the positivity properties of Rindler symmetric correlation

functions in Minkowski space.

Correlation functions in Minkowski space restricted to the left and right Rindler wedges

satisfy a positivity property akin to reflection positivity in Euclidean space referred to as

Rindler positivity. The Rindler reflection for scalar operators is defined by

x̄ = (t, y, ~x) = (−t∗, −y∗, ~x) , Ō(x) = O†(x̄) , (5.5)

where the transverse coordinate ~x is taken to be real but we allow complex (t, y). For real

(t, y), its action is to map operators from one Rindler wedge to the other. When acting on

a spinning operator Oµν..., the Rindler reflection maps

Oµν...(t, y, ~x) 7→ Oµν...(t, y, ~x) = (−1)P O†
µν...(−t∗, −y∗, ~x) , (5.6)

where P denotes the sum of t- and y-indices.

Rindler positivity applied to 4-point functions is then the statement

〈ŌiŌjOiOj〉 ≥ 0 , (5.7)

where the unbarred operators Oi and Oj are inserted in the right Rindler wedge, and

Rindler reflection leaves the order of the operators unchanged.

Here we consider the expectation value 〈Ψ|E|Ψ〉 for states created by pairs of real

(Hermitian) scalar operators. We are then interested in studying the implications of Rindler

positivity of the 5-point function

〈φi(x̄1)φj(x̄2)Eφi(x1)φj(x2)〉 ≥ 0 , (5.8)

where x1 and x2 are taken to be in the right Rindler wedge.

Now, while the energy flux E is traditionally defined as in eq. (5.1), it is convenient to

alternatively define it via a covariant form as in [23, 65]:

E(n) =

∫ ∞

−∞
d(x · n) lim

x·n̄→∞
(x · n̄)d−2Tµν(x · n, x · n̄,~0)n̄µn̄ν , n = (1, ~n), n̄ = (1, −~n) .

(5.9)

The advantage of this form is that it is manifestly Lorentz invariant. In CFTs, the two def-

initions are equivalent, but the form eq. (5.9) turns out to be simpler to handle in practice.

With this definition, we may re-express the positivity condition 〈Ψ|E|Ψ〉 ≥ 0 as:

0 ≤
∫ ∞

−∞
d(x3 · n) lim

x3·n̄→∞
(x3 · n̄)d−2 (5.10)

× 〈φi(x̄1)φj(x̄2)Tµν(x3 · n, x3 · n̄,~0)n̄µn̄νφi(x1)φj(x2)〉 , n = (1, ~n), n̄ = (1, −~n) .

Now we have expressed the condition directly in terms of the 5-point functions studied in

the previous sections of this paper, which allow us to compute the integrand in terms of

the coordinate differences xij .
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To calculate the relevant integrals of the type eq. (5.10) in practice, we may follow

the approach of [66]. Since we need to take the limit x3 · n̄ → ∞, we can first use that

x3 = x3·n
2 n̄ + x3·n̄

2 n, so we have

lim
x3·n̄→∞

x2
13 = −(x3 · n̄)(x13 · n) , lim

x3·n̄→∞
x2

23 = −(x3 · n̄)(x23 · n) ,

lim
x3·n̄→∞

x2
34 = (x3 · n̄)(x34 · n) , lim

x3·n̄→∞
x2

35 = (x3 · n̄)(x35 · n) . (5.11)

To perform the light-ray integrals after taking the limit, we can then make use of the

formula:

∫ ∞

−∞
d(x3 · n)

1

(x23 · n)a(x34 · n)b
=

2πi

(x24 · n)a+b−1

Γ(a + b − 1)

Γ(a)Γ(b)
. (5.12)

Having set the stage, let us take a closer look at the positivity condition for the special

case of identical operators φi = φj = φ. The φ × φ OPE is given by

φ × φ =1 +
∑

∆,ℓ even

λφφO∆,ℓ
O∆,ℓ , (5.13)

where we have separated off the identity contribution and restricted the sum to only even-

spin symmetric traceless operators. In fact, identity exchange will give no contribution to

the 5-point function 〈φφEφφ〉 because, as explained in [63], light-ray operators such as E

annihilate the vacuum.

Thus, we generally expect that the OPE limit x12, x45 → 0 will be dominated by the

stress tensor T or low-dimension scalars. The contribution due to stress energy tensor

exchange in both channels takes the form

〈φφTφφ〉 ⊃ 〈φ(X1)φ(X2)T 〉 ⊲⊳ 〈TTT 〉 ⊲⊳ 〈Tφ(X4)φ(X5)〉

= |λφφT |2
3
∑

a=1

λ
(a)
T T T W

(T )a
d,2;d,2;∆φ,∆φ,d,∆φ,∆φ

, (5.14)

where we encounter the square of the OPE coefficient |λφφT |2 and the OPE coefficients

featured in 〈TTT 〉. Upon invoking conservation of T and symmetry under the interchange

of the three T s, there are a total of three independent structures corresponding to the

exchange of identical stress energy tensors T . In d ≥ 4 spacetime dimensions, the 3-point

function of stress energy tensors 〈TTT 〉 may be parameterized in terms of three independent

structures, namely the free boson, free fermion, and free (d − 2)/2 form 3-point structures

as in eq. (5.3). We may therefore equivalently express the coefficients λ
(1)
T T T , λ

(2)
T T T , and

λ
(3)
T T T in terms of nb, nf , and nv.
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Given this, we end up with an inequality

0 ≤ |λφφT |2
∫ ∞

−∞
d(x3 ·n) lim

x3·n̄→∞
(x3 ·n̄)d−2

3
∑

a=1

λ
(a)
T T T W

(T )a
d,2;d,2;∆φ,∆φ,d,∆φ,∆φ

∣

∣

∣

∣

∣

X3=X3(x3·n,x3·n̄,~0),Z3=Z3(n̄)

+
∑

O∆,ℓ

∑

O′
∆′,ℓ′

λφφO∆,ℓ
λO′

∆′,ℓ′ φφ

∫ ∞

−∞
d(x3 ·n) lim

x3·n̄→∞
(x3 ·n̄)d−2

×

[min[ℓ,ℓ′]
∑

nIJ =0

λ
(1)(nIJ )
O∆,ℓT O′

∆′,ℓ′
W

(T )(1,nIJ )
∆,ℓ;∆′,ℓ′;∆φ∆φ,d,∆φ,∆φ

+

min[ℓ,ℓ′−1]
∑

nIJ =0

λ
(2)(nIJ )
O∆,ℓT O′

∆′,ℓ′
W

(T )(2,nIJ )
∆,ℓ;∆′,ℓ′;∆φ∆φ,d,∆φ,∆φ

+

min[ℓ,ℓ′−2]
∑

nIJ =0

λ
(3)(nIJ )
O∆,ℓT O′

∆′,ℓ′
W

(T )(3,nIJ )
∆,ℓ;∆′,ℓ′;∆φ∆φ,d,∆φ,∆φ

+

min[ℓ−1,ℓ′]
∑

nIJ =0

λ
(4)(nIJ )
O∆,ℓT O′

∆′,ℓ′
W

(T )(4,nIJ )
∆,ℓ;∆′,ℓ′;∆φ∆φ,d,∆φ,∆φ

+

min[ℓ−1,ℓ′−1]
∑

nIJ =0

λ
(5)(nIJ )
O∆,ℓT O′

∆′,ℓ′
W

(T )(5,nIJ )
∆,ℓ;∆′,ℓ′;∆φ∆φ,d,∆φ,∆φ

+

min[ℓ−2,ℓ′]
∑

nIJ =0

λ
(6)(nIJ )
O∆,ℓT O′

∆′,ℓ′
W

(T )(6,nIJ )
∆,ℓ;∆′,ℓ′;∆φ∆φ,d,∆φ,∆φ

]∣

∣

∣

∣

∣

X3=X3(x3·n,x3·n̄,~0),Z3=Z3(n̄)

. (5.15)

Here the conservation of T imposes constraints on the coefficients λ
(i)(nIJ )
O∆,ℓT O′

∆′,ℓ′
so that they

are not all independent. This statement relates the contributions from (T, T ) exchange

to the rest of the expansion. In a limit where the first term dominates, we expect this

to reproduce the Hofman-Maldacena bounds, while including the other terms in the OPE

gives a more complicated sum rule.

It is likely that the sum rules obtained in this way are not as strong as those obtained

using the logic of [22, 23], which considers states built from arbitrary linear combinations

of a certain set of operators. Here we have considered states φ(x1)φ(x2)|0〉, which corre-

spond to a particular family of linear combinations of operators parametrized by (x1, x2),

motivated by the OPE. On the other hand, they yield a very natural way to incorporate

the sum over higher-spin operators into the inequalities. It would be interesting to better

understand how the bounds (5.15) compare with those obtained using the logic of [22, 23],

and which regions of position space lead to the strongest constraints. We defer exploration

of these questions to future work.

Beyond an examination of states of the type φ(x1)φ(x2)|0〉, one can also consider

smeared states:

|Φ〉 ≡ |φiφj〉f =

∫

ddx1

∫

ddx2 f(x1, x2)φi(x1)φj(x2)|0〉 . (5.16)

Here we would want to choose f to have support in some localized region of the right

Rindler wedge such that convergence of the φi × φj OPE is preserved, along with other

convenient properties. E.g., one might wish to choose f(x1, x2) ∝ e−iq(t1+t2) to correspond

to approximate energy eigenstates. In the discussion below, we will keep f general, but

one could always reproduce the position-localized states discussed above by choosing f to

correspond to a product of δ functions.

One can also analyze more general mixed states created by linear combinations of

operators acting on the vacuum. Here we will give an initial discussion of the kinds of
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bounds that could arise from considering mixed states which combine the bilocal states of

eq. (5.16) with one or more local operators.

For example, we may consider mixing with a state created by the stress tensor

|T (q, ǫ)〉 = N

∫

ddx e−iqtǫµνT µν(x)|0〉 (5.17)

and superpose it with a state created by a pair of Hermitian scalar operators (φi, φj). We

remark that the state |T (q, ǫ)〉 is a momentum eigenstate labeled by a particular choice of

polarization tensor ǫµν and the energy q. Different choices of ǫµν produce different forms

of the resulting bound.

