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Recursive Algorithm for the Control of Output
Remnant of Preisach Hysteresis Operator

M. A. Vasquez-Beltran , Graduate Student Member, IEEE , B. Jayawardhana , and R. Peletier

Abstract—We study in this letter the control of
hysteresis-based actuator systems where its remanence
behavior (e.g., the remaining memory when the actuation
signal is set to zero) must follow a desired reference point.
We present a recursive algorithm for the output regulation
of the hysteresis remnant behavior described by Preisach
operators. Under some mild conditions, we prove that our
proposed algorithm guarantees that the output remnant
converges to a desired value. Simulation result shows the
efficacy of our proposed algorithm.

Index Terms—Mechatronics, control applications,
iterative learning control.

I. INTRODUCTION

HYSTERESIS is a complex non-linear behavior with par-
ticular memory characteristics and it is present in many

physical systems such as shape memory alloys, mechani-
cal systems with friction, and ferromagnetic and ferroelectric
materials. Its influence becomes crucial and important when
they are used in high-precision engineering systems.

Hysteresis can occur as a quasi-static (rate-independent)
or dynamic (rate-dependent) non-linear phenomenon which
can mathematically be described by non-smooth integro-
differential equations such as the Duhem hysteresis model [1],
infinite-dimensional operators such as the Preisach operator [2]
or the combination thereof such as the Prandtl–Ishlinskii oper-
ator [3]. Mathematical expositions of these hysteresis operators
can be found, among many others, in [4]–[8].

In the literature of systems and control theory, a number
of methods have been proposed and studied to control non-
linear systems containing hysteretic sub-systems that can be
described by one of the aforementioned hysteresis models.
For instance, when the hysteretic element can be modeled by
a classical (rate-independent) Preisach operator, a standard
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brute-force approach involves the identification and the use
of inverse model that can approximately cancel the hysteresis
non-linearity when it is connected in cascade [9]. An approach
based on a multiplicative structure which does not require a
direct inversion of a rate-dependent version of the Prandtl–
Ishlinskii operator is presented in [3]. Other approaches exploit
particular systems’ properties and structure of the hysteresis
model in order to design the stabilizing controller and to facili-
tate the analysis of the closed-loop systems. In this case, some
well-studied systems’ properties of hysteresis operators are
dissipativity and passivity properties.

In contrast to the aforementioned control problem where
hysteresis is considered to be an undesirable nonlinear phe-
nomenon, we study in this letter the control of the memory
property of hysteresis operators. In particular, we are interested
in the design of controller for regulating the output remnant
value, which is the leftover memory when the hysteresis input
is set to zero, to a desired state. As hysteresis has a memory-
effect that depends on the history of the applied input signal,
the output remnant value can be driven from any given ini-
tial value to a desired one by a suitable input signal that is
compactly defined (i.e., it has zero value outside a compact
time interval). The set-point regulation of output remnant via
a compactly-defined input signal is relevant for applications
that require minimal use of control input due to, for instance,
input energy constraint or the associated energy loss/heat dis-
sipation when a constant non-zero input is used to maintain
the desired output.

For high-precision mechatronic systems, a number of novel
actuator systems have been proposed that exploit such output
remnant behaviors. In [10], [11], a piezoelectric actuator with
two stable configurations is developed. A commercial piezo-
electric actuator, so-called PIRest, is developed and presented
in [12]. Recently, we have proposed and studied a hysteretic
deformable mirror for space application that use a novel piezo-
material which allows us to achieve a large range of remnant
deformation [13], [14]. In the latter application, the use of
set-point regulation via output remnant enables the develop-
ment of a novel deformable mirror with high-density actuator
systems via multiplexing with almost no heat dissipation [14].

In this letter, we propose a recursive algorithm to com-
pute the desired compactly-defined input signal that solves
the aforementioned set-point regulation problem using out-
put remnant. We assume that the hysteresis is modeled by
a classical Preisach operator and we use triangular signals
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as the basis for our compactly-defined input signal, similar
to the one presented in [15], [16]. Using our algorithm, we
prove the asymptotic convergence of the signal to the desired
one. Our results extend the work of [16] in two ways. Firstly,
we show in Proposition 3.2 the existence of general sector
bounds for the output remnant as a function of the amplitude of
input signal without assuming sign-definiteness of the Preisach
weighting function. Secondly, we show the monotonicity of the
output remnant as a function of the amplitude within a compact
interval such that the asymptotic convergence can be guaran-
teed in Proposition 4.2. Notably, the sign-indefiniteness of the
Preisach’s weighting function is relevant to the application of
our algorithm to the output remnant control of piezoactuator
systems that use piezomaterial exhibiting butterfly hysteresis
loop as studied in [13].

