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Recursive Adaptive Algorithms for Fast and Rapidly
Time-Varying Systems

Yuanjin Zheng, Member, IEEE,and Zhiping Lin, Senior Member, IEEE

Abstract—In this paper, some new schemes are developed to im-
prove the tracking performance for fast and rapidly time-varying
systems. A generalized recursive least-squares (RLS) algorithm
called the trend RLS (T-RLS) algorithm is derived which takes
into account the effect of local and global trend variations of
system parameters. A bank of adaptive filters implemented with
T-RLS algorithms are then used for tracking an arbitrarily fast
varying system without knowing a priori the changing rates of
system parameters. The optimal tracking performance is attained
by Bayesiana posterioricombination of the multiple filter outputs,
and the optimal number of parallel filters needed is determined
by extended Akaike’s Information Criterion and Minimum
Description Length information criteria. An RLS algorithm
with modification of the system estimation covariance matrix is
employed to track a time-varying system with rare but abrupt
(jump) changes. A new online wavelet detector is designed for
accurately identifying the changing locations and the branches of
changing parameters. The optimal increments of the covariance
matrix at the detected changing locations are also estimated. Thus,
for a general time-varying system, the proposed methods can
optimally track its slowly, fast and rapidly changing components
simultaneously.

Index Terms—Dyadic wavelet transform (DWT), recursive
wavelet change detector, system identification, time-varying
system, trend recursive least-squares (T-RLS) algorithm.

I. INTRODUCTION

I N MANY applications such as speech recognition, commu-
nication channel equalization, process control, and biomed-

ical signal processing, the underlying time-varying systems are
subject to fast and/or rapidly changing environments [1], [4].
To track a fast varying system, several variable-step-size adap-
tive algorithms have been proposed to improve the tracking per-
formance [1], [3], [4], [8]. However, if the variations of system
parameters show obvious deterministic local or global trends,
stochastically perturbed difference equation constraints should
be used as smooth priors for system parameters [5]. Based on
these prior trend models, a multistep algorithm and a Kalman
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filtering algorithm have been used to track fast varying sys-
tems in [6], [7]. Further, when the varying trends of system
parameters are unknown, one way to overcome this problem
is to assume that the variations of system parameters satisfy a
first-order Markov chain model and a multiple adaptive Kalman
filtering (MAKF) algorithm is developed for parameter tracking
(see, e.g., [9]). Another way is to employ the vector space adap-
tive filtering and tracking algorithm [10]. However, the compu-
tational loads of all the above methods are heavy and the exact
statistical characteristics of system and measurement noises are
required.

In this paper, a new trend reciursive least-squares (T-RLS)
algorithm is derived for tracking a fast varying system with de-
terministic and known trends. One of the advantages of this
T-RLS algorithm is that it does not require the exact information
on system and measurement noise variances, and state space
equation coefficient matrices. Moreover, extended Akaike’s In-
formation Criterion (AIC) and Minimum Description Length
(MDL) criteria are proposed to determine the optimal order of a
time-varying system online. For tracking a general fast varying
system with unknown order trends, a multiple T-RLS algorithm
is developed which attains the optimal posterior estimation and
is computationally simpler than the MAKF algorithm.

When a time-varying system is subject to rare but abrupt
(jumping) changes, the estimated parameters by conventional
adaptive algorithms cannot track the variations of true system
parameters in the vicinity of these jumping locations, resulting
in the so called “lag” estimation. Three methods can be used
to mitigate the effect of “lag” estimation. The first method
is to use variable forgetting factor RLS algorithms [3]. The
second is to increase the system estimation covariance matrix
at the jumping locations [11], [12]. The third includes various
Bayesian Kalman filtering algorithms [13], [14]. In this paper,
the second method will be adopted to track the abrupt changes
of system parameters. One difficulty of this method is how to
identify the unknown locations and amplitudes of the abrupt
changes online. Some approaches have been developed toward
this task [15]–[18]. The obvious tradeoff between detection
sensitivity and robustness exists in these methods. It has been
shown that the idea of modification of covariance matrix only
with respect to the detected jumping parameter branch(es)
would improve the identification accuracy [12], [19]. Hence, it
is desirable to have of a simple and yet efficient detection and
modification algorithm.