We parameterize such a mixed state in terms of normalized coefficients αi as

α1|φiφj〉f + α2|T (q, ǫ)〉 . (5.18)

Upon evaluating the energy one-point function in this state, we find a 2×2 matrix. Imposing

the ANEC for all αi then translates to the requirement that this matrix must be positive

definite:
(

f 〈φiφj |E|φiφj〉f f 〈φiφj |E|T (q, ǫ)〉

〈T (q, ǫ)|E|φiφj〉f 〈T (q, ǫ)|E|T (q, ǫ)〉

)

< 0 . (5.19)

We expect such a requirement to be a stronger condition than merely demanding that the

diagonal entries be nonnegative; hence, it will introduce new restrictions on the OPE coef-

ficients. We note that the above matrix elements all involve known objects. In particular,

here we encounter the 3-point function 〈TTT 〉, the 4-point functions 〈φφTT 〉 and 〈TTφφ〉,

and the 5-point function 〈φφTφφ〉.

By making different choices for the polarization tensor ǫ, one can additionally isolate

each of the coefficients nb, nf , nv appearing in 〈TTT 〉. If we label the polarizations using

their spin under the SO(d−2) symmetry group which preserves the direction of future null

infinity ~n, they are picked out using the spin zero, one, and two polarizations (ǫ(0), ǫ(1),

ǫ(2)), respectively. E.g., in [22] the authors considered mixed states involving scalars O

and the stress tensor T , and used the off-diagonal terms to derive a sum rule constraining

the OPE coefficients λT T O. In this case, there were nontrivial interference terms for the

polarization ǫ(0), which picks out the coefficient nb, so the bound is expressed in terms of

this quantity.

Now let us turn to the bounds generated by the 2×2 matrix in eq. (5.19). In this case,

we may enforce the requirement that the matrix be positive definite by demanding

f 〈φiφj |E|φiφj〉f ≥ 0 (5.20)

along with the determinant condition

f 〈φiφj |E|φiφj〉f 〈T (q, ǫ)|E|T (q, ǫ)〉 − |f 〈φiφj |E|T (q, ǫ)〉|2 ≥ 0 . (5.21)

We therefore see that enforcing the ANEC in this special state not only implies eq. (5.20)

but also the nonnegativity of the determinant. This additional constraint allows us to

improve on the bound coming from eq. (5.20).
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We may understand this more explicitly as follows. If we consider taking the polariza-

tion tensor to be the spin zero tensor ǫ
(0)
µν , then we find that the “determinant constraint” is

nb

cT
ρ0(d)f 〈φiφj |E|φiφj〉f ≥ |f 〈φiφj |E|T (q, ǫ(0))〉|2 , (5.22)

where we have used that 〈T (q, ǫ(0))|E|T (q, ǫ(0))〉 = ρ0(d) nb

cT
, where ρ(d) is a positive func-

tion of d, while nb ≥ 0 by the collider constraints and cT ≥ 0 by unitarity. For the case

of nonzero nb > 0, it is evident that this type of constraint improves upon the bound in

eq. (5.20). Then, not only is the matrix element f 〈φiφj |E|φiφj〉f nonnegative, but it is also

bounded from below by a nonzero quantity related to the 4-point function 〈φiφjTT 〉. Unlike

the situation in [22], here we may also choose the polarization tensors ǫ(1) or ǫ(2), such that

the constraints involve either nf or nv, and we still in general expect a nontrivial constraint.

We could also consider studying states of the form

β1|φiφj〉f + β2|χ(q)〉 , (5.23)

where we mix with a state created by a scalar χ, with

|χ(q)〉 = N

∫

ddx e−iqtχ(x)|0〉 . (5.24)

Once again, upon computing the expectation value of E , we expect to find a positive

definite 2 × 2 matrix of the form
(

f 〈φiφj |E|φiφj〉f f 〈φiφj |E|χ(q)〉

〈χ(q)|E|φiφj〉f 〈χ(q)|E|χ(q)〉

)

< 0 , (5.25)

which again involves known 5-point, 4-point, and 3-point functions. In addition, it is

straightforward to write down the form of the entry 〈χ(q)|E|χ(q)〉. This is the expectation

value in the scalar state |χ(q)〉, which gives rise to a uniform energy distribution:

〈χ(q)|E|χ(q)〉 =
q

Ωd−2
. (5.26)

Thus, the determinant condition on this matrix will also strengthen the bound (5.20) in a

nontrivial way, as determined by the matrix elements f 〈φiφj |E|χ(q)〉 and 〈χ(q)|E|φiφj〉f .

One may continue on in this vein by considering even more general linear combinations

of scalar and stress tensor states. For example, we could try combining the above two cases:

γ1|φiφj〉f + γ2|T (q)〉 + γ3|χ(q)〉 . (5.27)

Such a state would accordingly lead to an even larger set of constraints, namely a 3 × 3

matrix






f 〈φiφj |E|φiφj〉f f 〈φiφj |E|T (q, ǫ)〉 f 〈φiφj |E|χ(q)〉

〈T (q, ǫ)|E|φiφj〉f 〈T (q, ǫ)|E|T (q, ǫ)〉 〈T (q, ǫ)|E|χ(q)〉

〈χ(q)|E|φiφj〉f 〈χ(q)|E|T (q, ǫ)〉 〈χ(q)|E|χ(q)〉






< 0 . (5.28)

Demanding the positivity of the one-point function of E in this state can then generate

even stronger constraints on the 5-point function.
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In this fashion, we may use the properties of the chosen state(s) to extract various

bounds relating the 5-point function to lower-point functions, and in turn obtain con-

straints on the OPE coefficients and scaling dimensions appearing in their conformal block

expansions. It may be interesting to perform a more in-depth analysis of the expecta-

tion values of E in the above states and numerically study the corresponding constraints.

E.g., it could be enlightening to check how the corresponding bounds involving the 5-point

〈σσTσσ〉 function look in the 3d Ising model. We leave such explorations to future work.

6 Conclusion

In this paper we have presented a concrete and practical approach to computing conformal

blocks appearing in 5-point functions of arbitrary scalar operators in general CFTs. In

particular, by making use of weight-shifting operators, we have derived a simple set of

recursion relations which can be used to directly relate arbitrary scalar blocks with spinning

operators exchanged to those with scalars exchanged.

We additionally considered promoting one of the external operators to have spin 1 or

2, deriving additional recursion relations which relate their conformal blocks to those for

external scalars. One possible application of these results is that they allow us to use the

OPE to compute the expectation value of the ANEC operator in bilocal states, which must

be positive. In this work we gave an initial discussion of the resulting constraints, deferring

further exploration to future work.

In this paper we focused on computing the blocks that would appear in parity-even

5-point functions in parity-preserving CFTs. Additional dimension-specific computations

would be needed to compute the blocks appearing in parity-odd 5-point functions or parity-

violating theories, e.g. d = 3 Chern-Simons theories, which could be pursued in future work.

An alternate approach to computing conformal blocks is to take advantage of the

pole structure in the exchanged operator dimensions, which leads to Zamolodchikov-like

recursion relations. In the future it might be interesting to develop this approach for

higher-point functions such as the 5-point functions considered in this work.

The 5-point functions satisfy various crossing-symmetry constraints which we have not

explored in this paper. For example, 〈σ(x1)σ(x2)ǫ(x3)σ(x4)σ(x5)〉 could be expanded in

the (12)(45) OPE, the (14)(25) OPE, the (13)(45) OPE, and so on. It could be interesting

to study how these crossing constraints are satisfied in concrete CFTs such as the 3d Ising

model, and whether they can be used to learn about couplings like λO∆,ℓǫO′
∆′,ℓ′

that can’t

be easily accessed using 4-point functions of scalar operators. It could also be interesting

to study the 5-point function and associated crossing constraints in various limits such as

the lightcone or Regge limits, or in a regime where one or more of the operators becomes

heavy. The blocks computed in this paper should allow such analyses to be pursued.
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A Standard box tensor basis

Here we will review the basis of 3-point tensor structures used in the body of the paper. As

originally described in [41], the most general form of the embedding space 3-point function

of symmetric traceless tensor operators with spins ℓi and dimensions ∆i can be expressed

as follows:

〈Φ1(X1;Z1)Φ2(X2;Z2)Φ3(X3;Z3)〉 =
∑

n12,n13,n23≥0

λn12,n13,n23







∆1 ∆2 ∆3

ℓ1 ℓ2 ℓ3

n23 n13 n12






+O(Z2

i ,Zi ·Xi) ,

(A.1)

where the sum runs over all possible elementary 3-point function tensor structures. In this

expression, we can choose to work in the so-called standard box tensor basis, where the

individual 3-point structures are given by







∆1 ∆2 ∆3

ℓ1 ℓ2 ℓ3

n23 n13 n12






≡

V m1
1 V m2

2 V m3
3 Hn12

12 Hn13
13 Hn23

23

X
1
2 (τ1+τ2−τ3)

12 X
1
2 (τ1+τ3−τ2)

13 X
1
2 (τ2+τ3−τ1)

23

, (A.2)

where τi ≡ ∆i + ℓi.

Here the basic constituent building blocks Hij and Vi,jk are defined as

Hij ≡ −2[(Zi · Zj)(Xi · Xj) − (Zi · Xj)(Zj · Xi)] ,

Vi,jk ≡
(Zi · Xj)(Xi · Xk) − (Zi · Xk)(Xi · Xj)

(Xj · Xk)
, (A.3)

which are transverse objects. Due to the relations Vi,jk = −Vi,kj and Hij = Hji, not all

of the Vi,jk and Hij are linearly independent. We therefore expect to have three distinct

constituent objects, which we can choose to be

V1 ≡ V1,23 , V2 ≡ V2,31 , V3 ≡ V3,12 . (A.4)

The exponents mi and nij are nonnegative integers which respect the following three

constraints:

mi +
∑

j 6=i

nij = ℓi . (A.5)
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The content of eq. (A.2) is that for general spins ℓi, there are generically several inequivalent

3-point structures consistent with conformal invariance. The total number of such elemen-

tary 3-point structures precisely corresponds to the number of nonnegative integer points

(n12, n13, n23) which comprise a three-dimensional polyhedron defined by the constraints

n12 + n13 ≤ ℓ1 , n12 + n23 ≤ ℓ2 , n13 + n23 ≤ ℓ3 . (A.6)

This number may be determined in closed form to be [41, 43]

N(ℓ1, ℓ2, ℓ3) =
(ℓ1 + 1)(ℓ1 + 2)(3ℓ2 − ℓ1 + 3)

6
−

p(p + 2)(2p + 5)

24
−

1 − (−1)p

16
, (A.7)

where the spins have been ordered such that ℓ1 ≤ ℓ2 ≤ ℓ3 and p ≡ max(0, ℓ1 + ℓ2 − ℓ3).

