
Intern. J. Computer Math. 1979, Section A. Vol. 7, pp. 119-128

G Gordon and Breach Science Publishers Ltd., 1979

Printed in Great Britain

Recursion Theory on Processes

JAN BERGSTRA

Institute of Applied Mathematics and Computer Science,
University of Leiden, Wassenaarseweg 80, Leiden, The Netherlands

A general definition of a process is given. Recursive processes and relative recursion for
processes are defined and the degree theory of processes is studied. We construct a process of
minimal degree.

KEY WORDS: Process, recursion.

C.R. CATEGORIES: 5.22. 5.27.

1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

In this paper we study processes from the point ot view ol recursion
theory. Our purpose is twofold:

i) analysis of processes in general,

ii) to introduce a dynamical aspect in recursion theory.

It is our opinion that recursion theory is of a very static character. To
make it more applicable to computer science it must deal with more
dynamical situations. Considering processes rather than functions is one
way to introduce a dynamical element.

A process P is conceived as an entity which communicates with the
outside world. It has an initial state P, and it answers every question q in
LQ (question language) with an answer a in LA (answer language).
Answers depend on the history of the process only.

We can imagine applications of a general theory of processes in the
following fields:

i) Specification and semantics of datatypes (see [2]) and programming
languages.

ii) Theory of learning; a general theory of the learning properties of
recursive processes seems to be of interest. Further a theory of recursive

119

120 J. BERGSTRA

processes might provide tools for the abstract description of artificial
intelligence results in which often some sort of learning occurs.

iii) Generalities concerning scheduling and deadlock problems.

It seems that our recursion theory on processes is new. A treatment of
processes as transducers from infinite question sequences to infinite answer
sequences in terms of).-calculus is given by Milnor in [3].

1.2 Definition of (recursive) processes

Names of processes will be P, P', P2,...,Q, R, S.... There is a problem in
what exactly is a process. Suppose P is asked question q and has given
answer a. How to describe the new situation? P has become entirely
different. Clearly P is just a name and at any moment a function (ext)
must assign to P its extensional meaning (extension, graph, stage) ext (P).

1.2.1

We define the collection PR of process extensions (graphs) as follows:

PR = L --q,A (for given Lo and LA).

Let F =ext (P). Then the answer of P on question q is F(q) and the new

value of ext (P) is .1.a e F(q * a).

Conventions P usually denotes the initial extension of P, P, denotes
the extension ot P alter questions a ..., a (n=ln (a)) have been answered.

As we will not consider any details of Lo and LA we identify both of
them with co, the set of natural numbers, in this paper. This can be done
without loss ol generality. Instead of L'4 we have the sequence numbers a
= <ao, a_ 1> from now on.

1.2.2

DEFINITION P is a recursive process if ext (P) is a recursive function.

1.2.3

An example Infinitary union find process. At any stage the sets

l/ie1(1w) are disjoint finite subsets of w such that j, V, = w. At the
initial stage V = for all i. Further, anytime i is itself the smallest
element of V for all iel. We look for a process P which can keep track of
the effect of union instructions on this collection of sets in such a way that
it is always able to correctly answer find questions (FIND(j)). The union
instructions (UNION(i, j)) are also seen as questions. FIND(j) asks for the

L

RECURSION THEORY ON PROCESSES 121

i I such that j e V,. UNION(i, j) has the following effect: I becomes (I
tinax (i, j)Du{min (i, j)}, V n) becomes 1;u The answer on UNION-

questions is not specified. It is clear that we may choose for P a recursive
process. If, however, we start with another initial situation with V, not
uniformly recursive in i we need a nonrecursive process to keep track of
the unions.

Remark A process P has according to our definition at any stage a
finite history starting with its initial graph P. It is straightforward to
introduce processes with an infinite history as sequences ... P_2,P_1, P, of
graphs such that transforms to P_, after answering question q,
with answer a,. It is then possible to extend "relative recursion" con-
sistently to processes with an infinite history.

