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Abstract 

For any function f on the non-negative integers, we can evaluate 

the cumulative function rf given by rf(s) = L~=of(x) from the 

values of f by the recursion r f(8) = r f(8-1) + f(8). Analogously we 

can use this procedure t times to evaluate the t-th order cumulative 

function rtf. As an alternative, in the present paper we shall derive 

recursions for direct evaluation of rt f when f itself satisfies a certain 

sort of recursion. We shall also derive recursions for the t-th order tails 

Nf where Af(8) = L~S+l f(x). The recursions can be applied for 

exact and approximate evaluation of distribution functions and stop

loss transforms of probability distributions. The class of recursions 

for f includes the classes discussed by Sundt (1992), incorporating the 

class studied by Panjer (1981). We discuss in particular convolutions 

and compound functions. 
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1 Introduction 

Since the publication of Panjer's (1981) paper there has grown up an exten

sive literature on recursive evaluation of the probability function of discrete 

compound distributions with severity distributions on the non-negative in

tegers. Panjer assumed that the probability function p of the counting 

distribution satisfies 

p( n ) = (a + *) p( n - 1) (n 1, 2, ... ) (1) 

for some a and b. 

In Sundt (1992) the following generalisation of Panjer's class of counting 

distributions is considered: 

k ( b(X)) 
p(n) = X~l a(x) + ---;;- p(n - x) (n = 1, 2, ... ) (2) 

for some positive integer k and functions a and b on {I, 2, ... , k} with 

p( n) = 0 for n < 0 . 

Almost the whole literature on recursive evaluation of probability distri-

butions is restricted to the derivation of recursions for the probability functi

ons. There are only a few references where recursions are considered for the 

distribution function and/or the stop-loss transform. A recursive algorithm 

for the distribution function of a convolution of discrete uniform distributions 

can be found in Sundt (1988). In Sundt (1992) recursions are derived for the 

distribution function and the stop-loss transform of a compound distribution 

whose counting distribution has a probability function satisfying the recursi

on (2) with b identical to zero. The compound geometric case is considered 

in Sundt (1982). Waldmann (1995) considers a recursion for the distribution 

function of compound distributions having a counting distribution satisying 

the recursion (1). 

In this paper we shall derive recursions for distribution functions and stop

loss transforms within a general class of discrete probability distributions. 
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Compound distributions with counting distributions satisfying the recursion 

(2) appear as a special case. For the Panjer class of counting distributions our 

recursion for the distribution function seems to be an efficient reformulation 

of Waldmann's recursion. 

We propose to use the recursIOns for distribution functions and stop

loss transforms, rather than using the known recursions for the probability 

function and then making the appropriate summations. Although these new 

recursions will not always give rise to time-reduction, there is an advantage 

in that the distribution function and the stop-loss transform are monotonic 

functions which will give some stability advantages for the recursions for 

evaluating these values, cf. Waldmann (1995). As an application, we shall 

use a result of Panjer & Wang (1993) to derive conditions under which the 

recursion for the distribution function of the number of claims in an insurance 

portfolio (individual model) is strongly stable. 

To allow for application of our results not only to proper probability dis

tributions, but also to approximations which are not necessarily probability 

distributions themselves, we shall derive our results for more general functi

ons. 

2 Main result 

Let :Fo denote the class of functions 9 on the non-negative integers 

with g(O) > 0 . In the remainder of this paper, for any 9 t :Fo, we will 

set g( 8) = 0 if 8 < O. For functions f on the non-negative integers the 

summation operator f is defined by 

s 

ff(8) = L f(x) (8 0, 1, ... ) 
x=o 

Further, let 

(t 0, 1, ... ) 
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Our main result is stated in the following theorem. 

Theorem 1 If f c: Fa satisfies the TeCZlTsion 

g(s) ~ ( b(:r)) 
f(s) = - +.L. a(x) + - f(s-x) 

s s 
.C = 1 

(s = 1,2, ... ) (3) 

then fOT t = 0, 1, 2, ... , rtf satisfies the TeCUTsion 

(s = 1, 2, ... ) (4) 

with 

bt(x) = b(x) + t(l - fa(x - 1)) 

and a(O) = g(O) = 0 . 