Thus, these independent elementary 3-point structures are completely and uniquely

specified by a particular choice of three nonnegative integers nij subject to

m1 ≡ ℓ1 − n12 − n13 ≥ 0 , m2 ≡ ℓ2 − n12 − n23 ≥ 0 , m3 ≡ ℓ3 − n13 − n23 ≥ 0 . (A.8)

In the present case, we have a 3-point function of the type (scalar)-(scalar)-(spin-ℓ),

which just contains the unique tensor structure







∆1 ∆2 ∆3

0 0 ℓ

0 0 0






=

V ℓ
3

X
1
2 (∆1+∆2−∆3−ℓ)

12 X
1
2 (∆1+∆3−∆2+ℓ)

13 X
1
2 (∆2+∆3−∆1+ℓ)

23

. (A.9)

Next, for 3-point functions of the type (scalar)-(spin-ℓ2)-(spin-ℓ3), we have several confor-

mally invariant 3-point structures. Since ℓ1 = 0 and −n12 − n13 < 0, the assumption of

nonnegative nij leads us to the restricted set of conditions

n12 = n13 = 0 , m2 = ℓ2 − n23 ≥ 0 , m3 = ℓ3 − n23 ≥ 0 . (A.10)

With this, we find that we can write the 3-point structures as follows:







∆1 ∆2 ∆3

0 ℓ2 ℓ3

n23 0 0






=

V m2
2 V m3

3 Hn23
23

(X12)
1
2 (∆1+τ2−τ3)(X13)

1
2 (∆1+τ3−τ2)(X23)

1
2 (τ2+τ3−∆1)

. (A.11)

In this case, the number of inequivalent structures is given by

N(0, ℓ2, ℓ3) = (ℓ2 + 1) −
p(p + 2)(2p + 5)

24
−

1 − (−1)p

16
, (A.12)

where the spins are ordered as in 0 ≤ ℓ2 ≤ ℓ3 with p ≡ max(0, ℓ2 − ℓ3). Thus, we find the

simple result

ℓ3 ≥ ℓ2 : N(0, ℓ2, ℓ3) = (ℓ2 + 1) . (A.13)
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B Recursion relation coefficients

The coefficients appearing in eq. (4.38) are explicitly given by

snIJ
= −

(∆−∆12+ℓ−1)(∆+∆′−∆3+ℓ−ℓ′+2nIJ −1)

2(∆+ℓ−1)(∆+ℓ)
, (B.1)

snIJ +1 =
(ℓ′−nIJ)(∆−∆12+ℓ−1)

2(∆+ℓ−1)(∆+ℓ)
, (B.2)

tnIJ −1 =
nIJ(d+2(nIJ −2))(∆12+d−∆+ℓ−1)(2(d−nIJ)−∆′−∆+∆3+ℓ′+3(ℓ−1))

2(d+2(ℓ−2))(d+2(ℓ−1))(d−∆+ℓ−2)(d−∆+ℓ−1)
,

(B.3)

tnIJ
= −

(ℓ−nIJ)(d−∆+∆12+ℓ−1)

2(d+2(ℓ−2))(d+2(ℓ−1))(d−∆+ℓ−2)(d−∆+ℓ−1)
[

d(d−2)+nIJ

(

d−4nIJ +3(ℓ+ℓ′)−1
)

−
(

∆+∆′−∆3
)

(d+nIJ +ℓ−3)+(ℓ−1)
(

ℓ−ℓ′−3+2d
)]

, (B.4)

tnIJ +1 =
(ℓ−nIJ −1)(ℓ−nIJ)(d−∆+∆12+ℓ−1)(ℓ′−nIJ)

2(d+2(ℓ−2))(d+2(ℓ−1))(d−∆+ℓ−2)(d−∆+ℓ−1)
, (B.5)

unIJ −1 =
nIJ(d+2(nIJ −2))(∆−∆12+ℓ−1)(d−∆+∆12+ℓ−1)

4(d−2∆)(d−2(∆+1))(∆+ℓ−1)(∆+ℓ)(d−∆+ℓ−2)(d−∆+ℓ−1)

×
(

∆−∆′+∆3−2nIJ +ℓ+ℓ′+1
)(

2d−∆′−3∆+∆3−2nIJ +ℓ+ℓ′−1
)

, (B.6)

unIJ
= −

(∆−∆12+ℓ−1)(d−∆+∆12+ℓ−1)

4(d−2∆)(d−2(∆+1))(∆+ℓ−1)(∆+ℓ)(d−∆+ℓ−2)(d−∆+ℓ−1)

×

(

∆
[

d2(∆−2)−d
(

2∆2−∆−4
)

+∆
(

∆2+∆−3
)

−1
]

+ℓℓ′[2(d2−4n2
IJ)−d

(

∆′−∆3+5(∆+1)
)

+2nIJ

(

d−2
(

∆′+∆−∆3
))

+2
(

∆′+∆(2∆+3)−∆3+1
)]

+
(

ℓ+ℓ′)[16n3
IJ −2n2

IJ

(

d−3(∆+∆′−∆3)+4
)

+(d−2)(∆−1)(d−∆−2)

−nIJ

(

3d2−2d
(

∆′+3∆−∆3+5
)

+2
(

3∆′+∆(2∆+5)−3∆3+2
)

)

]

+
(

ℓ+ℓ′)2 (d(∆−nIJ −1)−(∆−1)(∆+2)+nIJ(3−5nIJ))+ℓℓ′ (ℓ+ℓ′)(d+2(2nIJ −1))

−(∆−1)(d−∆−2)
(

∆3−∆′)(d−∆′−2∆+∆3
)

+(d−2)(d−1)

+n2
IJ

[

2d(2d−7)+1−
(

∆3−∆′)(−2(d−6)−∆′−2∆+∆3
)

−∆(10(d−2)−7∆)
]

−nIJ

[(

∆3−∆′)(d
(

d−∆′+∆3−2(∆+1)
)

+3(∆′+2∆−∆3)−4
)

+∆(d(d−∆−8)+5∆+12)+d(d−3)−1
]

+4n3
IJ

(

(d+2)−2(∆+∆′−∆3)
)

−12n4
IJ

)

,

(B.7)

unIJ +1 =
(ℓ−nIJ)(ℓ′−nIJ)(∆−∆12+ℓ−1)(d−∆+∆12+ℓ−1)

4(d−2∆)(d−2(∆+1))(∆+ℓ−1)(∆+ℓ)(d−∆+ℓ−2)(d−∆+ℓ−1)

×
[

(ℓ(ℓ′−2)+ℓ′(ℓ−2))−d
(

d−∆′−3∆+∆3+nIJ −2
)

−2
(

∆′+∆(∆+2)−∆3−1
)

−2nIJ

(

2(ℓ+ℓ′)−3nIJ −
(

∆+∆′−∆3+2
))]

, (B.8)

unIJ +2 =
(ℓ−nIJ)(ℓ′−nIJ)(ℓ−nIJ −1)(ℓ′−nIJ −1)(∆−∆12+ℓ−1)(d−∆+∆12+ℓ−1)

4(d−2∆)(d−2(∆+1))(∆+ℓ−1)(∆+ℓ)(d−∆+ℓ−2)(d−∆+ℓ−1)
.

(B.9)
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C Symmetry-transformed recursion relations

Here we write explicitly the recursion relations obtained by applying the symmetry trans-

formations eq. (4.45) and eq. (4.46) to the fixed-∆3 recursion eq. (4.80). We choose the

conventions of eq. (2.10) and eq. (2.11). We first recast eq. (4.80) in the form

(u1u2)−1/2G
(nIJ )
(ℓ−1,ℓ′−1;0,0)(∆12 + 1, ∆45 − 1) = G

(nIJ )
(ℓ−1,ℓ′−1;−1,−1)

+
nIJ +1
∑

mIJ =nIJ

r
(−0)
1 mIJ

G
(mIJ )
(ℓ−1,ℓ′;−1,0) +

nIJ +1
∑

mIJ =nIJ −1

r
(−0)
2 mIJ

G
(mIJ )
(ℓ−1,ℓ′−2;−1,0) +

nIJ +2
∑

mIJ =nIJ −1

r
(−0)
3 mIJ

G
(mIJ )
(ℓ−1,ℓ′−1;−1,1)

+
nIJ +1
∑

mIJ =nIJ

s
(0+)
1 mIJ

G
(mIJ )
(ℓ,ℓ′−1;0,−1) +

nIJ +2
∑

mIJ =nIJ

s
(0+)
2 mIJ

G
(mIJ )
(ℓ,ℓ′;0,0) +

nIJ +2
∑

mIJ =nIJ −1

s
(0+)
3 mIJ

G
(mIJ )
(ℓ,ℓ′−2;0,0)

+
nIJ +3
∑

mIJ =nIJ −1

s
(0+)
4 mIJ

G
(mIJ )
(ℓ,ℓ′−1;0,1) +

nIJ +1
∑

mIJ =nIJ −1

t
(0−)
1 mIJ

G
(mIJ )
(ℓ−2,ℓ′−1;0,−1) +

nIJ +2
∑

mIJ =nIJ −1

t
(0−)
2 mIJ

G
(mIJ )
(ℓ−2,ℓ′;0,0)

+
nIJ +2
∑

mIJ =nIJ −2

t
(0−)
3 mIJ

G
(mIJ )
(ℓ−2,ℓ′−2;0,0) +

nIJ +2
∑

mIJ =nIJ −2

t
(0−)
4 mIJ

G
(mIJ )
(ℓ−2,ℓ′−1;0,1) +

nIJ +2
∑

mIJ =nIJ −1

u
(+0)
1 mIJ

G
(mIJ )
(ℓ−1,ℓ′−1;1,−1)

+
nIJ +3
∑

mIJ =nIJ −1

u
(+0)
2 mIJ

G
(mIJ )
(ℓ−1,ℓ′;1,0) +

nIJ +3
∑

mIJ =nIJ −2

u
(+0)
3 mIJ

G
(mIJ )
(ℓ−1,ℓ′−2;1,0) +

nIJ +4
∑

mIJ =nIJ −2

u
(+0)
4 mIJ

G
(mIJ )
(ℓ−1,ℓ′−1;1,1).