2. RECURSION ON PROCESSES

The aim of this section is to define a satisfactory notion of relative
recursion for processes.

2.1

We start with a definition of computations which take processes and
natural numbers as an input and have natural numbers as an output (it
any). We use the notation of Kleene brackets. The details, however, are
more like in [1]. We will define a relation {e}(m, P).----2.n which expresses:

the computation with index e and arguments m, P leads to value n. More
precisely we define a collection C of triples

t = <A, [e, m, P, n], B>

which code computations in the following way: If ext (13')= Ai(i:5_1) then
the computation {e}(m,P) leads to value n and after the computation
ext (Pi) = Bi (i I).

The set C is given by an inductive definition with four clauses each
corresponding to one of the elementary computation steps. The case
distinction is according to the structure of e. As usual we present the
induction in terms of schemes. We use schemes R R4. To distinguish
the cases there are four predicates T, S, A, R which we will now define.

T(e) e <1, p> for some p.

e is index of a terminal computation (i.e. a computation
without subcomputations).

S(e) e = p,q> for some p,q.<2,

P

122 J. BERGSTRA

e codes the substitution of two computations.

A(e) = <3, p, q> for some p,q.

e codes the application of a process argument on a numerical

argument (question).

R(e) e =m <4, p> for some p.

e is a reflection index.

We will now describe the schemes:

let t = <A, [e, m, P, n], B>,

R,; if: T(e), e= <1, p>, A= 1) and [p](<m>)=n then t e C.

Here [p] is the p-th unary primitive recursive function in some

indexing of the pr.rec. functions.

Remarks As this computation does not use the process argu-
ments these remain unaffected. For purposes of complexity theory

it might be more useful not to introduce all primitive recursive
computations as atomic steps.

Informal notation {e}(m, P):-4

R,; if: S(e), e = <2, p, q>,
<A, [p, m, P, k], D)> cC for some k, D

and <D, [q, k, m, P, n], B> C
then t e C.

Informal notation lel(m, {q}({p}(m, P), m, P).

R3; if: A(e), e = <3, p, q>

AP(m,)=n, BP = Aa AP(<q> * a) and for i p

Bi = Ai

then t e C.
Informal notation lel(m, PP(Mq).

R4; if: R(e),e= <4, 0, <A, Enlo, inwe P, n], B> E C

then t e C (here p= <(P)19. ,(P)i>.

Informal notation {e}(m, trno}(mP, P),

C is the minimal set which satisfies the closure properties R1,...,R4.

Informally we write {e}(m, if ext (P)= A' and for some B'
<A, [e, m, P, n], B> e C.

2.2

Relative recursion. We see a process now as a pair of machine and state.

The machine computes for every question the answer and the next state.

For machine (index) e, initial state ; and processes P we define the

(partial) process Q, informally denoted by A fells,.), using induction on

E

P)L--

'N'TIT.1".

rn,p,

P)z-

RECURSION THEORY ON PROCESSES

the length of question sequences as follows:

12c(q)= ({e}(sa, q, P))0

so * <q> = ({e}(s,, q, P)),.

DEFINITION Q is recursive in P if for some e, ; in co

Q = {e}ls,).

2.3

123

1) is transitive in the following sense: P 131 ... Pi' and Pi< pi, j < imply p pk, jk

2) It is not the case that P R, R implies R.

3) If we consider partial processes it is possible to prove versions of the
first and second recursion theorem.

4) We may allow the definition of new argument processes, during the
computation of a process, from a relative index and some other processes,
without changing as long as we take into account the side effects that
use of a defined process has on the processes from which it has been
defined.

5) If for all a- Pa= P then P is just a function. In that case recursion
relative to P as a process is equivalent to recursion relative to P as a
function.

6) For processes P and Q we define a kind of join P A Q informally as
follows: on a question <0,0P Q answers P(q), on <1, q> it answers Q(q),
and on <n + 2, q> it answers 0. Clearly P, Q5P Q. (Unfortunately
A is not the join w.r.t. .)