Proof. We first prove (4) for t = 1, that is 

s 

sff(s) = fg(s) + L [sa(x) + b(x) + 1 - fa(x - l)]ff(s-x) 
x=l 

by induction on s. 

It is easily shown that (5) holds for s = 1. 

(s = 1,2, ... ) 

(5) 

Let us now assume that (5) holds for s = T. By application of (5) and 

(3) we obta.in 

(1' + 1)ff(1' + 1) 

- (1' + l)(fJ(T) + f(T + 1)) 

- Tff(1') + (1' + 1)J(1' + 1) + fJ(1') 
r 

- fg(T) + L [Ta(x) + b(x) + 1 - fa(x - 1)] fJ(T - x) 
x=l 

r+l 

+g(T + 1) + L [(1' + l)a(x) + b(X)]J(T + 1 - a:) + ff(T) 
x=l 

r+l 

- fg(1' + 1) + L [(1' + l)a(x) + b(x) + 1 - fa(x - l)]ff(1' + 1 - x) + I 
x=l 
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with 
,. 

I = fa(r) f(O) + L [fa(:r - 1) f(1' + 1 - ;r) - a(:r)rf(1' - x)] 

r 

fa ( l' ) f (0) + L [fa (x - 1) f (1' + 1 - x) + fa (:r - 1) f f (1' - ;1:) 

"' = 1 

-fa(x - l)ff(1' - x) - a(x)ff(1' - x)] 
r 

fa(1') f(O) + L [fa(x - l)ff(1' + 1 - x) - fa(x)rf(1' - x)] 

fa(O)ff(1') 

o 

x = 1 

This proves that (5) holds for s = l' + 1 . Induction now gives that (5) 

holds for all positive integers s, that is, the theorem holds for t = 1. 

It remains to show that (4) also holds for t > 1. We once more apply 

induction. We assume that (4) holds for t equal to a positive integer 1'. By 

applying the case t = 1 to the function fr f we now easily obtain that 

(4) holds for t = l' + 1, and by induction we obtain that (4) holds for all 

non-negative integers t. 

This completes the proof of the theorem. 

o 

Let us now assume that f c:Fo is the probability function of a random 

variable S with a positive probability in zero, and satisfies the recursion (3). 

A recursion for the distribution function f f is given by (4) with t = 1. 

The quantity r t + 1 f( s) (t = 0, 1) can be interpreted as the expectation 

of a function of S . Indeed, one can prove that 

(t = 0, 1; s 1, 2 ... ) 

As we have that 

E[(S - shl E[(s - S)+l + E[(S - s)l 

we find that 

f2f(s - 1) + E(S) - s (6) 
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so that the stop-loss transform f of f defined by 

](s) = E[(S - s)+] (s=O,l, ... ) 

can be evaluated recursively by (4) and (6). 

Instead of using (4) and (6) one could also start with evaluating the 

probabilty function from (3) and then using 

E[(S - s)+] = 2E[(S - (s - 1))+] - E[(S - (s - 2))+] + f(s - 1) 

for s = 2, 3, ... in order to evaluate the stop-loss transform. It is clear 

that this way of evaluation will mostly give rise to a computation time of the 

same order of magnitude. Nevertheless, if f is a probability function, then 

the recursion (4) has, for t 2:: 1 , the nice property of producing increasing 

values which will influence the stability of the recursion. Further research 

has to be done on this matter. A first attempt is made in Subsection 5.2. 

A function p E :Fa is said to be in the form Rk[a, b] if it satisfies the 

recursion (2), cf. Dhaene & Sundt (1994). In this case we will always silently 

assume that a(x) = b(x) = ° for x > k. From Theorem 1 we immediately 

obtain the following corollary. 