(C.1)

Using the symmetry under the interchange 1 ↔ 2, namely eq. (4.45), we obtain

− (u1u2)−1/2w2;4G
(nIJ )
(ℓ−1,ℓ′−1;0,0)(∆12 − 1, ∆45 − 1) = −G

(nIJ )
(ℓ−1,ℓ′−1;−1,−1)

−
nIJ +1
∑

mIJ =nIJ

r
(−0)
1 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−1,ℓ′;−1,0) −

nIJ +1
∑

mIJ =nIJ −1

r
(−0)
2 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−1,ℓ′−2;−1,0)

−
nIJ +2
∑

mIJ =nIJ −1

r
(−0)
3 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−1,ℓ′−1;−1,1) +

nIJ +1
∑

mIJ =nIJ

s
(0+)
1 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ,ℓ′−1;0,−1)

+
nIJ +2
∑

mIJ =nIJ

s
(0+)
2 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ,ℓ′;0,0) +

nIJ +2
∑

mIJ =nIJ −1

s
(0+)
3 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ,ℓ′−2;0,0)

+
nIJ +3
∑

mIJ =nIJ −1

s
(0+)
4 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ,ℓ′−1;0,1) +

nIJ +1
∑

mIJ =nIJ −1

t
(0−)
1 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−2,ℓ′−1;0,−1)

+
nIJ +2
∑

mIJ =nIJ −1

t
(0−)
2 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−2,ℓ′;0,0) +

nIJ +2
∑

mIJ =nIJ −2

t
(0−)
3 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−2,ℓ′−2;0,0)

+
nIJ +2
∑

mIJ =nIJ −2

t
(0−)
4 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−2,ℓ′−1;0,1) −

nIJ +2
∑

mIJ =nIJ −1

u
(+0)
1 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−1,ℓ′−1;1,−1)

−
nIJ +3
∑

mIJ =nIJ −1

u
(+0)
2 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−1,ℓ′;1,0) −

nIJ +3
∑

mIJ =nIJ −2

u
(+0)
3 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−1,ℓ′−2;1,0)

−
nIJ +4
∑

mIJ =nIJ −2

u
(+0)
4 mIJ

(−∆12, ∆45)G
(mIJ )
(ℓ−1,ℓ′−1;1,1) . (C.2)
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Similarly, using the symmetry under the interchange 4 ↔ 5, namely eq. (4.46), we obtain

− (u1u2)−1/2w2;4G
(nIJ )
(ℓ−1,ℓ′−1;0,0)(∆12 + 1, ∆45 + 1) = −G

(nIJ )
(ℓ−1,ℓ′−1;−1,−1)

+
nIJ +1
∑

mIJ =nIJ

r
(−0)
1 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−1,ℓ′;−1,0) +

nIJ +1
∑

mIJ =nIJ −1

r
(−0)
2 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−1,ℓ′−2;−1,0)

−
nIJ +2
∑

mIJ =nIJ −1

r
(−0)
3 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−1,ℓ′−1;−1,1) −

nIJ +1
∑

mIJ =nIJ

s
(0+)
1 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ,ℓ′−1;0,−1)

+
nIJ +2
∑

mIJ =nIJ

s
(0+)
2 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ,ℓ′;0,0) +

nIJ +2
∑

mIJ =nIJ −1

s
(0+)
3 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ,ℓ′−2;0,0)

−
nIJ +3
∑

mIJ =nIJ −1

s
(0+)
4 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ,ℓ′−1;0,1) −

nIJ +1
∑

mIJ =nIJ −1

t
(0−)
1 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−2,ℓ′−1;0,−1)

+
nIJ +2
∑

mIJ =nIJ −1

t
(0−)
2 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−2,ℓ′;0,0) +

nIJ +2
∑

mIJ =nIJ −2

t
(0−)
3 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−2,ℓ′−2;0,0)

−
nIJ +2
∑

mIJ =nIJ −2

t
(0−)
4 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−2,ℓ′−1;0,1) −

nIJ +2
∑

mIJ =nIJ −1

u
(+0)
1 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−1,ℓ′−1;1,−1)

+
nIJ +3
∑

mIJ =nIJ −1

u
(+0)
2 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−1,ℓ′;1,0) +

nIJ +3
∑

mIJ =nIJ −2

u
(+0)
3 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−1,ℓ′−2;1,0)

−
nIJ +4
∑

mIJ =nIJ −2

u
(+0)
4 mIJ

(∆12, −∆45)G
(mIJ )
(ℓ−1,ℓ′−1;1,1) . (C.3)

Finally, using both eq. (4.45) and eq. (4.46), we have

(u1u2)−1/2w−1
2;4G

(nIJ )
(ℓ−1,ℓ′−1;0,0)(∆12−1,∆45+1) = G

(nIJ )
(ℓ−1,ℓ′−1;−1,−1)

−
nIJ +1
∑

mIJ =nIJ

r
(−0)
1mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−1,ℓ′;−1,0)−

nIJ +1
∑

mIJ =nIJ −1

r
(−0)
2mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−1,ℓ′−2;−1,0)

+
nIJ +2
∑

mIJ =nIJ −1

r
(−0)
3mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−1,ℓ′−1;−1,1)−

nIJ +1
∑

mIJ =nIJ

s
(0+)
1mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ,ℓ′−1;0,−1)

+
nIJ +2
∑

mIJ =nIJ

s
(0+)
2mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ,ℓ′;0,0)+

nIJ +2
∑

mIJ =nIJ −1

s
(0+)
3mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ,ℓ′−2;0,0)

−
nIJ +3
∑

mIJ =nIJ −1

s
(0+)
4mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ,ℓ′−1;0,1)−

nIJ +1
∑

mIJ =nIJ −1

t
(0−)
1mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−2,ℓ′−1;0,−1)

+
nIJ +2
∑

mIJ =nIJ −1

t
(0−)
2mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−2,ℓ′;0,0)+

nIJ +2
∑

mIJ =nIJ −2

t
(0−)
3mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−2,ℓ′−2;0,0)

−
nIJ +2
∑

mIJ =nIJ −2

t
(0−)
4mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−2,ℓ′−1;0,1)+

nIJ +2
∑

mIJ =nIJ −1

u
(+0)
1mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−1,ℓ′−1;1,−1)

−
nIJ +3
∑

mIJ =nIJ −1

u
(+0)
2mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−1,ℓ′;1,0)−

nIJ +3
∑

mIJ =nIJ −2

u
(+0)
3mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−1,ℓ′−2;1,0)

+
nIJ +4
∑

mIJ =nIJ −2

u
(+0)
4mIJ

(−∆12,−∆45)G
(mIJ )
(ℓ−1,ℓ′−1;1,1) . (C.4)
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We may combine the original fixed-∆3 recursion relation with the above symmetry-

transformed recursion relations in the following manner. We take eq. (C.1) + eq. (C.2))

+ c (eq. (C.3) + eq. (C.4)), where c is chosen such that the blocks in the set
{

G
(nIJ −2)
(ℓ−1,ℓ′−1;1,1) , G

(nIJ −1)
(ℓ−1,ℓ′−1;1,1) , G

(nIJ )
(ℓ−1,ℓ′−1;1,1) , G

(nIJ +1)
(ℓ−1,ℓ′−1;1,1) , G

(nIJ +2)
(ℓ−1,ℓ′−1;1,1) , G

(nIJ +3)
(ℓ−1,ℓ′−1;1,1) , G

(nIJ +4)
(ℓ−1,ℓ′−1;1,1)

}

(C.5)

are eliminated. This occurs when c takes the value

c =
(∆′ + ∆45 + ℓ′ − 2) (d − ∆′ − ∆45 + ℓ′ − 2)

(∆′ − ∆45 + ℓ′ − 2) (d − ∆′ + ∆45 + ℓ′ − 2)
. (C.6)

With this, we obtain the attractively simpler relation

G
(nIJ +1)
(ℓ,ℓ′;0,0) = −

1

s̄
(0+)
2 nIJ +1

(

(u1u2)−1/2[− G
(nIJ )
(ℓ−1,ℓ′−1;0,0)(∆12 + 1, ∆45 − 1)

+ w2;4G
(nIJ )
(ℓ−1,ℓ′−1;0,0)(∆12 − 1, ∆45 − 1)

+ cw2;4G
(nIJ )
(ℓ−1,ℓ′−1;0,0)(∆12 + 1, ∆45 + 1)

− cw−1
2;4G

(nIJ )
(ℓ−1,ℓ′−1;0,0)(∆12 − 1, ∆45 + 1)

]

+
nIJ +1
∑

mIJ =nIJ

s̄
(0+)
1 mIJ

G
(mIJ )
(ℓ,ℓ′−1;0,−1) + s̄

(0+)
2 nIJ

G
(nIJ )
(ℓ,ℓ′;0,0) + s̄

(0+)
2 nIJ +2G

(nIJ +2)
(ℓ,ℓ′;0,0)

+
nIJ +2
∑

mIJ =nIJ −1

s̄
(0+)
3 mIJ

G
(mIJ )
(ℓ,ℓ′−2;0,0) +

nIJ +1
∑

mIJ =nIJ −1

t̄
(0−)
1 mIJ

G
(mIJ )
(ℓ−2,ℓ′−1;0,−1)

+
nIJ +2
∑

mIJ =nIJ −1

t̄
(0−)
2 mIJ

G
(mIJ )
(ℓ−2,ℓ′;0,0) +

nIJ +2
∑

mIJ =nIJ −2

t̄
(0−)
3 mIJ

G
(mIJ )
(ℓ−2,ℓ′−2;0,0)

+
nIJ +2
∑

mIJ =nIJ −1

ū
(+0)
1 mIJ

G
(mIJ )
(ℓ−1,ℓ′−1;1,−1) +

nIJ +3
∑

mIJ =nIJ −1

ū
(+0)
2 mIJ

G
(mIJ )
(ℓ−1,ℓ′;1,0)

+
nIJ +3
∑

mIJ =nIJ −2

ū
(+0)
3 mIJ

G
(mIJ )
(ℓ−1,ℓ′−2;1,0)

)

. (C.7)

D 3-point coefficients for the vector and tensor cases

The coefficients in eq. (4.137)–eq. (4.139) for promoting the scalar Φ to a vector vA using

weight-shifting operators applied to 3-point functions are given by:

α1 =
1

2

(

−∆′+∆−∆3+ℓ′−ℓ+1
)

, (D.1)

β1 =
1

2

(

ℓ′−nIJ

)

, (D.2)

γ1 =
nIJ −ℓ

2
, (D.3)

α2 =
1

2

(

∆′−∆+∆3−ℓ′+ℓ−1
)(

∆′+∆−∆3+2nIJ −ℓ′+ℓ−1
)

, (D.4)

β2 =
1

2

(

ℓ′−nIJ

)(

−∆′−∆+∆3−2nIJ +ℓ′−ℓ+1
)

