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Abstract. The results of empirical comparisons of existing learning algorithms illustrate that each algorithm

has a selective superiority; each is best for some but not all tasks. Given a data set, it is often not clear

beforehand which algorithm will yield the best performance. In this article we present an approach that uses

characteristics of the given data set, in the form of feedback from the learning process, to guide a search for

a tree-structured hybrid classifier. Heuristic knowledge about the characteristics that indicate one bias is better

than another is encoded in the rule base of the Model Class Selection (MCS) system. The approach does not

assume that the entire instance space is best learned using a single representation language; for some data sets,

choosing to form a hybrid classifier is a better bias, and MCS has the ability to determine these cases. The

results of an empirical evaluation illustrate that MCS achieves classification accuracies equal to or higher than

the best of its primitive learning components for each data set, demonstrating that the heuristic rules effectively

select an appropriate learning bias.

Keywords: Inductive bias, hybrid classifiers, automatic algorithm selection, decision trees, learning from

examples.

1. The problem of bias in classifier construction

For any given dataset, examining the entire space of possible hypotheses is computa-

tionally intractable. Therefore to find an accurate hypothesis in a reasonable amount

of time, learning algorithms employ a restricted hypothesis space bias and a preference

ordering bias for hypotheses in that space (Dietterich, 1990). Empirical comparisons

among algorithms illustrate that no single bias exists that is best for all learning tasks

(Weiss & Kapouleas, 1989; Aha, Kibler & Albert, 1991; Shavlik, Mooney & Towell,

1991; Salzberg, 1991). The manifestation of this problem is the selective superiority that

we observe for each learning algorithm; each algorithm is best for some, but not all tasks

(Bradley, 1993). The problem of selecting an appropriate learning bias is complicated

further because for some learning tasks different subtasks are learned best using different

algorithms. In such cases, the ability to form a hybrid classifier that combines different

concept representation languages will produce a more accurate classifier than employing

a single representation language and search bias.

This article describes an approach to automatic selection of an appropriate bias for

a given dataset. The approach uses a set of heuristic rules to perform a hill-climbing

search for the best hypothesis space (model class) and search bias for a given dataset.

The rules measure characteristics of the dataset using feedback from the learning process.

In addition, the approach has the ability to select different biases for different subspaces

of the learning task, thereby forming a hybrid classifier of the data.
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Before describing an implementation of the approach, we discuss how feedback from

the learning process can guide an automated search for the best learning bias, and we

outline situations in which a hybrid bias leads to the best classifier of the data. We then

describe an implementation of the approach, the Model Class Selection (MCS) system,

which forms a tree-structured hybrid classifier that mixes three primitive representations:

linear discriminant functions, decision trees and instance-based classifiers. Our choice

of these three representation languages stems from the results of empirical comparisons,

which illustrate that these three languages produce classifiers of differing accuracy for

different datasets; each of the three was selectively superior for some datasets. The

classifier formed by MCS can be either a hybrid or a homogeneous classifier, depending

on what the characteristics computed during search indicate is the best bias. Specifically,

in Section 2 we describe the representations and search strategies for each of MCS's

primitive learning algorithms and discuss the differences among them. We give a detailed

description of the rule set which describes the characteristics that each rule tests and

explains why the presence of a particular characteristic leads MCS to prefer one bias

over another.

In Section 3 we present the results of empirical experiments that illustrate that MCS

achieves classification accuracies equal to or higher than the best of its primitive learning

components for each of a variety of datasets. Our results demonstrate that the heuristic

rules effectively select an appropriate learning bias, thereby solving the selective superi-

ority problem for these algorithms. Moreover, the results of these comparisons illustrate

that for some datasets a hybrid bias is better than a homogeneous bias, and that MCS's

search strategy can find these cases.

In addition, we illustrate empirically that using knowledge increases accuracy and

reduces time over methods that form hybrid classifiers by trying all of the available

algorithms and selecting among them using a single source of feedback. Specifically,

we compare MCS to three other hybrid classifier construction methods; each of the

three methods applies a different criterion to select a best classifier at a node. Indeed,

the results demonstrate that these "knowledge-poor" methods perform worse for some

datasets than the best of the primitive algorithms. In contrast, our knowledge-based

approach performs equal to or better than each of the primitive algorithms, and equal to

or better than each of the other three hybrid methods.