Corollary 1 If p E :Fa is in the form Rk[a, b], then for t = 0,1,2, ... rtp is 

in the form. R(X)[a, bt} with 

bt(x) = b(x) + t(l- ra(x - 1)) (x = 1,2, ... ) 

Sundt (1992) considered functions p E :Fa that satisfy the recursion 

k ( b(X)) 
p( s) =?; a ( x) + -s- p( s - x) (s=m+1,m+2, ... ) (7) 

which is more general than (2). We easily see that p satisfies the recursion 

(3) with 

[ k (. b( X)) 1 g(s)=s p(s)-?; a(x)+-s- pes-x) (s = 1,2, ... ,m) 

and g( s) = 0 for s > m. Thus we can apply Theorem 1 for recursive evalua

tion of rtp. 
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3 Convolutions 

The convolution of two functions 1 and g on the non-negative integers is 

defined by 

x 

(f * g)(x) = L.. l(y)g(x - y) (x=0,1,2, ... ) 
y=O 

and the n-fold convolution f*n of 1 by 

j*0 ( x) = 1 (x = 0, 1, 2, .. , ) 

j*n = 1 * j*(n-1) (n = 1,2, ... ) 

For simplicity we restrict to probability functions for the rest of Section 

4. However, the results also hold for more general functions. 

If a probability function 1 E :Fo is in the form Rk[a, b], then we say that 

1 is Rk[a, b]; in this case 1 is uniquely determined by a and b. Sundt (1992) 

discussed convolutions of such probability functions. In particular he showed 

that the convolution 1 = *i!=11i, where Ij is Rk[a,bj] (j = 1, ... ,m), is 

Rk[a, b] with 

m 

b(x) = (m - l)xa(x) + L.. bj(x) (x = 1,2, ... ,k) (8) 
j=1 

By combining (8) with Theorem 1 we can evaluate ft 1 recursively. 

In particular we see from (8) and Corollary 1 that if 1 is Rk[a, b], then 

ftf*m is Reo[a,bm,t] with 

bm,t(x) = mb(x) + (m - l)xa(x) + t(l - fa(x - 1)) (x = 1,2, ... ) 

Sundt (1992) showed that any probability function 1 E :Fo can be expres

sed in the form Reo [a, b] with 

( ) __ I(x) 
a x - 1(0) 

l(x) 
b( x) = 2x 1 (0) 
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By combining (8) and (9) we find that rtf*m is RXl[a, bm,t] with 

1 
bm,t(x) = f(O) [(112 + l)xf(x) + trf(x - 1)] (x = 1,2, ... ) 

that is, for any probability function f E Fa, r t f*m satisfies the recursion 

(s=1,2, ... ) 

For t = 0, this recursion was deduced by De Pril (1985). 

4 Compound functions 

4.1 The general class 

Let F+ denote the class of functions on the positive integers. For p E Fa and 

h E F+ we define the compound function p V h E Fa by 

s 

(p V h) ( s) = L p( n ) h *n ( S ) (s=0,1,2, ... ) 
n=a 

If p and h are probability functions, then p V h is the probability function of 

a compound distribution with counting probability function p and severity 

probability function h. 

The following theorem is a trivial generalisation of Theorem 3.1 in Dhae

ne, Sundt & De Pril (1995). 

Theorem 2 If h E F+ and p E Fa satisfies the l'ecursion 

n ( b(X)) 
p(n) = r(n) + ~ a(x) + ~ p(n - :r) (11, = 1,2, ... ) 

then p V h satisfies the recursion 

s x ( b(y) x) 
(pVh)(s) = (rVh)(s)+ ~(pVh)((s-x)?; a(y) + -y-; h*Y(x) 
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We see that the recursion (10) is equivalent with the recursion (3) with 

g( s) = sr( s). Furthermore, we also have that the recursion (11) is in the 

form (3) as we can rewrite (11) as 

g(s) s ( d(X)) 
(p V h)(s) = -s- +?; c(x) + -s- p(s - x) (s = 1,2, ... ) 

with 

g( s) = s (r V h) ( s ) (s = 1,2, ... ) (12) 

x 

c(x) = L a(y)h*Y(x) (x = 1,2, ... ) 
y=l 

x b(y) 
d(x) = xL -h*Y(x) 

y=l y 
(x = 1,2, ... ) 

Combining this with Theorem 1 gives the following corollary. 