, (D.5)
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γ2 =
1

2

(

2(∆−1)(∆3−1)−2n2
IJ

+nIJ

(

−∆′−∆+∆3+ℓ′+1
)

+ℓ
(

∆′+∆+∆3+nIJ −ℓ′−3
)

+ℓ2
)

, (D.6)

α3 =
1

2

(

ℓ′−nIJ

)(

−∆′+∆−∆3+ℓ′−ℓ+1
)

, (D.7)

β3 =
1

2

(

−nIJ +ℓ′−1
)(

ℓ′−nIJ

)

, (D.8)

γ3 = −
1

2

(

ℓ′−nIJ

)

(−nIJ +ℓ−1) , (D.9)

α4 =
1

2
nIJ

[

2d2 (∆′−∆−∆3−ℓ′+ℓ+1
)

+d
(

−∆′ (∆′+8
)

+∆2
3+∆(∆+6)+2∆3(∆+1)+3ℓ2

−2ℓ
(

−∆′+2∆+4∆3+ℓ′)+2
(

∆′+4
)

ℓ′−ℓ′2−3
)

+4
(

−∆2−∆2
3−(2∆3+1)ℓ2+2ℓ

(

−∆′+∆(∆3+1)+ℓ′)+
(

ℓ′−∆′)2+1
)]

+n2
IJ

(

∆′−∆+∆3−ℓ′+ℓ−1
)(

d−∆′−∆+∆3+ℓ′+3ℓ+3
)

−2n3
IJ

(

∆′−∆+∆3−ℓ′+ℓ−1
)

, (D.10)

β4 =
1

2
n2

IJ

(

2d2+d
(

−∆′−∆+∆3−ℓ′+3ℓ−11
)

+2∆′ (ℓ′+3
)

−2
(

3(∆3−∆)+ℓ′ (−∆+∆3+ℓ′+6
)

+3ℓ
(

ℓ′+3
)

+1
))

+
1

2
nIJ

[

−2d2 (∆3+ℓ′)

+d
(

∆′−∆+2∆∆3+5∆3+
(

∆′+∆−∆3+8
)

ℓ′−3ℓ
(

2∆3+ℓ′−1
)

−
(

ℓ′)2+3
)

−4
(

∆′+(∆3−1)ℓ2+∆′ℓ′−ℓ
(

−∆+(∆+2)∆3+3ℓ′+1
)

−
(

ℓ′−∆
)(

∆3+ℓ′)
)

]

+n3
IJ

(

d−∆′−∆+∆3+3ℓ′+3ℓ+5
)

−2n4
IJ , (D.11)

γ4 =
1

2
n2

IJ

[

−2d2+d
(

∆′+∆+3∆3−ℓ′−ℓ+7
)

+2
(

3(ℓ2−∆′)−∆−2∆∆3+∆3+ℓ
(

−∆′−∆+3∆3+ℓ′+10
)

+3ℓ′+3
)

]

+
1

2
nIJ(ℓ+1)

[

2d2+d
(

−∆′−∆−3∆3+ℓ′+3ℓ−5
)

−4
(

−∆′−∆∆3+ℓ′+(∆3+2)ℓ
)]

+n3
IJ

(

−d+∆′+∆−∆3−ℓ′−5ℓ−5
)

+2n4
IJ , (D.12)

α5 =
1

2
nIJ

(

d2 (∆′−∆−∆3−ℓ′+ℓ+1
)

+d
((

−∆′+∆3−1
)(

∆′+∆3+2
)

+∆(∆+3)+ℓ2+
(

∆′+∆−∆3+4
)

ℓ′−ℓ
(

2∆+4∆3+ℓ′−1
))

−3∆2−2∆′+∆3(2∆−3∆3)+ℓ
(

−2ℓ2+6∆−2∆3+4
(

−∆′+∆∆3+
(

−∆′+∆−∆3+2
)

ℓ′+ℓ′2
)

)

+3
(

ℓ′−∆′)2+2ℓ′−ℓ2 (2(∆′−∆)+6∆3+2ℓ′+1
)

+3
)

−
1

2
(ℓ+1)

(

d2 (∆′−∆−∆3−ℓ′+ℓ+1
)

+d
(

∆(∆+2)−∆′ (∆′+2
)

+∆3 (∆3+2)+ℓ
(

2ℓ+∆′−3(∆+∆3)−2ℓ′+1
)

+
(

∆′+∆−∆3+3
)

ℓ′−3
)

+ℓ3+ℓ
(

−∆′2+(∆+∆3)2+2(∆+∆3+∆−∆3+2)ℓ′+ℓ′2−3
)

−2
(

∆2−∆′2+∆2
3+
(

∆′+∆−∆3+1
)

ℓ′−1
)

−2ℓ2 (∆+∆3+ℓ′))

+
1

2
n2

IJ

(

∆′−∆+∆3−ℓ′+ℓ−1
)(

d−∆′−∆+∆3+3ℓ′+7ℓ+5
)

−2n3
IJ

(

∆′−∆+∆3−ℓ′+ℓ−1
)

,

(D.13)
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γ5 = 2n4
IJ +

1

2
n3

IJ

(

−d+∆′+∆−∆3−3ℓ′−11ℓ−5
)

+
1

2
n2

IJ

(

−d2+d
(

∆′+∆+∆3+2
)

−3(∆′−ℓ′)

+∆3(−2∆+1)+ℓ
(

7ℓ′+9ℓ+10−∆′−∆+3∆3
)

−∆+1
)

−
1

2
ℓ(ℓ+1)

(

d2+d
(

−∆′−∆−∆3+2ℓ−1
)

+2
(

∆′+∆∆3
)

+ℓ2−ℓ
(

∆′+∆+∆3+ℓ′+1
))

+
1

2
nIJ

(

d2(2ℓ+1)+d
(

−∆′−∆−∆3+3ℓ2−ℓ
(

2∆′+2∆+2∆3+1
)

−1
)

+2
(

∆′+∆∆3
)

−ℓ3−2ℓ
(

−2∆′+∆3(1−2∆)+2ℓ′+1
)

−ℓ2 (∆′+∆+3∆3+5ℓ′+5
))

, (D.14)

β5 = −2n4
IJ +

1

2
n3

IJ

(

d−∆′−∆+∆3+7(ℓ′+ℓ)+5
)

+
1

2
n2

IJ

(

d2+d
(

−∆′−∆+∆3−ℓ′+ℓ−4
)

+3(∆′+∆−∆3)−2ℓ2+ℓ′ (∆′+∆−∆3−3ℓ′−8
)

−ℓ
(

11ℓ′+7
)

+1
)

+
1

2
ℓ′(ℓ+1)

(

d2+d
(

−∆′−∆+∆3+2ℓ−3
)

+2
(

∆′+∆−∆3+1
)

+ℓ2−ℓ
(

∆′+∆−∆3+ℓ′+3
)

)

+
1

2
nIJ

(

−d2 (ℓ′+ℓ+1
)

+d
(

∆′+∆−∆3−2ℓ2+ℓ
(

∆′+∆−∆3−ℓ′+1
)

+
(

∆′+∆−∆3+4
)

ℓ′+3
)

−ℓ3+ℓ
(

−∆′−∆+∆3+4ℓ′ (ℓ′+2
)

+1
)

+
(

3ℓ′+2
)(

−∆′−∆+∆3+ℓ′−1
)

+ℓ2 (∆′+∆−∆3+3ℓ′+2
))

, (D.15)

α6 =
1

2
(ℓ−nIJ)(−nIJ +ℓ+1)

(

ℓ′−nIJ

)(

∆′−∆+∆3−ℓ′+ℓ−1
)

, (D.16)

β6 = −
1

2
(ℓ−nIJ)(−nIJ +ℓ+1)

(

nIJ −ℓ′)(nIJ −ℓ′+1
)

, (D.17)

γ6 =
1

2
(ℓ−nIJ)

(

ℓ′−nIJ

)

(−nIJ +ℓ−1)(−nIJ +ℓ+1) . (D.18)

The coefficients in eq. (4.167)–eq. (4.172) for promoting the vector vA to a tensor T AB

using weight-shifting operators applied to 3-point functions are:

ξ11 =
1

2

(

−∆′+∆−∆3+ℓ′−ℓ
)

, (D.19)

ξ12 =
1

2

(

ℓ′−nIJ

)

, (D.20)

ξ14 =
1

2
(nIJ −ℓ) , (D.21)

ξ22 =
1

2

(

−∆′+∆−∆3+ℓ′−ℓ−2
)

, (D.22)

ξ23 =
1

2

(

−nIJ +ℓ′−1
)

, (D.23)

ξ25 =
1

2
(nIJ −ℓ) , (D.24)

ξ34 =
1

2

(

−∆′+∆−∆3+ℓ′−ℓ+2
)

, (D.25)

ξ35 =
1

2

(

ℓ′−nIJ

)

, (D.26)

ξ36 =
1

2
(nIJ −ℓ+1) , (D.27)

κ22 =
1

2

(

∆′−∆+∆3−ℓ′+ℓ+2
)(

∆′+∆−∆3+2nIJ −ℓ′+ℓ
)

, (D.28)
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λ22 = −
1

2

(

−nIJ +ℓ′−1
)(

∆′−∆+∆3−ℓ′+ℓ+2
)

, (D.29)

κ23 = −
1

2

(

−nIJ +ℓ′−1
)(

∆′+∆−∆3+2nIJ −ℓ′+ℓ
)

, (D.30)

λ23 =
1

2

(

−nIJ +ℓ′−2
)(

−nIJ +ℓ′−1
)

, (D.31)

κ25 = −n2
IJ +

1

2
nIJ

(

−∆′−∆+∆3+ℓ′+ℓ
)

+
1

2

(

2(∆−1)∆3+ℓ2+ℓ
(

∆′+∆+∆3−ℓ′)
)

, (D.32)

λ25 =
1

2
(−nIJ +ℓ−1)

(

nIJ −ℓ′+1
)

, (D.33)

κ34 =
1

2

(

∆′−∆+∆3−ℓ′+ℓ−2
)(

∆′+∆−∆3+2nIJ −ℓ′+ℓ−2
)

, (D.34)

λ34 =
1

2

(

ℓ′−nIJ

)(

−∆′+∆−∆3+ℓ′−ℓ+2
)

, (D.35)

κ35 =
1

2

(

ℓ′−nIJ

)(

−∆′−∆+∆3−2nIJ +ℓ′−ℓ+2
)