II. PRELIMINARIES

We denote by C(U, Y), AC(U, Y), Cpw(U, Y) the spaces of
continuous, absolute continuous, and piece-wise continuous
functions f : U → Y , respectively.

A. The Preisach Hysteresis Operator

We introduce a formal definition of the classical Preisach
operator following the exposition in [5]. We define the so-
called Preisach plane P by P := {(α, β) ∈ R

2 | α ≥ β}, and
correspondingly, we denote by I ⊂ P the set of all interfaces
L ∈ I , each of which is monotonically decreasing staircase
line that can be described by a curve � : R+ → P as fol-
lows L = {(α, β) | (α, β) = �(c), c ∈ R+} and such that
�(0) = (β1, β1) for some β1 ∈ R, and limc→∞ ‖�(c)‖ = ∞.
By monotonically decreasing we mean that α1 ≥ α2 whenever
β1 ≥ β2 for all pairs (α1, β1), (α2, β2) ∈ L. Accordingly, the
Preisach operator P : AC(R+,R) × I → AC(R+,R) can be
formally defined by

(P(u, L0))(t) :=
∫∫

(α,β)∈P

μ(α, β)
(
R α,β(u, L0)

)
(t) dαdβ (1)

where μ(α, β) ∈ C(P,R) is a weighting function, L0 ∈ I
is the initial interface, and R α,β : AC(R+,R) × I →
Cpw(R+, {−1, 1}) is the relay operator defined by

(
R α,β(u, L0)

)
(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if u(t) > α,

−1 if u(t) < β,(
R α,β(u, r0)

)
(t−) if β ≤ u(t) ≤ α,

and t > 0,

rα,β(L0) if β ≤ u(t) ≤ α,

and t = 0.

(2)

Note from the definition above that we have accommodated the
initial interface L0 through an auxiliary function rα,β : I →
{−1, 1} which is defined by

rα,β(L0) :=
{

1, if L0 ∩ {(α1, β1) | α < α1, β < β1} �= ∅,

−1 otherwise,

and whose purpose is to determine the initial state of the
relay R α,β in accordance with the initial interface L0. In
other words, the function rα,β will take value +1 if (α, β) is
below the interface L0, and −1 if (α, β) is above the interface

L0. It is important to note from (2) that the value of rα,β

plays a role defining the initial state only for relays satisfy-
ing β ≤ u(0) ≤ α. Thus, to avoid inconsistencies between
the value of rα,β and the actual initial state some relays we
assume always that (u(0), u(0)) ∈ L0.

B. The Remnant Control Problem

To introduce our formulation of the remnant control
problem for the Preisach operator, let us start considering an
input u defined on a time interval [0, τ ] with τ > 0 such that
u(0) = u(τ ) = 0, and an initial interface L0 ∈ I satisfying
(0, 0) ∈ L0. When such input is applied to a Preisach operator
in the form P(u, L0), the final output value y(τ ) may be differ-
ent from the initial output value y(0) due to the switching of
some relays in the Preisach domain P which occurs as result
of the variations of u within the interval [0, τ ]. Let Lτ ∈ I
be the final interface which describes the state of relays in
the Preisach operator at time instance t = τ . It is clear that
(0, 0) ∈ Lτ (because (u(τ ), u(τ )) = (0, 0)). Consequently,
when the input of the Preisach operator is restricted to satisfy
u(0) = u(τ ) = 0, the initial and final interfaces are contained
in a subset of I defined by

I γ := {L ∈ I | (0, 0) ∈ L}.
Note that the restriction u(0) = u(τ ) = 0 also compels relays
whose (α, β) are in certain subdomains of P to have fixed
initial and final states regardless the behavior of u within the
interval [0, τ ]. Consider a subdomain of the Preisach plane
defined by

Pγ := {(α, β) ∈ P | α ≥ 0, β ≤ 0}.
We have that every interface in I γ lies entirely in Pγ .
Consequently, relays whose (α, β) are not in the subdomain Pγ

are restrained to the state −1 (resp. +1) at both time instances
t = 0 and t = τ if they have β > 0 (resp. α < 0). In other
words, the set of relays R α,β which have different initial and
final state due to the variation of the signal u in (0, τ ) belongs
to Pγ .