Corollary 2 If h E F+ and p E Fo satisfies the recursion (10), then for 

t = 0, 1,2, ... r t (p V h) satisfies the recursion 

r'(p V h)(s) = r':(s) + t, [t, (a(y) + b~) ~) h"(x) 

+~ (1 - t, a(y)r(h"){x - 1)) 1 r'(p V h)(s - x) (s = 1,2, ... ) 

with g given by (12). 

4.2 Panjer's class 

Let us now consider the special case where p is in the form Rda, b]. Then we 

find from Corollary 2 that rt(p V h) can be evaluated recursively by 

rt(pVh)(s) = ~ [(a + b~) h(x) + ~(1 - a rh(x - 1))] rt(pVh)(s-x) 

Let us now assume that p and h are probability functions. 
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vVhen t = 0, (13) reduces to Panjer's (1981) well-knmvn recursion 

s ( X) (p v h) ( s) = E a + b -:; h ( 1; ) (p V h)( s - .r) ( ~-1') ) 
L- - ,.o.../~ .. , 

Let us now consider the case t = 1. Then we have for s = 1, 2, .... that 

r(p V h) ( s) = ~ [ (a + b ~) h ( x) + ~ (1 - a f h (1; - 1))] r(p V h) ( s - x) (14) 

We obtain 

s s-1 

L fh(x -1)f(p V h)(s - x) L r(p V h)(x)fh(s - x-I) 
x=1 x=o 

s-1 s-x-1 s-1s-y-1 

= L f(p V h) L h(y) L L r(p V h)(x) 
x=o y=1 y=1 x=O 

s 

= L h(y)f2(p V h)(s - y - 1) 
y=l 

Introduction of this expression in (14) gives 

s 

s f(p V h)(s) = L(as + bx)h(x)r(p V h)(s - x) + f2(p V h)(s -1) 
x=l 

s 

-a L h(x)f2(p V h)(s - x-I) (s=1,2, ... ) 
x=1 

This recursion was derived by Waldmann (1995). The recursion (14) is an 

efficient reformulation of Waldmann's recursion. 

5 The case a 0 

5.1 A general result 

It is easy to see that a function f t :Fo always satisfies a recursion of the 

form 
1 s 

f(s) = - L b(x)f(s - x) 
S ,J.; = 1 

(s = 1, 2, ... ) (15) 
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with the function b uniquely determined by f. Recursions in the form (15) 

appear in many areas, in particular in actuarial science where relevant refe

rences include White & Greville (1959), De Pril (1989), D haene & De Pril 

(1994), Dhaene & Sundt (1996), Sundt (1995) and Sundt, Dhaene and De 

Pril (1996). 

As b( x) may alternate between positive and negative values when x 

varies, stability problems may arise, see e.g. Panjer & Wang (1993) who also 

state a definition of strong stability. 

From Theorem 1 we find that rtf can be evaluated by 

(8 = 1, 2, ... ) ( 16) 

From (16) we see that if b( x) > - t for all x, then the coefficients in 

the recursion for rtf are positive so that this recursion is strongly stable, 

see Panjer & Wang (1993). It is interesting to note that the greater t is, the 

more likely it is that the recursion for evaluating rtf is strongly stable. 

Moreover, if the recursion for rtf is strongly stable, then the recursion 

for r s f, 8 2:: t is strongly stable. Thus we see that if b is bounded, 

then it is always possible to obtain a stable recursion for rs f by choosing 

8 sufficiently large. From rs f we can evaluate r t f for t < 8 by 

taking differences. The evaluation of these differences will not accumulate 

errors, and thus one might feel tempted to conclude that we have also found 

a stable way of evaluating rtf. However, this is not necessarily the case as 

the differences would be of a different order of magnitude than rs f . 