, (D.36)

λ35 =
1

2

(

−nIJ +ℓ′−1
)(

ℓ′−nIJ

)

, (D.37)

κ36 = −n2
IJ +

1

2
nIJ

(

−∆′−∆+∆3+ℓ′+ℓ
)

+
1

2

(

−∆′−∆+∆3(2∆−1)+ℓ2+ℓ
(

∆′+∆+∆3−ℓ′−3
)

+ℓ′+2
)

, (D.38)

λ36 =
1

2
(−nIJ +ℓ−2)

(

nIJ −ℓ′) , (D.39)

ρ22 = −2n3
IJ

(

∆′−∆+∆3−ℓ′+ℓ+2
)

+n2
IJ

(

∆′−∆+∆3−ℓ′+ℓ+2
)(

d−∆′−∆+∆3+ℓ′+3ℓ+2
)

+nIJ

(

d2 (∆′−∆−∆3−ℓ′+ℓ+2
)

−2
(

∆2−
(

∆′+2
)2

+∆3 (∆3+2)+(2∆3+3)ℓ2

−2ℓ
(

−∆′+∆(∆3+2)+ℓ′−2
)

+2
(

∆′+2
)

ℓ′−ℓ′2)

+
1

2
d
(

−
(

∆′+2
)(

∆′+10
)

+∆2
3+∆(∆+8)+2∆∆3+4∆3+3ℓ2

−2ℓ
(

−∆′+2∆+4∆3+ℓ′+2
)

+2
(

∆′+6
)

ℓ′−ℓ′2)
)

, (D.40)

σ22 =
1

2
n2

IJ

(

∆′−∆+∆3−ℓ′+ℓ+2
)(

d−∆′−∆+∆3+3ℓ′+7ℓ+2
)

−2n3
IJ

(

∆′−∆+∆3−ℓ′+ℓ+2
)

+
1

2
nIJ

(

d2 (∆′−∆−∆3−ℓ′+ℓ+2
)

−3∆2−3∆2
3+2∆∆3−2ℓ3

+d
(

−
(

∆′+2
)(

∆′+4
)

+∆(∆+2)+∆3 (∆3+4)

+
(

∆′+∆−∆3+4
)

ℓ′−ℓ
(

2∆+4∆3+ℓ′−ℓ+2
))

+2ℓ
(

3∆+∆3+2
(

∆∆3+
(

−∆′+∆−∆3−2
)

ℓ′+ℓ′2
)

−1
)

+3
(

ℓ′−∆′)2+2
(

5∆′+∆−3∆3−5ℓ′+4
)

−ℓ2 (2∆′−2∆+6∆3+2ℓ′+7
)

)
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−
1

2
(ℓ+1)

(

d2 (∆′−∆−∆3−ℓ′+ℓ+2
)

−2ℓ2 (∆+∆3+ℓ′)

+d
(

−
(

∆′+2
)(

∆′+3
)

+∆(∆+1)+∆3 (∆3+5)+2ℓ2

+ℓ
(

∆′−3∆−3∆3−2ℓ′+1
)

+
(

∆′+∆−∆3+3
)

ℓ′)

+ℓ3+ℓ
(

−∆′ (∆′+2
)

+∆2
3+6∆3+2∆+2∆3

(

∆−ℓ′)+
(

∆+ℓ′)2−2
)

−2
(

−
(

∆′+1
)(

∆′+2
)

+(∆−1)∆+∆3 (∆3+3)+ℓ′ (∆′+∆−∆3+1
))

)

, (D.41)

τ22 = −
1

2
(ℓ−nIJ)(−nIJ +ℓ+1)

(

nIJ −ℓ′+1
)(

∆′−∆+∆3−ℓ′+ℓ+2
)

, (D.42)

ρ23 = nIJ

(

n2
IJ

(

d−∆′−∆+∆3+3ℓ+2
)

+ℓ′
(

d

2
+nIJ −2

)

(

−2d+∆′+∆−∆3+3nIJ −3ℓ+2
)

−
1

2
ℓ′2(d+2nIJ −4)+

1

2
(d−4)nIJ

(

2d−∆′−∆+∆3+3ℓ−2
)

−∆3(d+2ℓ−2)(d−∆+ℓ−1)−2n3
IJ

)

, (D.43)

σ23 =
1

2
(−nIJ +ℓ+1)

(

−nIJ +ℓ′−1
)

(

d2+d
(

−∆′−∆+∆3+nIJ +2ℓ−3
)

+2
(

∆′+∆−∆3+1
)

−nIJ

(

∆′+∆−∆3+4nIJ −3ℓ′+2
)

−ℓ
(

∆′+∆−∆3−3nIJ +ℓ′+2
)

+ℓ2
)

, (D.44)

τ23 = −
1

2
(ℓ−nIJ)(−nIJ +ℓ+1)

(

nIJ −ℓ′+1
)(

nIJ −ℓ′+2
)

, (D.45)

ρ25 = nIJ(−nIJ +ℓ+1)

(

1

2

(

2d2+d
(

−∆′−∆−3∆3+ℓ′+3ℓ−10
)

+4
(

∆′+∆3∆+∆−ℓ′−(∆3+3)ℓ+2
))

−2n2
IJ +nIJ

(

d−∆′−∆+∆3+ℓ′+3ℓ+2
)

)

,

(D.46)

σ25 = −
1

2
(ℓ−nIJ)(−nIJ +ℓ+1)

(

d2+nIJ

(

d−∆′−∆+∆3+3ℓ′+3ℓ−2
)

+d
(

−∆′−∆−∆3+2ℓ−3
)

+2
(

∆′+∆3∆+∆+1
)

−4n2
IJ +ℓ2−ℓ

(

∆′+∆+∆3+ℓ′+2
)

)

,

(D.47)

τ25 = −
1

2
(−nIJ +ℓ−1)(ℓ−nIJ)(−nIJ +ℓ+1)

(

nIJ −ℓ′+1
)

. (D.48)

E Recursion coefficients for 3-point structures

The coefficients appearing in the recursion relations eq. (4.145)–eq. (4.147) for the 3-point

structures Q
(i,nIJ )
(ℓ,1,ℓ′) are given by:

a1 =
(nIJ −ℓ)

(∆3−1)(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−1)
, (E.1)

a2 =
(ℓ−nIJ)(ℓ′−nIJ)

(∆3−1)(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−1)
, (E.2)
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a3 = −

(

(ℓ−nIJ )(∆′+∆−∆3+2nIJ −ℓ′+ℓ−1)
(∆3−1)(∆+ℓ−1) +2

)

∆′−∆+∆3−ℓ′+ℓ−1
, (E.3)

b1 =
(−nIJ +ℓ−1)(ℓ−nIJ)(−nIJ +ℓ′−1)(d−∆′−∆3+ℓ′)

(∆3−1)(nIJ +1)(∆+ℓ−1)(d−∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ−1)
, (E.4)

b2 =
(−∆′+∆−∆3+ℓ′−ℓ+1)

(∆3−1)(nIJ +1)(d+2ℓ−2)(d−∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ−1)
, (E.5)

b3 =
2(ℓ−nIJ)(d−∆′+∆−∆3+ℓ′+ℓ−1)

(∆3−1)(d+2ℓ−2)(∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ−1)
, (E.6)

b4 = −
(−nIJ +ℓ−1)(ℓ−nIJ)(d−∆′+∆−∆3+ℓ′+ℓ−1)

(∆3−1)(nIJ +1)(d+2ℓ−2)(∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ−1)
, (E.7)

b5 =
(−∆′+∆+∆3−2nIJ +ℓ′+ℓ−1)

(∆3−1)(∆+ℓ−1)(d−∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ−1)

×

(

2d(∆+nIJ −1)+∆′−∆
(

∆′+∆+∆3
)

+∆3

−2nIJ

(

∆′+∆3
)

+(∆+2nIJ)ℓ′+ℓ
(

∆′+∆3−ℓ′+ℓ−2
)

−ℓ′+1

)

, (E.8)

b6 = −
(ℓ−nIJ)

(∆3−1)(nIJ +1)(∆+ℓ−1)(d−∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ−1)

×

(

(d+2)∆2−3d∆+4n2
IJ

(

−d+∆′+∆3−ℓ′)

+nIJ

(

−d∆−∆′ (d+4ℓ′+2ℓ−6
)

+∆3
(

d−2ℓ′−2ℓ+6
)

+ℓ′ (3d+3ℓ′+2ℓ−6
)

+d(ℓ−5)+∆2+∆′2−∆2
3−(ℓ−1)2)+∆3

(

d∆+(∆+ℓ−3)ℓ′−2ℓ+2
)

+ℓ′
(

d(∆+2)−∆2+ℓ2+∆′(−∆+ℓ−3)−1
)

+∆′ (−d∆+∆∆′−2ℓ+2
)

+∆ℓ(d+ℓ−2)−∆3−∆2
3∆+∆−(ℓ−3)ℓ′2−2(ℓ−2)ℓ−2

)

, (E.9)

c1 =
(∆′+∆−∆3+2nIJ −ℓ′+ℓ−1)

(∆3−1)(∆+ℓ−1)
, (E.10)

c2 =
(nIJ −ℓ′)

(∆3−1)(∆+ℓ−1)
, (E.11)

c3 =
1

(∆3−1)(∆+ℓ−1)
. (E.12)

The coefficients appearing in the recursion relations eq. (4.173)–eq. (4.178) for the 3-point

structures Q
(a,nIJ )
(ℓ,2,ℓ′) are given by:

a′
1 = −

2

∆′−∆+∆3−ℓ′+ℓ
, (E.13)

a′
2 =

(−nIJ +ℓ−1)(ℓ−nIJ)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)(∆′−∆+∆3−ℓ′+ℓ)
, (E.14)

a′
3 =

(−nIJ +ℓ−1)(ℓ−nIJ)(nIJ −ℓ′)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)(∆′−∆+∆3−ℓ′+ℓ)
, (E.15)

a′
4 =

2(ℓ−nIJ)(nIJ −ℓ′)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)(∆′−∆+∆3−ℓ′+ℓ+2)
, (E.16)
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a′
5 =

2(ℓ−nIJ)(nIJ −ℓ′)(nIJ −ℓ′+1)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)(∆′−∆+∆3−ℓ′+ℓ+2)
, (E.17)

a′
6 =

(ℓ−nIJ)(∆′−∆+∆3−ℓ′+ℓ)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)
(E.18)

×
(

−2n2
IJ +nIJ

(

−∆′−∆+∆3+ℓ′+ℓ
)