1.1. Automatic algorithm selection

To select a learning bias from a set of possibilities, one can examine the dataset to find

characteristics for which one bias is known to be better than another. For example, if the

instance space is linearly separable, then we know that a linear discriminant function is a

good hypothesis space bias (representation language) and that the absolute error correc-

tion rule (Duda & Hart, 1973) will guarantee that the best linear discriminant function is

found. Our approach to automatic bias selection relies on knowledge about the charac-

teristics that indicate that a particular bias is appropriate, and on the ability to determine

whether a dataset has those characteristics.
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There are many measurable characteristics of datasets. For example, one can charac-

terize datasets by whether the instances are described by numeric or symbolic features,

or by a measure of correlation among the features and the class labels. The challenge

is in uncovering characteristics that will indicate the best bias, and further, whether such

characteristics can be computed. Rendell and Cho (1990) point out that "data character"

plays an extensive role in determining the behavior of learning algorithms. Their view of

concepts as functions over the instance space led them to define geometric characteristics

such as concept size (proportion of positive instances) and concentration (a characteri-

zation of the distribution of positive instances through the instance space), which they

subsequently illustrate have a large affect on learning.

A different way to characterize a dataset is by constructing a classifier using a partic-

ular bias and then examining the resulting classifier to determine whether the bias was

appropriate, and if not, what would be a better bias. For example, the model class of a

univariate decision tree is a poor choice when the features are related linearly. In such

cases, the features will be tested repeatedly along a path in the decision tree, giving ev-

idence that a series of tests are being used to approximate a non-orthogonal partition of

the data that is not easily represented by a series of hyper-rectangles. This characteristic

indicates that a better bias would be to form a linear discriminant function.

Our approach to automatic algorithm selection computes characteristics of a dataset

using feedback from a search through the space of available representation and search

biases. The approach iteratively fits a classifier to the data using the representation

language and search bias currently considered best for the dataset. Next it computes

measures of how well the resulting classifier fits the data. The measures are used to

decide whether a best classifier has been found or whether further search is required, and

if so which bias to try next.

The ability to perform an effective search relies on knowledge of how to recognize

whether and why an algorithm is a poor choice, and on using this information to select

a better one. We have encoded this knowledge into a set of heuristic rules that work

together to guide a search for a best representation language and search bias. Our ap-

proach is based on the following hypothesis: Domain independent knowledge about data

characteristics in the form of feedback from learning can effectively guide an automatic

algorithm selection search.

Indeed, a recent focus of research in machine learning is to understand the tasks for

which a particular algorithm will perform better than some specified set of alternatives

(Feng, Sutherland, King, Muggleton & Henry, 1993; Aha, 1992; Shavlik, Mooney &

Towell, 1991). Systems that allow the user to specify an inductive policy require that

the biases of the available learning algorithms be known and be represented explicitly

for manipulation during search (Provost & Buchanan, 1992).

In the STATLOG project, sixteen algorithms were compared across twelve datasets

(Feng, et al. 1993). One of the goals of the project was to discern what characteristics of

datasets suit particular algorithms. Twelve statistical characteristics were uncovered that

they think will be useful for predicting which of the algorithms will perform the best for

a given task. However, the heuristics about these characteristics that were put forth have
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not at this point been evaluated on any datasets not used in the original comparative

study.

Shavlik, Mooney and Towell (1991) compared the ID3, Backprop and Perceptron

learning algorithms. They analyzed empirically the effect that the amount of training data,

imperfect training examples, distributed output encodings and the type of features used

to describe the data (numeric or symbolic) have on the performance of each algorithm.

Like the STATLOG project, the resulting heuristics put forth, e.g. Backprop works better

than ID3 when the data is described by numeric features, were not evaluated on any new

datasets.

Aha (1992) presents a method that generalizes case studies of algorithms to generate

rules characterizing when differences in performances among learning algorithms will

occur. The method takes a dataset, for which performance of the various algorithms is

different, and then models the dataset to create an artificial dataset whose characteristics

are similar to the actual dataset's characteristics. Next the set of algorithms is run on

several versions of the artificial data; each version was created using a different setting of

the parameters for generating the dataset. The algorithms are evaluated on the different

versions of the dataset, and a rule is derived to summarize when the performance differ-

ences occur. Rules are extracted by CN2 (Clark & Niblett, 1989) from the performance

results of the algorithms on the artificial datasets. Aha points out that although the rules

derived from the method are highly constrained, they are more useful than the results

of most empirical comparisons of algorithms, which merely tell you which algorithm

performs the best for a set of data.