To identify the rapidly changing points effectively, a new on-
line detection algorithm based on a multiscale product sequence
in wavelet domain is proposed in this paper. The new wavelet
detector can efficiently suppress background noise and enhance
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the abruptly changing components so that it is very robust to
interferences (with low false alarm probability) and sensitive
to jumping changes (with high detection probability) compared
with the conventional detectors. A new algorithm for selectively
modifying the elements of the covariance matrix is proposed.
Moreover, the optimal increments of the covariance matrix are
determined.

The rest of the paper is organized as follows. In Section II,
a T-RLS algorithm and a multiple T-RLS algorithm are de-
veloped which can track an arbitrarily fast varying system. In
Section III, a new wavelet detector is proposed for identifying
the abrupt changes and a scheme for selectively modifying the
estimation covariance matrix is presented for tracking rapidly
changing systems. In Section IV, simulation results are provided
which verify the superior performance of the proposed algo-
rithms. Concluding remarks are given in Section V.

II. RECURSIVEADAPTIVE ALGORITHM FOR FAST CHANGING

SYSTEMS

A. T-RLS Algorithm

A time-varying system commonly can be represented by a
linear regression equation and the changes of system parameters
can be modeled with an order one (first-order) random walk
model [10], [11], [25], [26]

(1)

(2)

Here, is the true system parameter vector of size , is
the scalar observation (output) signal, is the system (input)
regressor vector of size , is the system noise vector of
size with covariance matrix , and is the
measurement noise signal with variance . When
the variations of system parameters are slow enough, an RLS
algorithm can be used to track the time-varying system [25],
[26]

(3)

(4)

(5)

(6)

where is thea priori prediction error, is the filtering gain,
is the estimation covariance matrix, andis the forgetting

factor.
However, if the time-varying parameters change fast, the first-

order random walk model is not sufficient to describe the vari-
ations of the system parameters [5], [6]. To accurately model
the time-dependent parameters and increase the tracking ability
for a fast varying system, a general random walk model can be
adopted which sufficiently includes the prior information such
as the th order deterministic trend, stochastic trend, and sea-
sonal components of a nonstationary process [5]. By this model,
Kalman filtering can be employed for system parameter esti-

mation and tracking. However, the explicit statistical charac-
teristics of system and measurement noises are required before
filtering can be performed [6]. In this subsection, we derive a
T-RLS algorithm which can adaptively track fast varying pa-
rameters without knowing the explicit statistical characteristics
of (possibly nonstationary) system and measurement noises. It
is well known that a conventional varying forgetting factor RLS
algorithm has to compromise its tracking performance with es-
timation variance. Similar to the trend Kalman filter algorithm
presented in [5], [6], the proposed T-RLS algorithm can achieve
fast tracking and small estimation variance simultaneously.

Assume the system parameters of a fast varying system can
be modeled with a general random walk model [7]

(7)

(8)

where the various prior trend information can be included in a
nonsingular matrix with size , and the sizes of
and are both of . Obviously, (7) is a more precise model
for fast varying system parameters. In the following, assume
that there are available observation samples

and the variables at time represent the initial
values in the following. To derive a T-RLS algorithm, rewriting
(7) as and then reversely iterating it
times for , we obtain

(9)

where the inverse transition matrix is defined as

if

if
(10)

Substituting (9) into (8) for gives

(11)
Define an matrix

(12)

and two vectors

(13)

(14)

Stack (11) in column for and use notations (12)(14)
to arrive a vector-matrix equation

(15)
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From (15), the optimal estimation of system parameters
based on observation data (in the sense of weighted

least-squares solution) can be obtained as [2]

(16)

where denotes a weighting matrix. If takes the inverse of
the covariance matrix of the equivalent noise vector, i.e.,

(17)

Kalman filtering can be readily derived to achieve an unbiased
minimal variance estimation [2]. For deriving the T-RLS
algorithm, a reasonable choice is to introduce the following
weighting matrix with a set of discounting factors on the
diagonal elements [25]:

(18)

where , are discounting factors
defined as

(19)

and ( ) is named as theth forgetting factor. Typi-
cally, [25], [26]. To derive the recursive estimation
equations, define

(20)

Thus

(21)

From (21), it is easy to show

(22)