+(ℓ−1)
(

∆′+∆−ℓ′+ℓ−2
)

+∆3(2∆+ℓ−1)
)

,

a′
7 = −

1

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)(∆′−∆+∆3−ℓ′+ℓ)(∆′−∆+∆3−ℓ′+ℓ+2)

×

(

2
(

ℓ′−nIJ

)(

(∆−1)∆2
3−2n2

IJ

(

∆′−∆+∆3−ℓ′+ℓ
)

+nIJ

(

−∆′−∆+∆3+ℓ′+ℓ
)(

∆′−∆+∆3−ℓ′+ℓ
)

+ℓ
(

∆′−∆−ℓ′+ℓ
)(

∆′+∆−ℓ′+ℓ
)

+∆3

(

−∆2−∆−(∆+ℓ−1)ℓ′+∆′(∆+ℓ−1)+2∆ℓ+(ℓ−3)ℓ+2
)

)

)

, (E.19)

b′
1 =

(nIJ −ℓ)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ+2)
, (E.20)

b′
2 =

(ℓ−nIJ)(−nIJ +ℓ′−1)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ+2)
, (E.21)

b′
3 = −

(

2(∆−1)∆3−2n2
IJ +nIJ (−∆′−∆+∆3+ℓ′+ℓ)+ℓ2+ℓ(∆′+∆+∆3−ℓ′)

)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ+2)
, (E.22)

c′
1 =

(−nIJ +ℓ−1)(ℓ−nIJ)(−nIJ +ℓ′−2)(d−∆′−∆3+ℓ′−3)

∆3(nIJ +1)(∆+ℓ−1)(d−∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ)
, (E.23)

c′
2 =

2(ℓ−nIJ)(d−∆′+∆−∆3+ℓ′+ℓ−4)

∆3(d+2ℓ−2)(∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ)
, (E.24)

c′
3 = −

(−nIJ +ℓ−1)(ℓ−nIJ)(d−∆′+∆−∆3+ℓ′+ℓ−4)

∆3(nIJ +1)(d+2ℓ−2)(∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ)
, (E.25)

c′
4 = −

(∆′−∆+∆3−ℓ′+ℓ+2)

∆3(nIJ +1)(d+2ℓ−2)(d−∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ)
, (E.26)

c′
5 =

1

∆3(∆+ℓ−1)(d−∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ)

×

(

(

−∆′+∆+∆3−2nIJ +ℓ′+ℓ−2
)(

2d(∆+nIJ −1)+∆′−∆
(

∆′+∆+∆3
)

−3∆+∆3−2nIJ

(

∆′+∆3+3
)

+(∆+2nIJ)ℓ′+ℓ
(

∆′+∆3−ℓ′+ℓ+1
)

−ℓ′+4
)

)

, (E.27)

c′
6 = −

(ℓ−nIJ)

∆3(nIJ +1)(∆+ℓ−1)(d−∆+ℓ−1)(∆′−∆+∆3−2nIJ +ℓ′+ℓ)

×

(

(d+3)∆2−4n2
IJ

(

d−∆′−∆3+ℓ′−3
)

+nIJ

(

−∆′ (d+4ℓ′+2ℓ
)

+∆3
(

d−2ℓ′−2ℓ+6
)

+ℓ′ (3d+3ℓ′+2ℓ−18
)

+d(−∆+ℓ−8)+∆2+∆′(∆′+12)−∆2
3−ℓ(ℓ+4)+26

)

+ℓ′
(

d(∆+2)−∆2+∆′(−∆+ℓ−3)+ℓ(ℓ+4)−13
)

+∆3
(

(d−3)∆+(∆+ℓ−3)ℓ′−3ℓ+5
)

+∆′ (∆(∆′−d+3)−3ℓ+5
)

+∆(d(ℓ−4)+(ℓ−2)ℓ)−2d+∆(−∆2−∆2
3+1)−ℓ′2(ℓ−3)−3ℓ(ℓ+1)+12

)

, (E.28)
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d′
1 =

(nIJ −ℓ+1)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)
, (E.29)

d′
2 =

(−nIJ +ℓ−1)(ℓ′−nIJ)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)
, (E.30)

d′
3 =

(ℓ′−nIJ)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)
, (E.31)

d′
4 = −

(−nIJ +ℓ′−1)(ℓ′−nIJ)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)
, (E.32)

d′
5 =

(ℓ′−nIJ)(∆′+∆−∆3+2nIJ −ℓ′+ℓ)

∆3(∆+ℓ−1)(∆′−∆+∆3−ℓ′+ℓ−2)
, (E.33)

d′
6 =

(

−2(∆+nIJ )(∆3−nIJ +ℓ−1)
∆′−∆+∆3−ℓ′+ℓ−2 +nIJ −ℓ+1

)

∆3(∆+ℓ−1)
, (E.34)

e′
1 =

(∆′+∆−∆3+2nIJ −ℓ′+ℓ)

∆3(∆+ℓ−1)
, (E.35)

e′
2 =

(nIJ −ℓ′+1)

∆3(∆+ℓ−1)
, (E.36)

e′
3 =

1

∆3(∆+ℓ−1)
, (E.37)

f ′
1 =

(∆′+∆−∆3+2nIJ −ℓ′+ℓ−2)

∆3(∆+ℓ−1)
, (E.38)

f ′
2 =

(nIJ −ℓ′)

∆3(∆+ℓ−1)
, (E.39)

f ′
3 =

1

∆3(∆+ℓ−1)
. (E.40)

F Conformal block coefficients

The coefficients appearing in the vector conformal block recursion relations eq. (4.159)–

eq. (4.161) are given by:

A
(1)(nIJ )
(+0)(0+) = a1C(0+)(0−)F

(0+)
(+0) + a3C(−0)(+0)F

(+0)
(+0) ,

A
(1)(nIJ +1)
(+0)(0+) = a2C(−0)(+0)F

(+0)
(+0) ,

A
(2)(nIJ )
(+0)(0+) = a3C(−0)(+0)F

(+0)
(+0) ,

A
(2)(nIJ +1)
(+0)(0+) = a2C(−0)(+0)F

(+0)
(+0) ,

A
(1)(nIJ )
(−0)(0+) = a1C(0+)(0−)F

(0+)
(−0) + a3C(−0)(+0)F

(+0)
(−0) ,

A
(1)(nIJ +1)
(−0)(0+) = a2C(−0)(+0)F

(+0)
(−0) ,

A
(2)(nIJ )
(−0)(0+) = a3C(−0)(+0)F

(+0)
(−0) − a1C(0+)(0−)F

(0+)
(−0) ,

A
(2)(nIJ +1)
(−0)(0+) = a2C(−0)(+0)F

(+0)
(−0) , (F.1)

– 80 –



J
H
E
P
1
0
(
2
0
2
1
)
1
6
0

B
(1)(nIJ )
(+0)(0+) = b3C(0+)(0−)F

(0+)
(+0) + b5C(−0)(+0)F

(+0)
(+0) ,

B
(1)(nIJ +1)
(+0)(0+) = b2C(0−)(0+)F

(0−)
(+0) + b4C(0+)(0−)F

(0+)
(+0) + b6C(−0)(+0)F

(+0)
(+0) ,

B
(1)(nIJ +2)
(+0)(0+) = b1C(−0)(+0)F

(+0)
(+0) ,

B
(2)(nIJ )
(+0)(0+) = b5C(−0)(+0)F

(+0)
(+0) ,

B
(2)(nIJ +1)
(+0)(0+) = b6C(−0)(+0)F

(+0)
(+0) ,

B
(2)(nIJ +2)
(+0)(0+) = b1C(−0)(+0)F

(+0)
(+0) ,

B
(1)(nIJ )
(−0)(0+) = b3C(0+)(0−)F

(0+)
(−0) + b5C(−0)(+0)F

(+0)
(−0) ,

B
(1)(nIJ +1)
(−0)(0+) = b2C(0−)(0+)F

(0−)
(−0) + b4C(0+)(0−)F

(0+)
(−0) + b6C(−0)(+0)F

(+0)
(−0) ,

B
(1)(nIJ +2)
(−0)(0+) = b1C(−0)(+0)F

(+0)
(−0) ,

B
(2)(nIJ )
(−0)(0+) = −b3C(0+)(0−)F

(0+)
(−0) + b5C(−0)(+0)F

(+0)
(−0) ,

B
(2)(nIJ +1)
(−0)(0+) = −b2C(0−)(0+)F

(0−)
(−0) − b4C(0+)(0−)F

(0+)
(−0) + b6C(−0)(+0)F

(+0)
(−0) ,

B
(2)(nIJ +2)
(−0)(0+) = b1C(−0)(+0)F

(+0)
(−0) , (F.2)

C
(1)(nIJ )
(+0)(0+) = c3C(0+)(0−)F

(0+)
(+0) + c1C(−0)(+0)F

(+0)
(+0) ,

C
(1)(nIJ +1)
(+0)(0+) = c2C(−0)(+0)F

(+0)
(+0) ,

C
(2)(nIJ )
(+0)(0+) = c1C(−0)(+0)F

(+0)
(+0) ,

C
(2)(nIJ +1)
(+0)(0+) = c2C(−0)(+0)F

(+0)
(+0) ,

C
(1)(nIJ )
(−0)(0+) = c3C(0+)(0−)F

(0+)
(−0) + c1C(−0)(+0)F (+0)(−0) ,

C
(1)(nIJ +1)
(−0)(0+) = c2C(−0)(+0)F

(+0)
(−0) ,

C
(2)(nIJ )
(−0)(0+) = c1C(−0)(+0)F

(+0)
(−0) − c3C(0+)(0−)F

(0+)
(−0) ,

C
(2)(nIJ +1)
(−0)(0+) = c2C(−0)(+0)F

(+0)
(−0) . (F.3)

The coefficients appearing in the tensor conformal block recursion relations eq. (4.183)–

eq. (4.188) are given by:

A
′(1)(1,nIJ )
(+0)(0+) = a′

1C(−0)(+0)F
(+0)
(+0) ,

A
′(2)(1,nIJ )
(+0)(0+) = a′

1C(−0)(+0)F
(+0)
(+0) ,

A
′(1)(1,nIJ )
(−0)(0+) = a′

1C(−0)(+0)F
(+0)
(−0) ,

A
′(2)(1,nIJ )
(−0)(0+) = a′

1C(−0)(+0)F
(+0)
(−0) ,

A
′(1)(2,nIJ )
(+0)(0+) = a′

4C(0+)(0−)F
(0+)
(+0) + a′

7C(−0)(+0)F
(+0)
(+0) ,

A
′(1)(2,nIJ +1)
(+0)(0+) = a′

5C(−0)(+0)F
(+0)
(+0) ,
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A
′(1)(3,nIJ )
(+0)(0+) = a′