5.2 The number of claims in the individual risk theory 

model 

As an example we will derive stability conditions for the recursions related 

to the number of claims in the individual risk theory model, see White & 

Greville (1959) and De Pril (1989). 
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Let N be the number of claims occurred during a certain reference 

period in a portfolio consisting of m independent risks, labelled from 1 to 

m . Risk i either produces a claim (with pro babili ty qi ) or no claim (with 

probability Pi = 1 - qi ). We assume that 

o < qi < 1/2 ( '-1') ) z - ,~, ... , 1n (17) 

From White & Greville (1959) we find that the probability function f of 

the number of claims produced during the reference period can be evaluated 

recursively by 

(s 1,2, ... , m) 

We see that this recursion is of the form (15) with 

b( x) = (_ 1)X + 1 f (q~) x 

i = 1 Pt 
(x = 1,2, ... ) (18) 

From (16) we obtain 

(s=I,2, ... ,m) 

The alternating sign of b may cause stability problems. However, from 

(17) and (18) we see that 

b(x) ~ b(2) = f (q~)2 
i = 1 Pt 

(;1; = 1,2, ... ) 

Hence, if b(2) > -t, or equivalently, 

m ( )2 L qi 

i = 1 Pi 
< t 

then b( x) > - t for x = 1,2, ... , and the recursion for rs f is strongly stable 

for all integers s ~ t. 
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6 Other classes of recursions 

6.1 The general case 

In the present subsection we shall deduce an alternative to Theorem 1 for 

recursive evaluation of r t f. 

For functions h on the integers we define the difference operator \7 by 

\7h(x) = h(x) - h(x - 1) 

We also introduce the notation 

(t = 1,2, ... ) 

Theorem 3 If f E :Fo satisfies the recursion (10), then for t = 0,1,2, ... 

r t f satisfies the recursion 

S ( \7tb(x)) 
rtf(s) = r(s) + ~ \7ta(x) + s rtf(s - x) (s = 1,2, ... ) (19) 

with a(O) = -1, a(x) = 0 for x < 0 and b(x) = 0 for x ~ o. 

Proof. From (10) we immediately see that (19) holds for t = o. 
Now let us assume that (19) holds for t = u. We shall prove that it also 

holds for t = u + 1. For s = 1,2, ... we have 

r u+1 f(s - 1) + r u f(5) 

r u +1 f(s - 1) + r(s) + 1; (\7U a(x) + \7u~(X)) r u f(s - x) 

S ( \7ub(x)) ru+l f(s - 1) + r(s) +]; \7ua(x) + s (ru+l f(s - x) -

r u + 1 f (s - x-I)) 

r u+ 1 f (s - 1) + r ( s) + 1; (\7U a ( x) + \7u ~( X)) ru+l f (s - x) -
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that is, (19) holds for t = u + l. 
The theorem is now proved by induction. o 

If a(x) = b(x) = 0 for all x greater than some finite k, then \lta(x) = 

\ltb(x) = 0 for all x > k + t so that we can rewrite (10) and (19) as 

k ( b(X)) f(8) = r(8) + E a(x) + -8- f(8 - x) (8 = 1,2, ... ) (20) 

(8 = 1,2, ... ) (21) 

with r t f(8) = 0 for all 8 < O. On the other hand, a similar property does 

not hold for bt defined in Theorem 1 for t > 0, and thus it seems that the 

recursion (21) will be more convenient than the recursion (4) if k is small. 

With r - 0 we see from (21) that if f is in the form Rk [a, b], then rtf is 

in the form Rk+t[\lta, \ltb]. 

Let us now define the tail operator A for functions h on the integers by 

00 

Ah(8) = L h(x) 
x==s+l 

assuming that this sum exists and is finite. Further, let 

(t=1,2, ... ) 

If h is a probabilty function, then Ah is the tail of the distribution. The stop

loss transform h is easily found from A 2 h as h = A 2 h( 8 - 1) for 8 = 0, 1, .... 

The following theorem gives a similar recursion to (21) for AI f and can 

be proved in the same way as Theorem 3. 
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Theorern 4 If f E :Fa satisfies the recursion 

. ) ~ ( .) b( x ) ) ( ) f(s = 1'(S) + ~ a(x + -s- f s - ~T (s = 1,2, ... ) 

with k < 00 J then for t = 0, 1,2, ... N f satisfies the recursion 

(s=1,2, ... ) 

(22) 

with a(O) = -1, a(x) = 0 for x < 0 and b(x) = 0 for x :::; o. 