Substituting (12), (13), (19). and (20) into (16) and using (22)
gives

(23)

The final equality in (23) is just

(24)

By applying the matrix inverse lemma [25], (21) can be
rewritten in another equivalent form

(25)

In summary, for a fast varying system modeled with a gen-
eral random walk model (7) and (8), the T-RLS algorithm can
be realized by applying (24) and (25) alternatively. Notice that
when , (7) and (8) reduce to (1) and (2) and the
T-RLS algorithm reduces to the conventional RLS algorithm.
Commonly, we choose with to
simplify the computation. If the order of a general random walk
model is properly chosen, commonly takes a value less than
but close to 1.

B. Multiple T-RLS Algorithm for Tracking Arbitrarily Fast
Varying Systems

If the prior trend information of a fast time-varying system is
exactly known, i.e., the matrix is deterministic and known,
the T-RLS algorithm can be used for accurate parameter
estimation. However, commonly is not explicitly known or
even completely unknown. In this case, a bank of T-RLS filters
with a spreading of assumed matrices can be performed in
parallel for parameter estimation separately and at the same
time a Bayesian posterior combination is employed to attain
the optimal parameter estimation. We name this scheme as the
Multiple T-RLS (MT-RLS) algorithm. The MT-RLS algorithm
does not estimate the unknown of a fast varying system
directly. Instead, it obtains the optimal parameter estimation
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through weighted averaging the multiple adaptive filter outputs.
The optimal weighting coefficients can be determined by
Bayesian probability inference. It is shown in the following
that the MT-RLS algorithm can be realized with quite simple
computations and yet has good performance.

For an unknown system (7) and (8) (where matrix, vari-
ance of and covariance of all are unknown), T-RLS
adaptive filters can be adopted for parallel adaptive filtering. Let
the th filter corresponds to the following hypo-
thetical values of the design parameters . The
recursive parameter estimation by theth filter is performed as

(26)

(27)

(28)

where is the assumed trend matrix for theth filter. Without
loss of generality, theth priori prediction error is assumed an
i.i.d. Gaussian distributed sequence with zero mean and variance

[12]. The optimal parameter estimation based on
the completed observation sequence
can be obtained as

(29)

where is the posterior probability of the hypothetical model
given the data set , i.e., .
A more general assumption is to consider a nonstationary

system where the measurement noise itself possibly changes
with time slowly. In this case, since and are both slowly
varying, only most recent observation data samples are used
to reliably estimate so that is assumed invariant in this
time interval (i.e., ). Denote

, and redefine as

(30)

To estimate , Bayes rule can be applied

(31)

The denominator of the above equation is a constant which is not
relevant to . Under i.i.d. Gaussian assumption and according
to (27), the conditional likelihood function of based on

and is . Thus the
joint conditional likelihood function of recent samples can be
represented as

(32)

As in [20], we assign noninformative prior distributions toand
as

(33)

(34)

Substituting (32)–(34) into (31), it is easy to derive

(35)

(36)

Here, and are two different constants. Define

(37)

which can be estimated recursively as

(38)

Since , can be recursively estimated based
on as

(39)

In summary, the MT-RLS algorithm can be recursively imple-
mented by (26)–(29), (38), and (39). Like the T-RLS algorithm,
the MT-RLS does not require the information of system and
measurement noises and, thus, is computationally simpler than
the MAKF algorithm. At this point, several parameters,
and in the MT-RLS algorithm remain to be
selected. In the following section, we will discuss the problem
of optimal parameter selection.
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C. Parameter Selection for the MT-RLS Algorithm

The filtering length should be chosen to ensure the signal
in this interval is approximately stationary, so that can be
considered as unchanged and can be estimated efficiently by the
observed data set in this interval. Recall that the memory of the
RLS algorithm is approximately if
is less than but close to 1 [25], [26]. Thus,can take

(40)

where means rounding toward positive infinity.

The forms and values of may be chosen by referring to the
varying trend of the system parameters to be studied. On the one
hand, should be selected general enough to encompass the
true type and order of the underlying system. Commonly used
trend models include local polynomial trend model, stochastic
trend model and local polynomial seasonal component model
etc. [5]. On the other hand, taking small number of parallel adap-
tive filters can reduce the algorithm complexity and improve the
computational efficiency. Therefore, we should find a method
to determine the optimal filter number (acting as the
bandwidth of the adaptive algorithm), which best balances the
algorithm complexity and performance.