2C(0+)(0−)F
(0+)
(+0) + a′

6C(−0)(+0)F
(+0)
(+0) ,

A
′(1)(3,nIJ +1)
(+0)(0+) = a′

3C(−0)(+0)F
(+0)
(+0) ,

A
′(2)(2,nIJ )
(+0)(0+) = a′

7C(−0)(+0)F
(+0)
(+0) ,

A
′(2)(2,nIJ +1)
(+0)(0+) = a′

5C(−0)(+0)F
(+0)
(+0) ,

A
′(2)(3,nIJ )
(+0)(0+) = a′

6C(−0)(+0)F
(+0)
(+0) ,

A
′(2)(3,nIJ +1)
(+0)(0+) = a′

3C(−0)(+0)F
(+0)
(+0) ,

A
′(1)(2,nIJ )
(−0)(0+) = a′

4C(0+)(0−)F
(0+)
(−0) + a′

7C(−0)(+0)F
(+0)
(−0) ,

A
′(1)(2,nIJ +1)
(−0)(0+) = a′

5C(−0)(+0)F
(+0)
(−0) ,

A
′(1)(3,nIJ )
(−0)(0+) = a′

2C(0+)(0−)F
(0+)
(−0) + a′

6C(−0)(+0)F
(+0)
(−0) ,

A
′(1)(3,nIJ +1)
(−0)(0+) = a′

3C(−0)(+0)F
(+0)
(−0) ,

A
′(2)(2,nIJ )
(−0)(0+) = a′

7C(−0)(+0)F
(+0)
(−0) − a′

4C(0+)(0−)F
(0+)
(−0) ,

A
′(2)(2,nIJ +1)
(−0)(0+) = a′

5C(−0)(+0)F
(+0)
(−0) ,

A
′(2)(3,nIJ )
(−0)(0+) = a′

6C(−0)(+0)F
(+0)
(−0) − a′

2C(0+)(0−)F
(0+)
(−0) ,

A
′(2)(3,nIJ +1)
(−0)(0+) = a′

3C(−0)(+0)F
(+0)
(−0) , (F.4)

B
′(1)(2,nIJ )
(+0)(0+) = b′

1C(0+)(0−)F
(0+)
(+0) + b′

3C(−0)(+0)F
(+0)
(+0) ,

B
′(1)(2,nIJ +1)
(+0)(0+) = b′

2C(−0)(+0)F
(+0)
(+0) ,

B
′(2)(2,nIJ )
(+0)(0+) = b′

3C(−0)(+0)F
(+0)
(+0) ,

B
′(2)(2,nIJ +1)
(+0)(0+) = b′

2C(−0)(+0)F
(+0)
(+0) ,

B
′(1)(2,nIJ )
(−0)(0+) = b′

1C(0+)(0−)F
(0+)
(−0) + b′

3C(−0)(+0)F
(+0)
(−0) ,

B
′(1)(2,nIJ +1)
(−0)(0+) = b′

2C(−0)(+0)F (+0)(−0) ,

B
′(2)(2,nIJ )
(−0)(0+) = b′

3C(−0)(+0)F
(+0)
(−0) − b′

1C(0+)(0−)F
(0+)
(−0) ,

B
′(2)(2,nIJ +1)
(−0)(0+) = b′

2C(−0)(+0)F
(+0)
(−0) , (F.5)

C
′(1)(2,nIJ )
(+0)(0+) = c′

2C(0+)(0−)F
(0+)
(+0) + c′

5C(−0)(+0)F
(+0)
(+0) ,

C
′(1)(2,nIJ +1)
(+0)(0+) = c′

4C(0−)(0+)F
(0−)
(+0) + c′

3C(0+)(0−)F
(0+)
(+0) + c′

6C(−0)(+0)F
(+0)
(+0) ,

C
′(1)(2,nIJ +2)
(+0)(0+) = c′

1C(−0)(+0)F
(+0)
(+0) ,

C
′(2)(2,nIJ )
(+0)(0+) = c′

5C(−0)(+0)F
(+0)
(+0) ,

C
′(2)(2,nIJ +1)
(+0)(0+) = c′

6C(−0)(+0)F
(+0)
(+0) ,

C
′(2)(2,nIJ +2)
(+0)(0+) = c′

1C(−0)(+0)F
(+0)
(+0) ,

C
′(1)(2,nIJ )
(−0)(0+) = c′

2C(0+)(0−)F
(0+)
(−0) + c′

5C(−0)(+0)F
(+0)
(−0) ,
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C
′(1)(2,nIJ +1)
(−0)(0+) = c′

4C(0−)(0+)F
(0−)
(−0) + c′

3C(0+)(0−)F
(0+)
(−0) + c′

6C(−0)(+0)F
(+0)
(−0) ,

C
′(1)(2,nIJ +2)
(−0)(0+) = c′

1C(−0)(+0)F
(+0)
(−0) ,

C
′(2)(2,nIJ )
(−0)(0+) = c′

5C(−0)(+0)F
(+0)
(−0) − c′

2C(0+)(0−)F
(0+)
(−0) ,

C
′(2)(2,nIJ +1)
(−0)(0+) = −c′

4C(0−)(0+)F
(0−)
(−0) − c′

3C(0+)(0−)F
(0+)
(−0) + c′

6C(−0)(+0)F
(+0)
(−0) ,

C
′(2)(2,nIJ +2)
(−0)(0+) = c′

1C(−0)(+0)F
(+0)
(−0) (F.6)

D
′(1)(2,nIJ )
(+0)(0+) = d′

3C(0+)(0−)F (0+)(+0) + d′
5C(−0)(+0)F (+0)(+0) ,

D
′(1)(2,nIJ +1)
(+0)(0+) = d′

4C(0−)(0+)F
(0−)
(+0) ,

D
′(2)(2,nIJ )
(+0)(0+) = d′

5C(−0)(+0)F
(+0)
(+0) ,

D
′(2)(2,nIJ +1)
(+0)(0+) = 0,

D
′(1)(2,nIJ )
(−0)(0+) = d′

3C(0+)(0−)F
(0+)
(−0) + d′

5C(−0)(+0)F
(+0)
(−0) ,

D
′(1)(2,nIJ +1)
(−0)(0+) = d′

4C(0−)(0+)F
(0−)
(−0) ,

D
′(2)(2,nIJ )
(−0)(0+) = d′

5C(−0)(+0)F
(+0)
(−0) − d′

3C(0+)(0−)F
(0+)
(−0) ,

D
′(2)(2,nIJ +1)
(−0)(0+) = −d′

4C(0−)(0+)F
(0−)
(−0) ,

D
′(1)(3,nIJ )
(+0)(0+) = d′

1C(0+)(0−)F
(0+)
(+0) + d′

6C(−0)(+0)F
(+0)
(+0) ,

D
′(1)(3,nIJ +1)
(+0)(0+) = d′

2C(−0)(+0)F
(+0)
(+0) ,

D
′(2)(3,nIJ )
(+0)(0+) = d′

6C(−0)(+0)F
(+0)
(+0) ,

D
′(2)(3,nIJ +1)
(+0)(0+) = d′

2C(−0)(+0)F
(+0)
(+0) ,

D
′(1)(3,nIJ )
(−0)(0+) = d′

1C(0+)(0−)F
(0+)
(−0) + d′

6C(−0)(+0)F
(+0)
(−0) ,

D
′(1)(3,nIJ +1)
(−0)(0+) = d′

2C(−0)(+0)F
(+0)
(−0) ,

D
′(2)(3,nIJ )
(−0)(0+) = d′

6C(−0)(+0)F
(+0)
(−0) − d′

1C(0+)(0−)F
(0+)
(−0) ,

D
′(2)(3,nIJ +1)
(−0)(0+) = d′

2C(−0)(+0)F (+0)(−0) , (F.7)

E
′(1)(2,nIJ )
(+0)(0+) = e′

3C(0+)(0−)F
(0+)
(+0) + e′

1C(−0)(+0)F
(+0)
(+0) ,

E
′(1)(2,nIJ +1)
(+0)(0+) = e′

2C(−0)(+0)F
(+0)
(+0) ,

E
′(2)(2,nIJ )
(+0)(0+) = e′

1C(−0)(+0)F
(+0)
(+0) ,

E
′(2)(2,nIJ +1)
(+0)(0+) = e′

2C(−0)(+0)F
(+0)
(+0) ,

E
′(1)(2,nIJ )
(−0)(0+) = e′

3C(0+)(0−)F
(0+)
(−0) + e′

1C(−0)(+0)F
(+0)
(−0) ,

E
′(1)(2,nIJ +1)
(−0)(0+) = e′

2C(−0)(+0)F
(+0)
(−0) ,

E
′(2)(2,nIJ )
(−0)(0+) = e′

1C(−0)(+0)F
(+0)
(−0) − e′

3C(0+)(0−)F
(0+)
(−0) ,

E
′(2)(2,nIJ +1)
(−0)(0+) = e′

2C(−0)(+0)F
(+0)
(−0) , (F.8)
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F
′(1)(3,nIJ )
(+0)(0+) = f ′

3C(0+)(0−)F
(0+)
(+0) + f ′

1C(−0)(+0)F
(+0)
(+0) ,

F
′(1)(3,nIJ +1)
(+0)(0+) = f ′

2C(−0)(+0)F
(+0)
(+0) ,

F
′(2)(3,nIJ )
(+0)(0+) = f ′

1C(−0)(+0)F
(+0)
(+0) ,

F
′(2)(3,nIJ +1)
(+0)(0+) = f ′

2C(−0)(+0)F
(+0)
(+0) ,

F
′(1)(3,nIJ )
(−0)(0+) = f ′

3C(0+)(0−)F
(0+)
(−0) + f ′

1C(−0)(+0)F
(+0)
(−0) ,

F
′(1)(3,nIJ +1)
(−0)(0+) = f ′

2C(−0)(+0)F
(+0)
(−0) ,

F
′(2)(3,nIJ )
(−0)(0+) = f ′

1C(−0)(+0)F
(+0)
(−0) − f ′

3C(0+)(0−)F
(0+)
(−0) ,

F
′(2)(3,nIJ +1)
(−0)(0+) = f ′

2C(−0)(+0)F
(+0)
(−0) . (F.9)
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