The remnant of the Preisach operator refers to the instanta-
neous value of the output y(t) when the input value satisfies
u(t) = 0 for some t. Roughly speaking, our remnant control
problem corresponds to designing a feedforward control input
u whose values at initial and terminal time are zero and the
corresponding output of the Preisach operator has the desired
remnant value γd ∈ R at the terminal time. To solve this
problem, we propose a recursive algorithm based on an input
of the form

uγ (t) :=
∞∑

k=0

wkvk(t) (3)

where k ∈ Z+, wk ∈ R and vk is defined by

vk(t) :=

⎧⎪⎪⎨
⎪⎪⎩

2
τ
(t − kτ) if kτ ≤ t ≤

(
k + 1

2

)
τ,

2
τ
(−t + (k + 1)τ ) if

(
k + 1

2

)
τ < t ≤ (k + 1)τ,

0 otherwise,
(4)
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with τ > 0. The function vk corresponds to a triangular pulse
of unit amplitude and time length τ , which starts at t = kτ
and finishes at t = (k + 1)τ and whose peak value occurs at
t = (k + 1

2 )τ . Therefore, the input uγ is a train of triangular
pulses whose amplitudes are modulated by the factors wk.

Assume that uγ is applied as input to the Preisach operator
and let Ik ∈ I γ be the interface that describes the state of
the relays at time instance t = kτ (i.e., Ik = L(kτ)). We can
compute the remnant by a function γ :R×I γ → R defined by

γ (wk, Ik) := (P(uγ , I0)
)
((k + 1)τ )

= (P(wkvk, Ik))((k + 1)τ ) = (P(wkv0, Ik))(τ ) (5)

In other words, the function γ gives the remnant after the
application of the k-th triangular pulse of uγ to a Preisach oper-
ator whose relays have initial states described by the interface
I0, or equivalently, the remnant after the application of a sin-
gle triangular pulse with amplitude wk to a Preisach operator
whose relays have initial states described by the interface Ik.
In this way, we formulate the remnant control problem as find-
ing the sequence of values wk that yields γ (wk, Ik) → γd as
k → ∞.

III. THE PROPERTIES OF THE REMNANT RATE

We analyze in this section the behavior of the remnant when
the triangular pulses of the input uγ defined in (3) is applied
to the Preisach operator. For this, we consider the difference
of remnant between two consecutive triangular pulses of uγ ,
which is defined by

�kγ := γ (wk+1, Ik+1) − γ (wk, Ik). (6)

Let us introduce the auxiliary functions

�M
β (α, L) := max{β | (α, β) ∈ L},

�m
β (α, L) := min{β | (α, β) ∈ L},

�M
α (β, L) := max{α | (α, β) ∈ L},

�m
α (β, L) := min{α | (α, β) ∈ L},

which are used in following proposition to re-parameterize the
coordinates (α, β) of the interface.

Proposition 1: Consider the remnant difference �kγ

defined in (6). For every k ∈ Z+, we have that

�kγ =

⎧⎪⎪⎨
⎪⎪⎩

2
∫ wk+1

Mk+1

∫ 0
�M
β (α,Ik+1)

μ(α, β) dβdα, if wk+1 > Mk+1,

−2
∫ mk+1

wk+1

∫ �m
α (β,Ik+1)

0 μ(α, β) dαdβ, if wk+1 < mk+1,

0, otherwise,

(7)

with

Mk+1 = �M
α (0, Ik+1) and mk+1 = �m

β (0, Ik+1).

Proof: Consider the case when wk+1 > Mk+1 and let P+
k+1

and P−
k+1 be the subdomains of the Preisach domain P that are

below and above the interface Ik+1, respectively (see Fig. 1(a)).
Using these domains, the remnant of the Preisach operator at
time instance t = (k + 1)τ can be expressed by

γ (wk, Ik) =
∫∫

P+
k+1

μ(α, β) dαdβ −
∫∫

P−
k+1

μ(α, β) dαdβ.