7) We assume Church's thesis for this (relative) recursion and will work
with intuitive descriptions of algorithms rather than formal descriptions.

2.4

DEFINITION P if P Q and P.

induces a partial ordering on PRI.
, 0> is the structure of degrees of processes. (0 is the degree of

recursive processes.)

Of course it seems interesting to introduce (discrete) time as an explicit
extra parameter of processes. This enables us to study parallelism and to

< pl I pl.ji pk.I

Q<i..

_5

...

5,

A

5

124 J. BERGSTRA

give the processes an own life. It is clearly not necessary to have every

response of a process triggered by a question in this case. A problem,

however, is inescapable in defining recursion. The meaning of relative

recursion will depend strongly on.the details of its definition. So it is to be

expected that transitivity fails and so on. However, if we succeed in

dividing out a suitable equivalence relation on the processes in order to

identify processes which use a "similar" amount of time for "the same"

activities, we may be able to define a satisfactory recursion theory on

these equivalence classes.

3. DEGREES

In this section we study some properties of <PR/u, We mainly

consider the role of constant processes and density questions.

3.1

DEFINITION A process P is constant if for all a 13,=P,. A degree is

constant if it contains a constant process.

3.2

THEOREM For every degree d there is a unique constant degree c above d.

Proof Let Ped, with initial graph P. We define Q as follows:

where 1 is maximal such that s, =0. Q is as strong as P but allows for

an initialisation.
In fact asking question 0 brings it back to its initial stage. Clearly

To see that Q is of constant degree note that it is recursively equivalent

with P, as a function. Now suppose that R is constant and 1 R. We

show Q-_R and then we take c to be the degree of Q. The algorithm for Q

is as follows (with P = A {e}R(s)).

q=0

if q=n+1 then answer: ({e}(s,

then answer: 0

new state: s,

new state: ({e}(s, R))1

TO=

12c(01> * * <sk>/= Pt(<si+ 1 * * <sk 1>)

k

P_Q.

1:1

1>

if

RECURSION THEORY ON PROCESSES 125

3.3

DEFINITION PuR (p is uniformly recursive in R) if for some e,s, the
following holds.

P= A {e}5(s.,) for each a.

Motivation The user of a process prefers not to depend on the precise
stage of a process.

However, one easily shows:

3.4

THEOREM If then where Q is as in the proof of 3.2.

Therefore we conclude that PR/ is not interesting. is not even
reflexive.) This observation reveals a difficulty in finding applications for
recursion on processes.

3.5

THEOREM If a and b are constant degrees with a <I) then for some c (not
necessarily constant) a <c <b.

Proof Let fa, Bfb (f. and fbeco--4.co).
Let P5 be defined by

PE5(a)= if a = <s> then fb(s) else 0 fi.

Let C= A A 135 and take c the degree of C.
Clearly A C B.

Suppose A C then A, C, as functions, hence fs.- A, c, fb But
fa< fb, contradiction.

On the other hand if C B then we derive a contradiction as follows:

First prove: f (the idea is that in the computation of the
function f only once nontrivial information concerning f, can be used; in
fact is not true in a uniform way). Now CB implies fbC, so
fb..Af., contradiction. 0

COROLLARY There is a non-constant degree.

Proof Consider A, B, C as in the previous proof. If C g then
hence g A hence C A. So C is not of a constant degree.

PL,R QR

fA

gC
0

(_=_,

5

5

126 J. BERGS IRA

3.6

THEOREM There exists a process of minimal nonzero degree.

Proof For a function f we define Pf by Pit (a)= if o- = <s> then f(s) else

0 fi.

Clearly f Pf is going to be of minimal (nonzero) degree for
suitable f To ensure Pf >0 we make f nonrecursive (Pf e 0).

Suppose Q <Pf. Look at a computation A ler (se, -) for Q from P.
We replace it by a computation Q,=Acr lalf(a) where f may be used at
most once for every computation on a question sequence a. (After this

first use the value f(n) is always considered zero.) We will define f such
that all its values are either zero or one.