For tracking a time-varying system with deterministic but un-
known trend, the assumed in (7) can take different (integer)
order fixed matrices. For example, if the system parameters are
assumed to follow ath order polynomial trend, theth order
stochastically perturbed difference equation can be used to rep-
resent the dynamics of the system parameters. Hencewill be
a fixed matrix with size ( ) as (41), shown at
the bottom of the page, whererepresents Kronecker product
and . Similarly, if the system parameters
are assumed to follow ath order autoregressive (AR) stochastic
trend, is also a fixed matrix but with different
elements (see [5] and [6] for details). Taking large orders can
improve the tracking ability but also increase the model com-
plexity, and taking small orders is computationally simple but
will decrease the tracking ability. Obviously, an optimal trend
model order can be chosen for an unknown system once the
forms and values of are selected. This order can
be determined by the AIC or MDL information criteria, etc. [6]
which optimally balance model representation ability and model
complexity. Assume T-RLS adaptive filters are performed in
parallel and theth filter takes trend model order

. To determine the optimal trend model order, an extended

AIC or MDL sequence and for the trend model
of the th filter at time can be derived as follows:

(42)

(43)

where corresponds to the assumed. For a system with
all of the three trends,

(44)

where , , and are the model orders of the local poly-
nomial trend, the AR trend, and the seasonal trend of theth
filter, respectively. , if and , if

for each . See [5] for more
details. We select theth filter as the most matched filter which
leads to the minimal or , i.e.,

or

(45)

and as the optimal integer trend model order. Without loss
of generality, we sort as

(46)

To reduce the number of parallel filters while keeping
good performance, we can design an MT-RLS algorithm
with constant filter number (bandwidth) which can opti-
mally balance the algorithm performance and the compu-
tational complexity. Explicitly, we take as a constant
odd number and the corresponding filter orders as

.
Here, the filter with tend model order corresponds to
the most matched filter, the filter with trend model order

corresponds to the least underdetermined
filter, the filter with trend model order

...

...

...

(41)
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corresponds to the most overdetermined filter in the chosen
constant bandwidth ( ) adaptive algorithm.

III. RECURSIVE ADAPTIVE ALGORITHM FOR RAPIDLY

CHANGING (JUMPING) SYSTEMS

A. Changing Points Detection for Tracking Rapidly Changing
Systems

There are two methods to adjust the RLS algorithm (3)–(6)
when it is used for tracking a rapidly changing system. One
method is to adaptively adjust the forgetting factorat the
rapidly changing points while keeping its nominal values at
other locations [3]. The other is to increase the estimation co-
variance matrix or at the locations of jumping points so
that the filtering gain can be increased significantly to track the
rapidly changing components [11]. When using either method,
the jumping points need to be knowna priori and this com-
monly is unrealistic in practice. Therefore, a recursive parameter
change detection algorithm is required to identify the locations
of jumping points online. Once a jumping change is detected,
the above RLS algorithm with changing the forgetting factor
or the covariance matrix at the detected jumping point can be
adopted.

Some recursive change detection algorithms have been de-
veloped in [15]–[18]. An attractive method is the one used by
Trigg and Leach (T & L) [15]. In this method, two filtering sig-
nals gained from the prediction error signalare used

(47)

(48)

where denotes absolute value andtakes a very small posi-
tive value (commonly, ). The T & L detection
signal is defined as [15]

(49)

According to the central limiting theorem, is asymptotically
Gaussian distributed. It is shown in [15] and [16] that, for small

, is a zero-mean signal with variance approximately as

(50)

Assume a detection threshold is. When at time index
, a parameter change is considered to have happened [11]. De-

notes as the false alarm probability of detection. According
to the Chebyshev’s inequality , the
detection threshold can be chosen as

(51)

From the above, we see that there exists a tradeoff between the
false alarm probability and the detection probability of the T
& L detector. In the following subsection, we will develop a
wavelet domain change detection algorithm which can achieve

much higher detection probability when using the same false
alarm probability as the one used by the T & L detector (i.e.,
using the same detection threshold).