As N f( s) is in general not equal to zero for s < 0, we cannot apply 

the recursion (21) to evaluate Nf when k = 00. For the same reason, the 

assumption that f is in the form Rda, b], does not imply that N f is in the 

form Rk+t[Na,Nbj. 

6.2 The case b = 0 

Let us now assume that f satisfies the recursion (10) with b 0, that is, 

s 

f(s) = r(s) + La(x)f(s - x) (s = 1,2, ... ) (23) 
x=l 

We see that in this case the recursion given by Theorem 3 is also in the 

form (23). We shall now deduce an alternative recursion for r t f. 

Theorem 5 If f E :Fa satisfies the recursion (23), then for t = 0,1,2, ... 

r t f satisfies the recursion 

s 

rtf(s) = rtr(s) + L a(x)rtf(s - x) (s = 1,2, ... ) (24) 
x=l 

with 1'(0) = f(O). 

Proof. The recursion (24) trivially holds for t = o. Let us now assume that 

it holds for t = u. Then, for s = 0,1,2, ... , we have 

1'''+1 f(s) = ~t f(x) = r"r(O) + E (r"r(x) + t,a(y)r" f(x - y)) 
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s 

= r,,+1 r ( s) + La(y )r,,+l f( s - y) 
y=1 

Thus (24) also holds for t = 'U + 1, and by induction, it follows that (24) 

holds for all t. o 

We shall now deduce a recursion for the tails N f. 

Theorem 6 If f E Fo satisfies the recu1'sion (23), then for t = 0,1,2, ... 

N f satisfies the recursion 

t s 

Atf(s) = Nr(s)+Af( -1) L Aja(s)+ L a(x)Atf(s-x) (s = 1,2, ... ) (25) 
j=1 x=l 

Proof. We shall prove the special case t = 1; the general case follows easily 

by induction. For s = 1,2, ... we have 

= = x 

Af(s) = L f(x) = L [r(x) + L a(y)f(x - y)] 
x=s+l y=l 

= = = 
Ar(s) + L a(y) L f(x - y) = Ar(s) + L a(y)Af(max(-l, s - y)) 

y=l x=max(y,s+l) y=l 

s 

Ar(s) + Af( -l)Aa(s) + L a(y)Af(s - y) 
y=l 

that is, (25) holds for t = 1. This completes the proof of Theorem 6. 0 

If f E Fo is a probability function, then Af( -1) = 1. 

We now turn to compound functions. If h E F+ and p E Fo satisfies the 

recursion (23), then Theorem 2 gives 

s x 

(pVh)(s) = (rVh)(s)+ L(pVh)(s-x) L a(y)h*Y(x) (s = 1,2, ... ) (26) 
x=l y=l 

This recursion is also in the form (24), and thus we can evaluate r t (p V h) 

and N(p V h) by respectively Theorems 5 and 6. 

Let us consider the special case of compound geometric distributions, that 

is, hand p are probability functions and p is given by 

p(n) = (1 - 7f)7fn (n=0,1,2" ... ) 
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This counting probability function satisfies (1) with a = 7r and b = o. Thus 

(26) gives 

s 

(p V h) ( s) = 7r L h ( x ) (p V h) (s - x) (s=1,2, ... ) 
x=l 

As this recursion is in the form (23) with 

r(x) = 0 a(x) = 7rh(x) (x = 1,2, ... ) 

we can evaluate ft(p V h) recursively by Theorem 5. We obtain in particular 

s 

f(p V h)(s) = 1 - 7r + 7r L h(x)r(s - x) (s = 1,2, ... ) 
x=l 

s 

f2(p V h)(s) = (1 - 7r)(s + 1) + 7r L a(x)f2(s - x) (s = 1,2, .... ) 
x=l 

For recursive evaluation of N(p V h) Theorem 6 gives 

(s = 1,2, ... ) 

These recursions for compound geometric distributions can be applied to 

obtain upper and lower bounds for the probability of ultimate ruin in the 

classical ruin model, cf. e.g. Dickson (1995). 
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