Prior to the recent focus on knowledge-based approaches to automatic algorithm se-

lection, the strategy was to try all candidate methods and choose one based on estimates

of their accuracies. One well-known approach from statistics is to use cross-validation

(Linhart & Zucchini, 1986). Recently, Schaffer (1993) applied this idea to selecting a

classification algorithm. The results of an empirical comparison of a cross-validation

method (CV) to each algorithm considered by CV, illustrated that on average, across the

test-suite of domains, CV performed best. Of course these methods are also using a

characteristic of the dataset to make a selection; the accuracy of a particular algorithm is

a descriptive characteristic of a dataset. An important difference between the traditional

approach and the approach presented here is that the traditional approach applies all

candidate algorithms to the data before making a selection, whereas our approach may

choose an algorithm without trying all of them.

In this article, we describe a set of heuristic rules used to guide an automatic algorithm

selection search. We compare our approach to a variety of different search methods on

datasets not used to develop the rule base. The results illustrate that general domain-

independent knowledge does exist and that it is useful for guiding search.

1.2. Homogeneous versus hybrid classifiers

One can characterize algorithms as searching either a homogeneous or hybrid hypothesis

space. A homogeneous hypothesis space is one that contains a singie representation

language. For example, univariate decision trees and linear discriminant functions are
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each single representation languages. A hybrid hypothesis space is a space that combines

different homogeneous hypothesis spaces; each hypothesis is expressed using one or

more representation languages. For example, a representation language that mixes linear

discriminant functions and univariate decision trees in a single hypothesis defines a hybrid

hypothesis space.

Figure 1. The concept heart attack; "+": positive instance, "-": negative instance.

Selecting a learning algorithm that employs a homogeneous representation bias assumes

that a classifier for the dataset is best represented using a single representation language.

For some datasets this may not be the case; different subspaces of the learning task may

be learned best using different representation biases, indicating that forming a hybrid

classifier will result in higher classification accuracy than a homogeneous classifier. For

example, consider the following concept: heart attack caused by a weight problem. A

heart attack can be caused by two extremes, obesity or anorexia.1 Given a set of positive

and negative training examples described by three attributes, sex, height and weight, a

concept learner needs to learn the subconcepts "underweight" and "overweight". These

two subconcepts are different depending on whether the patient is a woman or a man. A

single linear threshold unit (LTU) is not appropriate for the entire instance space because

the space is not linearly separable, as can be seen in Figure 1. Moreover, a symbolic

decision tree algorithm would have difficulty learning a compact generalization for this

concept because it would need to approximate the hyperplanes with a series of splits

orthogonal to each of the axes.

A better solution (shown in Figure 2) is a hybrid formalism that combines LTUs

and decision trees. This example illustrates that choosing initially between a decision

tree and an LTU will not yield as succinct and accurate a classifier as combining both

representation languages and employing a control strategy to choose between them, for

each subspace of the instance space. For such datasets one would like to mix different

representations and search biases to create a hybrid classifier.

Constructing a hybrid classifier requires a method for partitioning the data into use-

ful subspaces and a method for choosing a best learning algorithm for each subspace.

Therefore, the problem of automatically selecting a best algorithm for a set of data needs

to be addressed when creating a hybrid classifier construction algorithm.
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Figure 2. Classifier induced for the concept heart attack using a hybrid formalism.

The hypothesis space of hybrid classifiers is larger than the hypothesis space of the

primitive components. By increasing the space of possible hypotheses we increase the

probability that for a given dataset, a good generalization will exist in the space searched.

Increasing the search space does not ensure that a good generalization will be found;

it depends on the search algorithm. Therefore, a second hypothesis of this research

is: Our knowledge-based search strategy for finding a hybrid classifier will produce a

classifier that is never worse than, and for some datasets is better than, any homogeneous

classifier produced by its primitive components. Our empirical results (reported in Section

3) illustrate that merely increasing the search space by permitting hybrid classifiers will

not lead to an increase in performance; one needs a search strategy that will not be

misled by the larger number of possibilities.