B. Wavelet Jump Detector for Abrupt Change Detection

A dyadic wavelet transform (DWT) of function at time
and scale ( and is the maximum decomposition
scale) can be implemented via a set of discrete digital filters as
follows [21], [22] (without loss of generality, the initial condi-
tions are assumed as ):

(52)

where is the equivalent digital
filter of DWT in the th scale. It is odd symmetrical with re-
spect to [i.e., ] and its region of support
(the number of nonzero coefficients) at scaleis

[21], [23]. Unfortunately, for each scale is
a noncausal filter. Hence, (52) cannot be used for calculating
DWT online causally. For detecting the changing points on-
line, a recursiveDWT algorithm is desired that can calculate
the DWT coefficients in different scales once a new observation
data sample is available. Assuming the available data sequence
at time is , we consider an extended se-

quence by an even-symmetric exten-
sion of as

.
(53)

Denote the DWT of at time and scale as , i.e.,
. We will show in the following theorem that

can be online calculated from using an equivalent causal
filter. Obviously, if a jumping point of occurring at time
can be detected from , it also can be detected from
since the even-symmetric extension signaldoes not alter the
jumping point features of the original signal. Since can
be recursively calculated online, it should be used instead of

for online detecting the abrupt changes of signal.
Theorem 1:: Let the even-symmetric extension sequence

be given in (53), the DWT of at time and scale can
be calculated from as

(54)

where is an equivalent causal filter for
scale defined as

.

(55)

Furthermore, can be recursively calculated as

(56)

(57)
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Here, , , and are column vectors of size
which are defined as follows:

(58)

(59)

(60)

To save space, the proof is omitted here but can be found in [24,
pp. 91–92].

We name (54) as a causal DWT of the original signal. The
above theorem shows that at time can be recursively cal-
culated online using (56) and (57) once a new data samplear-
rives. The scale filters can be calculated
and stored in advance before performing the recursive causal
DWT. In (52), when . Thus, the filter
coefficients of can be calculated by ap-
plying the iterative DWT algorithm introduced in [21] to a
input signal. Once is obtained, can be easily calcu-
lated by (55). The filter coefficients of for scale 1–4
can be found in [24].

Now, consider multiscale product of the first scale se-
quences in wavelet domain at time index

(61)

Since the wavelet used for DWT in this paper is chosen as
the first-order derivative of a smooth function (a cubic spline
function, see [21]), the DWT can be interpreted as the
derivative of local smooth (average) of at scale [22].
Hence, if (thus ) has some singular points (especially
jumping points), will appear as modulus maxima at these
locations. More importantly, the amplitude of noise modulus
maxima will decrease from small scales to large scales while
the amplitude of signal modulus maxima will increase from
small scales to large scales in the wavelet domain [21], [22].
Therefore, multiscale product sequence sharpens and
enhances the modulus maxima dominated by signal edges and
at the same time suppresses the modulus maxima dominated by
noises. It has been further shown in that the probability density
function (PDF) of a multiscale product sequence is heavy tailed
compared with that of a Gaussian distributed one with the same
variance. Employing these characteristics, a DWT multiscale
product sequence of an existing detection signal (for example,
obtained from the T & L detector) can be used as a new
detection signal. It will enhance the components representing
possible abrupt changes in the original detection signal and
thus a larger detection threshold can be used, which will lead
to a smaller false alarm probability. At the same time, it will
suppress the noise interference components in the original
detection signal, which will decrease the miss alarm probability
and thus increase the detection probability. Motivated by the
above discussion, a new wavelet jump detector is now proposed
for online change detection.

Denote as the causal DWT of the T & L detection signal
(49) at time and scale . That is

(62)

which can be recursively calculated as (56) and (57). The mul-
tiscale product signal of the first scales can be calculated as

(63)

Define a new (multiscale product) detection signalby filtering
as follows:

(64)

where is an exponential smoothing factor which commonly
takes a value in the range [0.05, 0.13]. Although is
heavy-tailed non-Gaussian distributed,obtained above is a
Gaussian distributed signal according to the central limiting
theorem. Now, a new wavelet detector can be formed as

(65)

Obviously, if is a Gaussian distributed signal, is also a
Gaussian distributed signal whose variance is the same as that
of . However, if has some local maxima (minima) corre-
sponding to the abrupt changes of the original signal, these local
maxima (minima) will be enlarged and sharpened in. This
characteristics can be employed to provide a more robust and
accurate identification of the possible abrupt changes. Thus, if
we choose the detection thresholdof the wavelet detection
signal equal to the thresholdof the T & L detection signal

, we can achieve much higher detection probability. To get
the accurate estimation of the variance of( ) in (65),
a robust method will be proposed shortly based on an empirical
equation. We first postulate two transformations as follows.