Let R, be the following set of quadruples:

R.= 1<a, i, k, I> Vg e 2":a;g(a)= ij g(i)= 0 then k else lJfl

R. is recursively enumerable, one need only experiment with g=.1x .0 and

g=A.x1.
Let R., = e 3t E R, 3a, k, 1 t = <a, k, 01.

3.6.1

Suppose Ra., is finite then information concerning finitely many values
f(i) is sufficient to compute all values of {a}f(a), hence Q is recursive.
So assume that 12.,, is infinite. We find that it has an infinite recursive

subset R2-,1.

Let f (x)= ifxe V then f(x) else 0 fi for V w.
fi

3.6.2

LLNiviA P.' Q for recursive

Proof We must only show that Pfs(<s>)= f(s) can be computed for
seat. Given s decide se S. If not then 0, if so then look for a, k and 1 such

that <a, s, k, I> E R.. Then test Q(a). Now we know:

f(s) = if Q(a) = k then 0 else 1 fi. El

We call R.,, the domain of relevance of f w.r.t. Q. Clearly, if

A {e}"(s.,) and A tens) are both total and gnR.,1=hnR.,,= f nR.,
then they are equal. So we have shown that given e, se either

A) is recursive or for every recursive subset S of the domain of

relevance in question, Prs q(= A {e}"(s)).

g

S

,

I

RECURSION THEORY ON PROCESSES 127

3.6.3

LEMMA There exists a nonrecursive f such that for every r.e. set V one of
the following is true:

i) f, is almost everywhere zero,

ii) there is an infinite recursive subset S of V such that h is zero a.e.

Proof Let V, be an enumeration of the r.e. sets. We define f by means
of an infinite sequence of recursive sets Ri(ie ai) which is inductively
defined in a straightforward manner such that the following conditions are
satisfied:

i) 2. R1.4.1 for all i and Ri is infinite for all i;

ii) fo\R0 and fRARI.i are zero a.e. (for all i);

iii) f is non-recursive;

iv) if VinR, is finite then R. c"- 1Vi;

v) if VinRi is finite then Ri.nVi=cli.

It is easy to see that any f satisfying (i)... (v) has the required
properties. El

3.6.4

Now we prove 3.6. Let f be as in 3.6.3. -We prove that P1 is minimal.
Clearly, P1 >0. Consider Q = {e}P f (s). Suppose Q # 0. Let 12.,1 be
the domain of relevance in this case. (In view of 3.6.1 Rad is infinite.)
There are now two cases (by 3.6.3):

i) JR.., is zero a.e. In this case one easily proves that Q is recursive in
spite of the assumptions. So this case leads to a contradiction;

ii) A is zero a.e. for some infinite recursive S R (and R,1 is an
example of such a set S). We take such an S and show:

3.6.4.1

PROPOSITION Pf...Pfs. This is easy, to compute Pf(<s>)= f(s) first
decide if s E S. If so then use Pfs, if not a recursive function gives the answer

as is =ero a.e.

3.6.4.2

PROPOSITION

Proof Let a be given. To compute Qc(a)={e}Pf(so, *)(a). ta]-1(a) using
only one value of fs one proceeds as follows: Decide if the computation

pfs.Q

I

128 J. BERGSTRA

requires information concerning f If not, compute the answer. If so let I

be the argument for which information is required. Now proceed as in

3.6.4.1.

Taking this together we find (for case ii)):

<Pfs<Q<Pf5<Pf hence Pf
(3.6.4.1) (3.6.4.2) (3.6.2) (easy)

This concludes the proof of 3.6.

References
[1] J. A. Bergstra, Computability and continuity in finite types, Ph.D. thesis, Utrecht, 1976.

[2] J. A. Bergstra, Nondeterministic datatypes (forthcoming).
[3] R. Milner, Processes, a mathematical model of computing agents. (Logic Colloquium,

1973, North-Holland), 157-173.

Q.Pi