There are two basic approaches to constructing a hybrid classifier. The first is to apply

each of several different learning algorithms to the entire set of data and then to combine

their outputs (Wolpert, 1992; Breiman, 1992; Zhang, Mesirov & Waltz, 1992; LeBlanc

& Tibshirani, 1993). The combination scheme can be simply a weighted average, or

alternatively a learning algorithm can be applied to determine how the outputs of the

primitive classifiers should be combined. Such approaches have been called Stacked

Generalization (Wolpert, 1992; Breiman, 1992). These approaches can result in a hybrid

classifier that is less accurate than one of its primitive components if a bad combination

scheme is used (Wolpert, 1992; Breiman, 1992). Indeed, it is an open problem how

to form a procedure for choosing or combining the outputs of the primitive learning

components.

A second approach, the one presented in this article, is to assign explicitly a different

classifier for each mutually exclusive subset of the data (Tcheng, Lambert, C-Y Lu &

Rendell, 1989; Utgoff, 1989). Given an instance, a decision procedure is used to decide
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to which subspace it belongs and the classifier for that subspace is used to classify the

instance. This approach constructs a tree-structured hybrid classifier; the internal test

node(s) partition the instance space into a set of regions, each of which has a separate

classifier.

In designing an algorithm that forms a tree-structured hybrid classifier, one must decide

whether classifiers of each representation language can be at any test node in the tree or

whether certain representation languages are only permitted in some parts of the tree. For

example, the Perceptron Tree Algorithm (Utgoff, 1989) is a recursive hybrid-classifier

construction algorithm that combines decision trees and linear threshold units. Utgoff

defines a perceptron tree to be a decision tree in which each leaf node is a perception (a

linear threshold unit) and each test node is a univariate symbolic test.

In the AIMS system (Yerramareddy, Tcheng, Lu & Assanis, 1992), the model forma-

tion component, CRL (Tcheng, Lambert, C-Y Lu & Rendell, 1989), forms a recursive

hybrid structure. CRL partitions the instance space recursively by selecting among the

user-specified decomposition strategies (univariate tests and arbitrary hyperplanes). After

CRL determines that further decomposition (partitioning) is not desirable, it searches for

the best of a user-specified subset of a univariate test, a neural network, a k-nearest-

neighbor classifier or a regression model (linear, quadratic, logarithmic or exponential).

CRL restricts the types of tests permitted at internal nodes of the tree to decomposition

strategies. In contrast, our approach can construct a test for any node in the tree using any

of the available representation languages and search biases. Another difference between

CRL and our approach is the search strategy used to select a test for a node. CRL tries

all the user-specified methods. If CRL is coupled with the ISO system, an optimization

search is performed.

2. The MCS system

We have implemented our recursive automatic algorithm selection approach, producing

the Model Class Selection (MCS) system. Given a set of data, MCS builds a classifier

using a set of heuristic rules to guide a hill-climbing search for a best representation

language and search bias from which to form a test for each node in a hybrid classifier.

Figure 3 shows an example of a hybrid classifier that MCS might construct. The root of

the tree is a linear combination test, the left subtree is an instance-based classifier and

the right subtree is a two-node univariate decision tree. Each leaf node is labeled with

one of three classes (A, B, or C). In the next two sections we describe MCS's model

classes, search strategy, and the dataset characteristics, computed during search, that lead

MCS to prefer one bias over another.

2.1. Model classes

MCS combines three primitive representation languages that have been used extensively

in both machine learning and statistics algorithms: linear discriminant functions, decision

trees and instance-based classifiers. Classifiers constructed from any one of these three
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Figure 3. Example of a hybrid tree-structured classifier.

languages each form a piecewise-linear partition of the given instance space. They differ

in how (where) the boundaries may be placed in the space.