First, the log of the ratio of the variance of to the variance
of satisfies an order polynomial function of

(66)

where . Taking log operation can compress the dynamic
range of and hence an order polynomial
function is sufficient to approximate the log function in the left
side of (66).

Second, the log of the ratio of the variance ofto the vari-
ance of satisfies a log function plus a linear
function of

(67)

If is a white-noise sequence, the variance
ratio is and thus

[obtained by taking
variance on both sides of (64)]. Although wavelet transform
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can decorrelate a signal to some degree, in (62) is a
correlated signal since is highly correlated. Therefore,
in (63) is a correlated signal. A linear function ofis added
in (67) to account for the bias produced by the correlation of
signal .

Combining (66) and (67), the ratio of the variance of new
wavelet multiscale product detection signal to the variance of
the T & L detection signal (R–W–TL) is defined as

(68)

and the wavelet detector (65) using the empirical variance ratio
estimation (68) can be represented as

(69)

where the values of , , and can be esti-
mated by applying least-squares method to experimental
data through Monte Carlo simulations. Recommendation
values are , , , and

. Extensive simulations have verified that
the empirical equations (68) and (69) are effective and produce
quite accurate results (see [11] for more details).

C. Selectively Tracking of Rapidly Changing Systems Using
Wavelet Jump Detectors

For a time-varying system, different branches of system
parameters are not always subject to abrupt changes simul-
taneously when a jump occurs. When modifying the matrix

or [in (5) or (6)] with , it is common to select
as a diagonal matrix where each diagonal element reflects the
change of the corresponding parameter branch. When one or
several branches have changed rapidly at a specific time, the
corresponding elements in should be increased while the
remaining elements should keep unchanged [11]. This requires
that the jump detector cannot only identify the locations where
the jumps have happened but also determine the branches pro-
ducing these jumps.

It is well known that thepriori prediction error signal can
be used to construct the jump detector [15], [16]. However,
this detector (named asprediction detector) only can determine
where a jump happens for a time-varying system. To judge
which branches this jump is produced by, a set of jump detec-
tors can be constructed directly from the estimated filtering
gains (named asgain detectors). Combining theprediction
detectorwith gain detectors, a newselective wavelet detector
is proposed in the following, which can determine not only
the locations of jumping points but also the branches that have
produced the jumps.

Assume a wavelet detector (prediction detector) is
obtained from the priori prediction error signal [see

(4)]. Assume other wavelet detectors (gain
detectors) are obtained from the estimated filtering gains

[see (5)], respectively. Without loss of
generality, we assume here a system jumping change at a
specific time is produced by an abrupt change of only one
parameter branch (the case of several parameter branches
changing at the same time is a simple extension). The proposed
selective wavelet detectoruses both theprediction detector
and thegain detectorsfor parameter change detection. More
explicitly, an abrupt change is considered to be detected at the
th parameter branch at time, if

and (70)

where the detection thresholdis set as and, thus, can
be determined by (51) in advance. At this time, we set

. To determine the value of ,
consider the following equality (see [25, Appendix 3.D]):

(71)

(72)

where is the sum of thea priori prediction mean-square er-
rors at time . When is close to 1, we can take
and is the measurement noise variance [25]. Modify the
matrix as (setting )

(73)

Substituting (73) into (71) gives

(74)

Thus, can be estimated as

(75)

Similarly, modify the matrix as (setting )

(76)

Substituting (76) into (72), and can be estimated as

(77)

In a summary, we list the complete RLS algorithm using es-
timation covariance matrix modification and selective wavelet
detector (abbreviated as RLS-MSWD) at timeas follows.