Fig. 1. Partition of the Preisach plane P used in Proposition 1 to
compute �k γ := γ (wk+1,Ik+1) − γ (wk ,Ik ).

Note that the value Mk+1 = �M
α (0, Ik+1) is the α-coordinate

of the vertex in the interface Ik+1 which corresponds to last
maximum of the input applied to the Preisach operator at time
instance t = (k + 1)τ (i.e., the last maximum of the truncated
input {uγ (t) | 0 ≤ t ≤ (k + 1)τ }). Therefore, since wk+1 >

Mk+1, at the time instance t = (k + 2)τ when the (k + 1)-th
triangular pulse finishes, there is a region �wk+1 ⊂ P−

k+1 of
relays whose states have switched from −1 to +1. This region
is given by

�wk+1 = {(α, β) | Mk+1 ≤ α ≤ wk+1, �M
β (α, Ik+1) ≤ β ≤ 0}.

Consequently, it can be check that the remnant of the Preisach
operator at time instance t = (k + 2)τ is given by

γ (wk+1, Ik+1) =
∫∫

P+
k+1

μ(α, β) dαdβ −
∫∫

P−
k+1

μ(α, β) dαdβ

+ 2
∫∫

�wk+1

μ(α, β) dαdβ,

and subtracting both values of the remnant we have

γ (wk+1, Ik+1) − γ (wk, Ik) = 2
∫∫

�wk+1

μ(α, β) dαdβ,

and from the definition of the region �wk+1 , the integral limits
can be parameterized as follows

�kγ = 2

wk+1∫

Mk+1

0∫

�M
β (α,Ik+1)

μ(α, β) dβdα.

Consider now the case when wk+1 < mk+1 and again let
P+

k+1 and P−
k+1 be the subdomains of the Preisach domain P

that are below and above the interface Ik+1, respectively (see
Fig. 1(b)). As in the previous case, the remnant of the Preisach
operator at time instance t = (k + 1)τ is given by

γ (wk, Ik) =
∫∫

P+
k+1

μ(α, β) dαdβ −
∫∫

P−
k+1

μ(α, β) dαdβ.

Observe that in this case the value mk+1 = �m
β (0, Ik+1) is the

β-coordinate of the vertex in the interface Ik+1 which corre-
sponds to the last minimum of the input applied to the Preisach
operator at time instance t = (k + 1)τ (i.e., the last minimum
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of the truncated input {uγ (t) | 0 ≤ t ≤ (k +1)τ }). Since in this
case wk+1 < mk+1, at the time instance t = (k +2)τ when the
(k+1)-th triangular pulse finishes, the region �wk+1 ⊂ P+

k+1 of
relays whose states have switched from +1 to −1 is given by

�wk+1 = {(α, β) | 0 ≤ α ≤ �m
α (β, Ik+1), wk+1 ≤ β ≤ mk+1},

and the remnant of the Preisach operator at time instance t =
(k + 2)τ is given by

γ (wk+1, Ik+1) =
∫∫

P+
k+1

μ(α, β) dαdβ −
∫∫

P−
k+1

μ(α, β) dαdβ

− 2
∫∫

�wk+1

μ(α, β) dαdβ.

Therefore, subtracting again both values of the remnant we
have

γ (wk+1, Ik+1)− γ (wk, Ik) = −2
∫∫

�wk+1
μ(α, β) dαdβ,

and parameterizing the limits of the integral over the region
�wk+1 we have

�kγ = −2

mk+1∫

wk+1

�m
α (β,Ik+1)∫

0

μ(α, β) dαdβ.

Finally, when 0 ≤ wk+1 < Mk+1 or mk+1 < wk+1 ≤ 0,
then Ik+1 = Ik+2 and at both time instances t = (k + 1)τ

and t = (k + 2)τ all relays in the Preisach domain P are
in the same state which immediately implies γ (wk+1, Ik+1) −
γ (wk, Ik) = 0.