A univariate test of feature Fi represents a decision boundary that is orthogonal to

Fi's axis. A univariate decision tree defines a set of orthogonal decision boundaries that

partition the instance space into a set of hyper-rectangular regions each labeled with a

class name. A set of R linear discriminant functions defines a set of R regions in the

instance space, separated by hyperplanes, each labeled with a different class name. An

instance-based classifier defines a piecewise-linear partition of the instance space; the

number of blocks is determined by the number and distribution of the instances, and by

the choice of k, which is the number of nearest neighbors to examine when classifying

an unlabeled instance. The result is a set of regions, each labeled by a different class

name, separated by piecewise-linear boundaries.

Given a dataset, the placement of boundaries for a univariate test is restricted to being

orthogonal to the feature axes, but which features are used and the placement of each

boundary along a feature's axis is determined by the search bias of the algorithm. For a

linear discriminant function, the search bias determines both the orientation and placement

of the hyperplane decision boundary by learning the coefficients of each discriminant

function. For an instance-based classifier, the orientation and placement of the piecewise-

linear boundaries are determined by the distribution of the training instances and the

choice of k.

In Figure 4 we show an instance space for which classifiers from each of the three

model classes would define an identical partition of the instance space, given the goal

of partitioning the instances into regions, each containing instances from a single class.

For many datasets, classifiers from each of the three model classes will define different

partitions. Figures 5a, 5b, and 5c illustrate the type of partition each model class might

define for a simple instance space consisting of five negative and three positive examples

of the concept to be learned. Which of these concept representations is best depends

on where in the instance space the true concept boundary lies. MCS's rule-based search
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Figure 4. Representation similarities

strategy addresses this problem by using feedback from the learning process to determine

which of the three representation biases is best for the given instance space.

Figure 5. Representation differences

For each model class there are many different biases for searching for the classifier

that best fits the data. We have chosen a commonly used method for each. The search

biases for each model class that MCS uses are:

Univariate Decision Trees: To build a univariate decision tree, MCS uses the Information-

Gain Ratio metric (Quinlan, 1986) to select each test node of the tree.

Linear Discriminant Functions: For two-class tasks the system uses a linear threshold

unit, and for multiclass tasks it uses a linear machine (Nilsson, 1965). To find

the weights of the threshold unit (linear machine) MCS uses the Thermal Training

rule (Frean, 1990; Utgoff & Brodley, 1991). Because the weights found by this

rule depend on the order in which the instances are presented, we train ten times and

select the set of weights that maximizes the Information-Gain Ratio metric. To select

the terms to use with a linear discriminant function, one of three search procedures

is applied: Sequential Backward Elimination (SEE) (Kittler, 1986), a variation of

SBE, Dispersion Sequential Backward Elimination (DSBE), which uses the form of

the function to determine which terms to eliminate (Brodley & Utgoff, 1995), and

Sequential Forward Selection (SFS) (Kittler, 1986). The choice of which of these
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search biases to apply is determined dynamically during learning, depending on the

hypotheses that have already been formed.

Instance-Based Classifiers: MCS uses the k-nearest-neighbor algorithm (Duda & Hart,

1973), which stores each instance of the training data. To find k, the system estimates

the classifier's accuracy with the following measure: for each instance in the training

data, classify that instance using the remaining instances. The system selects the

value of k that produces the highest number of correct classifications for the training

data.

2.2. Search strategy

MCS searches for a hybrid classifier from the available model classes using a hill-

climbing search to select a test for each node in the tree-structured classifier. A set of

heuristic rules is used to decide which model classes to try, which model classes should

be avoided, and to determine when a best test at each node has been found. The instance

space is partitioned according to the chosen test, and the search is applied recursively

to each resulting subset that contains instances from two or more classes. The general

recursive procedure of MCS is shown in Table 1. After MCS has constructed a hybrid

classifier that perfectly partitions the training instances into regions each labeled with a

single class name, it applies a pruning algorithm to reduce the estimated error of the

classifier as computed for an independent set of instances.

One problem that can occur during MCS's search is when two tests (classifiers) appear

equally good for the set of instances observed at a node in the tree. The current version of

MCS differs from our original version (Brodley, 1993) in order to handle these situations

better. If two tests appear equally good at a node, and do not perfectly partition the

set of instances at that node, then MCS examines whether one defines a better partition

of the data than the other. In a decision tree, test nodes have one of two functions,

depending on their position in the tree. Test nodes whose children are each leaves serve

as classifiers of the subspace defined by the tree above them. Internal test nodes (nodes

for which at least one child is not a leaf node) partition the instance space into subspaces.