• (a) RLS algorithm
Using (3)–(6) to calculate , , and ;

• (b) Selective wavelet detector for change detection
— (b1) From , calculating (47)–(49), (62) [imple-

mented with (56) and (57)], (63), (64), (68), and (69)
to get thepredictive detector ,

— (b2) For : {Using instead of in (47)
and (48), calculating equations as in (b1) to get theth
gain detector } End

— (b3) Using (70) to detect if a jumping change has hap-
pened. If yes, determine which parameter branch pro-
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Fig. 1. Track a ramp time-varying system by (a), (c) the RLS algorithm and (b), (d) the T-RLS algorithm. (Solid lines represent true values and dotted lines
represent estimation results.)

duces this change and go to (c); Otherwise
and go to (a);

• (c) Estimation covariance matrix modification
Modify or as (73) and (75) or (76) and (77).

and go to (a).

The RLS-MSWD algorithm above is performed recursively
to track a rapidly changing system. If we use a T-RLS or a
MT-RLS algorithm instead of the RLS algorithm in step (a)
and keep steps (b) and (c) unchanged, the extended algorithm
can identify and track an arbitrary time-varying system with
slowly, fast and rapidly varying components simultaneously. A
typical example will be used in the next section to illustrate this
promising tracking method.

IV. SIMULATION RESULTS

The T-RLS and RLS algorithm are used for tracking a ramp
function in Fig. 1. The system simulated is an
model

where is a ramp-like function, is a constant and
is assumed a random pulse input. The measurement noise
variance of takes 0.01. The RLS algorithm is used for the
identification of the above system assuming that
the system parameters are modeled with an order one random
walk model. The T-RLS algorithm is used for the identification
of the same system assuming that the system parameters are
modeled with a second order deterministic trend model, where
we take vector , vector

, and matrix

in recursive equations (7) and (8) [see also (41)]. The estimation
results by the RLS algorithm (with a forgetting factor 0.97) are
shown in Fig. 1(a) and (c). Obviously, the estimated ramp func-
tion lags the true values. The estimation results by the T-RLS
algorithm with the same forgetting factor are shown in Fig. 1(b)
and (d), where the estimated ramp function can track the true
values very well.

In Figs. 2 and 3, we show that the performance of a MT-RLS
algorithm. An system with as sin-like function
and as a constant is simulated. Here we assume that the true
order of the trend model used for modeling system parameters
is unknown. The MDL values for assumed deterministic trend
model order from 1 to 4 are calculated and shown in Fig. 2.
The forgetting factor is taken as 0.98 and thus . We
can see that the third-order trend model is the best matched
model since its MDL sequence values are minimal among
the four MDL sequences of different order trend models after
the algorithm converges. If we select the number of parallel
filters , the three filters should take the trend models
with orders 2, 3, and 4 respectively. The optimal posterior
estimation by the MT-RLS algorithm using these three filters
is shown in Fig. 3(a), and the estimation results by the T-RLS
algorithm using order 1–4 trend model are shown in Fig. 3(c)
respectively. Fig. 3(b) and (d) are the zoom-in parts of Fig. 3(a)
and (c), respectively. Obviously, the adaptive filter taking order
1 or 2 trend model underestimates the true system parameters
while the adaptive filter taking order 3 or 4 trend model
overestimates the true system parameters. Thus, we can infer
that the true trend model order is between 2–3 but closer to
3. Although we cannot estimate the true trend model order
accurately, the optimal estimation of system parameters can
still be obtained by the MT-RLS algorithm.

In Fig. 4, the proposed wavelet detector is compared with
the T & L detector. Fig. 4(a) shows a stationary white Gaussian
noisy signal which has three abrupt changes at the vicinity of
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Fig. 2. MDL values of the T-RLS algorithm for different order trend models.

Fig. 3. Track a sin-like unknown order time-varying system by the MT-RLS algorithm. (a) Optimal tracking by the MT-RLS algorithm. (c) Tracking by the
T-RLS algorithm with different order trend models. (b), (d) Zoom in of (a) and (c).

time locations 100, 700, and 1500, respectively. The amplitudes
and shapes of these changes are shown in Fig. 4(b). In Fig. 4(c),
the solid line represents the T & L detection signal and the
dotted line represents the wavelet detection signal obtained
using the theoretical R–W–TL. Fig. 4(d) shows the same trace
as the one represented by the dotted line in Fig. 4(c), i.e.,
wavelet detection signal obtained using the theoretical R–W–TL
(wavelet decomposition scale number ). Comparing the
wavelet detection signal with the T & L detection signal in

Fig. 4(c), the former can provide sharper and more accurate
indication of the abrupt changing points and this is very
important for detecting small amplitude or/and concentrated
abrupt changes.