Based on the explicit expression of �kγ given by (7) in
Proposition 1 and assuming that μ is compactly supported in
a subset Pμ ⊂ P, we can find sector bounds for �kγ as a
function of �kw = wk+1 − wk. In other words, we find that
the rate of the remnant difference respect to the difference
between two consecutive amplitudes wk+1 and wk is bounded.

Proposition 2: Let μ have a compact support Pμ ⊂ P
whose intersection with Pγ is not empty (i.e., Pμ ∩ Pγ �= ∅),
and consider �kγ as given by (7). Then there exist constants
	1+ ≤ 	2+ and 	1− ≤ 	2− such that

	1+�kw ≤ �kγ ≤ 	2+�kw, if �kw > 0,

	1−�kw ≤ �kγ ≤ 	2−�kw, if �kw < 0,

with �kw = wk+1 − wk.
Proof: Following analysis from Proposition 1, assume that

wk+1 > Mk+1 = �M
α (0, Ik+1). Then by taking the maximum

and minimum of the inner integral in the first case of (7), we
define

	1+ := 2 min(α,β1)∈Pμ∩Pγ

∫ 0
β1

μ(α, β) dβ, (8)

	2+ := 2 max(α,β1)∈Pμ∩Pγ

∫ 0
β1

μ(α, β) dβ. (9)

Note that since β1 ≤ 0 for every (α, β1) ∈ Pγ , then either one
of the values (9) or (8) is zero (i.e., 	1+ = 0 or 	2+ = 0), or

they have opposite signs (i.e., 	1+ < 0 < 	2+ ). Consequently,
we find that

�kγ ≥
wk+1∫

Mk+1

	1+dα = 	1+(wk+1 − Mk+1),

�kγ ≤
wk+1∫

Mk+1

	2+dα = 	2+(wk+1 − Mk+1).

Moreover, since Mk+1 = �M
α (0, Ik+1) is the α-coordinate of the

vertex in the interface Ik+1 corresponding to the last maximum
of the truncated input {uγ (t) | 0 ≤ t ≤ (k+1)τ }, then we have
that wk ≤ Mk+1, which leads us to

	1+(wk+1 − wk) ≤ �kγ ≤ 	2+(wk+1 − wk).

Analogously, for the case wk+1 < mk+1 = �m
β (0, Ik+1), we

take the maximum and minimum of the inner integral in the
second case of (7) and define

	1− := 2 max(α1,β)∈Pμ∩Pγ

∫ α1
0 μ(α, β) dα, (10)

	2− := 2 min(α1,β)∈Pμ∩Pγ

∫ α1
0 μ(α, β) dα. (11)

Similarly to the previous case, observe that since α1 ≤ 0 for
every (α1, β) ∈ Pγ , then either one of the values (11) or (10)
is zero (i.e., 	1− = 0 or 	2− = 0), or they have opposite signs
(i.e., 	2− < 0 < 	1− ). Therefore, in this case we have that

�kγ ≥ −
mk+1∫

wk+1

	1−dβ = −	1−(mk+1 − wk+1),

�kγ ≤ −
mk+1∫

wk+1

	2−dβ = −	2−(mk+1 − wk+1).

Furthermore, in this case mk+1 = �m
β (0, Ik+1) is the β-

coordinate of the vertex in the interface Ik+1 corresponding
to the last minimum of the truncated input {uγ (t) | 0 ≤ t ≤
(k + 1)τ }. Thus wk ≥ mk+1 and we can obtain

	1−(wk+1 − wk) ≤ �kγ ≤ 	2−(wk+1 − wk).

Finally, when mk+1 ≤ wk+1 ≤ Mk+1 we have �kγ = 0
and both inequalities hold with the same values defined
in (8)-(11).

Proposition 2 proves the existence of general sector bounds
for �kγ as a function of �kw disregarding the sign of μ. In
the next proposition we show that when μ is positive in a
compact subset of Pγ , then under mild assumptions over the
initial interface I0 and the magnitude of every factor wk, we
have that �kγ is monotonic respect to �kw.

Proposition 3: Assume that there exists a non-empty sub-
domain Q ⊆ Pμ ∩ Pγ of the form

Q = {(α, β) ∈ Pμ ∩ Pγ | 0 ≤ α ≤ α2, β2 ≤ β ≤ 0}, (12)

with α2 > 0 and β2 < 0, such that μ(α, β) ≥ 0 for every
(α, β) ∈ Q. Moreover, let the initial interface I0 ∈ I γ be such
that for every (α, β) ∈ I0 we have α ≥ α2 whenever β ≤ β2
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and β ≤ β2 whenever α ≥ α2, and assume that wk ∈ [β2, α2]
for every k ∈ Z+. Then

0 ≤ �kγ

�kw
≤ max

{
	

Q
2+ , 	

Q
1−

}
, when �kw �= 0, (13)

with

	
Q
2+ = 2 max

(α,β1)∈Q

0∫

β1

μ(α, β) dβ, (14)

	
Q
1− = 2 max

(α1,β)∈Q

α1∫

0

μ(α, β) dα. (15)

Proof: Note from the assumptions of the initial interface I0
that none of its points lies in the subdomains {(α, β) | α >

α2, β2 < β ≤ 0} and {(α, β) | β < β2, 0 ≤ α < α2}.
Moreover, since wk is restricted to the interval [β2, α2] for
every k ∈ Z+, then only the relays with (α, β) ∈ Q can be
affected by the input uγ defined in (3). Therefore, to find the
sector bounds of �kγ as a function of �kw, it is enough to
modify (8)-(11) to take the maximum and minimum over Q.
Thus when μ(α, β) ≥ 0, for every (α, β) ∈ Q, we have that

	
Q
1+ = 2 min

(α,β1)∈Q

0∫

β1

μ(α, β) dβ = 0,

	
Q
2− = 2 min

(α1,β)∈Q

α1∫

0

μ(α, β) dα = 0,

and it follows that

0 ≤ �kγ ≤ 	
Q
2+�kw, if �kw > 0,

	
Q
1−�kw ≤ �kγ ≤ 0, if �kw < 0,

which combined yield (13).
We remark from Proposition 3 that in case the initial

interface L0 of a Preisach operator is unknown or does not
satisfy the stated assumptions, it is possible to apply a single
triangular pulse with amplitude either w = β2 or w = α2 and
to consider the new obtained interface, which will satisfy the
assumptions, as the initial interface. Furthermore, when μ is
negative in the set Q, an inequality to prove the monotonicity
of �kγ respect to �kw can be also obtained. However, in that
case we would obtain values 	

Q
2− ≤ 0 and 	

Q
1+ ≤ 0 such that

min{	Q
2− , 	

Q
1+} ≤ �kγ

�kw ≤ 0.

IV. THE RECURSIVE ALGORITHM FOR THE

REMNANT CONTROL

In this section we present the recursive control algorithm
to compute wk+1 as a function of wk and the error of the
remnant after the k-th triangular pulse of uγ . Our algorithm
works for the case considered in Proposition 3 when there
exists a compact subset Q ⊂ Pμ ∩Pγ where μ is positive. The
algorithm can easily be adapted to the case when μ is negative
in a compact subset of Q ⊂ Pμ ∩ Pγ . Before introducing the
algorithm, we present the next lemma which provides a way
to compute the maximum and minimum remnant that can be

obtained from a Preisach operator whose weighting function
and initial interface satisfy conditions of Proposition 3.

Lemma 1: Let Q ⊆ Pμ ∩ Pγ and I0 ∈ I γ be a non-empty
subdomain and initial interface, respectively, that satisfy condi-
tions stated in Proposition 3. Then the maximum and minimum
values of γ with the initial interface I0 are given by

γmax = max
w∈[β2,α2]

γ (w, I0) = γ (α2, I0), (16)

γmin = min
w∈[β2,α2]

γ (w, I0) = γ (β2, I0), (17)

where α2 and β2 are the values used for the definition of Q
in (12).

Proof: Note that since only relays with (α, β) ∈ Q can be
affected by the input uγ when w ∈ [β2, α1], and μ is positive
in Q, then the maximum (resp. minimum) remnant possible is
obtained when all relays in Q are in +1 state (resp. −1 state).
It follows that after the application of a triangular pulse with
amplitude w = α2 (resp. w = β2), all relays in Q are in +1
state (resp. −1 state).