Next, an ARX(2, 1) system

is used to verify the performance of the proposed abrupt change
tracking algorithm. Here, the system parameters and
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Fig. 4. Comparison of the wavelet detector with the T & L detector. (a) Original signal. (b) Abrupt change locations and shapes. (c) Solid line: T & L detection
signal; dotted line: wavelet detection signal obtained from empirical equations. (d) Wavelet detection signal obtained from empirical equations.

Fig. 5. An ARX(2, 1) abruptly changing system identification by the proposed RLS-MSWD algorithm. (Solid lines represent tracking results and dottedlines
represent true values.)

are both with abrupt changes and is constant as shown in
Fig. 5. The identification results by the proposed RLS-MSWD
are shown in Fig. 5, where , , ,
and the empirical formulas (68) and (69) are used for producing
the wavelet detectors. It can be seen that the estimation coin-
cides with the true parameter values very well. For comparison,
identification results by the RLS algorithm using T & L de-
tector (abbreviated as RLS-MTLD) are shown in Fig. 6. Since
the T & L detector is not so sensitive to the abrupt changes as
the selective wavelet detector, the identification results by the
RLS-MTLD method can not track abrupt changes with small
amplitude [see between time index 330 and 500] and con-
centrated abrupt changes [see between time index 570
and 620] in Fig. 6. Moreover, from Fig. 5 we can see that the
proposed RLS-MSWD method can selectively track the abrupt

changes of different parameter branches; while the estimation
of different parameter branches by the RLS-MTLD method in
Fig. 6 are disturbed and affected by each other.

Finally, an example of tracking a general system with slowly,
fast(with ramp and quadratic trend), and abruptly changing
components is illustrated in the following. The system to be
simulated is an ARX(1, 1) system whose parameter is
shown by the dotted line in Fig. 7 and is a constant. The
MT-RLS algorithm using both estimation covariance matrix
modification and selective wavelet detector is applied for
system identification and parameter tracking. The algorithm
parameters are selected as , , ,

, and . The estimation result of is shown
in Fig. 7(a) which coincides with the true values very well.
The MT-RLS alone ( , ) is used for system
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Fig. 6. An ARX(2, 1) abruptly changing system identification by the RLS-MTLD algorithm. (Solid lines represent tracking results and dotted lines represent
true values.)

Fig. 7. Track a general system with slowly varying, fast varying, and rapidly changing components by the: (a) MT-RLS algorithm with covariance modification
using selective wavelet detector; (b) MT-RLS algorithm; (c) RLS algorithm. (Solid lines represent tracking results and dotted lines represent truevalues.)

parameter estimation and the result is shown in Fig. 7(b).
Although the trend changes of time-varying parameters are
estimated well, this method cannot track the abrupt changes
sufficiently. The estimation by the RLS method ( ) is
shown in Fig. 7(c) which fails to track both the fast and the
abruptly changing components.

V. CONCLUSION

In this paper, the problem of tracking fast and abruptly
changing systems has been tackled. A T-RLS algorithm has
been proposed to track fast changing parameters with local and
global trends. For an unknown fast varying system, a MT-RLS

algorithm has been developed to optimally estimate the system
parameters through Bayesian posterior combination of multiple
adaptive filter outputs. To track an abruptly changing system,
a new online wavelet detector has been proposed which is
computationally simpler and can achieve much higher detection
probability than commonly used abrupt detection methods.
Selectively tracking the rapidly changing parameter branches
via estimation covariance modification at the jumping points
has been rigorously discussed. Both the jumping locations and
increment values of covariance matrix for the detected pa-
rameter branches can be determined. Combining the proposed
MT-RLS algorithm with the covariance modification method
using wavelet detectors, slowly, fast, and abruptly changing
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components of a general time-varying system all can be tracked
well.
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