Proposition 4: Let Q ⊆ Pμ ∩ Pγ and I0 be a non-empty
subdomain and initial interface, respectively, that satisfy con-
ditions stated in Proposition 3, and assume that w0 ∈ [β2, α2]
and γd ∈ [γmin, γmax]. Consider the following update rule for
the amplitude of the triangular pulse

wk+1 = wk − λek, (18)

where ek = γ (wk, Ik) − γd and λ > 0 is the adaptation gain.
If λ satisfies

0 < λ <
2

max
{
	

Q
2+ , 	

Q
1−

} , (19)

then ek → 0 as k → ∞.
Proof: The remnant error after the application of the (k +

1)-th triangular pulse is given by

ek+1 = γ (wk+1, Ik+1) − γd

= γ (wk, Ik) − γd + γ (wk+1, Ik+1) − γ (wk, Ik)

= ek + �kγ,

where �kγ is explicitly given by (7) in Proposition 1.
Introducing �kw = −λek, we obtain

ek+1 =
(

ek + �kγ

�kw
�kw

)
=

(
1 − λ

�kγ

�kw

)
ek

which by Proposition 3 is a contraction mapping if λ is chosen
to satisfy (19).

V. SIMULATION

To illustrate the application of the algorithm introduced
in Proposition 4, we performed a simulation controlling the
remnant of a particular class of Preisach operator known as
the Preisach butterfly operator. The main characteristic of
this class of Preisach operator is that its weighting func-
tion has disjoint subdomains of positive and negative values
with a particular distribution and we refer interested readers
to [13] for the details. In this letter, we used real data of
the relation between electric-field and strain of a piezoelec-
tric material sample made of doped Lead Zirconate Tinate
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Fig. 2. Experimental butterfly hysteresis loop exhibited in the rela-
tion between voltage (V) and strain (nm) of a piezoelectric material and
the corresponding weighting function μ of the fitted Preisach butterfly
operator with the region Q where μ is positive enclosed by the dashed
line.

Fig. 3. Simulation results for the first 20 steps of the algorithm control-
ling the remnant of a Preisach butterfly operator with an input uγ whose
triangular pulses length is τ = 1. The upper plot shows the input uγ (t)
where the amplitude wk of the k -th triangular pulse is marked in red. The
middle plot corresponds to output y (t) with the remnant γ (wk ,Ik ) marked
in red. The bottom plot shows the remnant error ek = γ (wk ,Ik ) − γd .

(PZT) that exhibits the butterfly hysteresis loop on the left of
Fig. 2. The measurements were taken by laser interferometer
applying triangular periodic inputs of 1400V of amplitude at
constant low frequency of 1Hz, which is significantly lower
than the resonant frequency of the system for obtaining the
rate-independent hysteresis measurement as in [17], and we
fitted a weighting function to obtain the Preisach butterfly
operator. For the obtained weighting function, the subdomain
Q was approximated by Q = {(α, β) ∈ P | − 850 ≤ β ≤
0, 0 ≤ α ≤ 1400}, which is indicated by a dashed line enclos-
ing a region of the weighting function illustrated in Fig. 2. We
found for this Q that 	2+ ≈ 6.83, 	1− ≈ 5.50, γmax ≈ 433.83,
and γmin =≈ −141.96, and the initial interface considered was
I0 = {(α, β) ∈ P | α = 1400, −∞ < β ≤ −800} ∪ {(α, β) ∈
P | 0 ≤ α ≤ 1400, β = −800}. For simulation purpose, we
took λ = 0.28 and γd = 250 and used an input uγ whose tri-
angular pulses length was τ = 1. We truncated it to zero after
20 steps (i.e., u(t) = 0 for t ≥ 20) once the output remnant
γ (wk, Ik) was sufficiently close to γd. It can be observed in
the simulation results of Fig. 3 that the output value y(t) ≈ γd

is maintained for t ≥ 20 when the input uγ has been removed.

VI. CONCLUSION

In this letter we presented a formulation for the problem of
controlling the remnant of a system with hysteresis modeled
by a Preisach operator. Using train of triangular pulses as the

kernel of the remnant control input u, we analyze the proper-
ties of output remnant sequences due to the application of this
family of input signals to the Preisach operator. Subsequently,
we present recursive algorithm to update the amplitude of the
triangular pulse sequences that guarantees the convergence of
the output remnant sequence to a desired remnant value under
some mild conditions.
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