For example, in Figure 3 the linear combination test (LCT) partitions the space into two

subspaces and the IBC node serves as a classifier for one of the subspaces. We define

the quality of a partition test as the accuracy of the subtree whose root is that test. One

partition test is judged better than another if its subtree's accuracy is higher than the

other test's subtree accuracy.

In cases for which two tests appear equally good, MCS builds a subtree, of depth one,

for each of the two candidate tests. MCS builds a subtree by constructing a classifier

for each subset of the instances defined by the partition test. Which representation

languages and search biases are used to construct classifiers for each subspace depends

on the context of the comparison. In our description of MCS's rules we detail how

these choices are made. The two subtrees are then compared using the heuristic rules to

determine which of the two partition tests to place at that node. In cases for which the
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Table 1. General recursive algorithm

Form Classifier(instances)

IF instances from a single class

THEN return(class)

ELSE select a best algorithm to create a classifier

partition the instances using the classifier

for each partition call Form Classifier(partition)

two tests each partition the set of instances perfectly, MCS selects the simpler of the two

tests.

Even with the addition of the one-ply deeper search, MCS may still have difficulty

selecting among tests that appear equally good. In particular, this can happen when the

measures of the set of candidate tests yield conflicting results. For example, suppose that

the information score of test T\ is greater than that of test T2, but T2's accuracy is higher

than T1'S. In such cases it is unclear which test to choose. To address these situations

we have added a global model-class bias to MCS, which is determined automatically
before MCS begins to construct a classifier. We describe how this global bias is selected

in Section 2.2.1.

To address further the problem of not being able to distinguish which of a set of tests

will result in a more accurate classifier, MCS retains the most accurate of the remaining

alternative tests when it selects a test for a node in the tree. This alternative can be

different from the selected test, because MCS's heuristic rules may select a test that is

less accurate, but that makes the subspaces easier to learn. The decision of whether

to replace the subtree rooted at that test in the tree with the best of the alternatives is

performed during the pruning stage.

In the remainder of this section we first describe a method for choosing a global model-

class bias for MCS. Next we describe the measures used in MCS's rules and how the rules

were developed. We then describe MCS's heuristic rule base, focusing on a discussion

of why certain dataset characteristics lead MCS to prefer one bias over another. Finally,

we describe MCS's pruning strategy, which differs from traditional decision-tree pruning

algorithms to take into account the fact that a hybrid decision tree has tests constructed

from different representation languages.

2.2.7. Choosing a global model-class bias

Before MCS begins its search for a hybrid classifier, it examines the dataset to determine

which of the homogeneous model classes leads to the most accurate classifiers for random

subspaces of the dataset. This model-class bias is used by MCS to help decide among a

set of candidate tests when measures of the tests do not indicate clearly a best test.
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To choose a global bias, we do the following ten times: randomly select one half of the

training data, apply each of the primitive learning algorithms to the resulting subspace

of the data, and evaluate the resulting classifiers on the other half of the data. If one of

the model classes performs statistically significantly better than the rest, then we input

this model class as the global bias for MCS. If the results of the analysis were mixed,

then we do not specify a global bias for MCS. In the description of the rules we describe

how this global bias influences MCS's search strategy.

2.2.2. Heuristic rule base

The heuristic rules guide a hill-climbing search for a best test to place at a node in the

hybrid classifier. The rules detect various characteristics of the data that lead MCS to

prefer a test from one model class over other tests within the same or different model

classes. At each stage during the search, MCS retains a set of candidate tests; initially

this set is empty. During search, the heuristic rules determine when a best test has been

found, whether further investigation of other model classes is needed, or whether to

search further within a model class.

Each rule may compute one or more of the following measures to judge the quality of a

candidate test: the Information-Gain Ratio, the accuracy, and whether a test compresses

the data. The first two measures are computed for any test, whether it is a univariate

test, a linear discriminant function, a k-NN classifier, or even an entire subtree. The

Information-Gain Ratio and accuracy of a univariate test or a linear combination test

are computed directly from the training instances. For a k-NN classifier, we employ a

leave-one-out strategy for generating the class counts to compute the Information-Gain

Ratio and accuracy. Specifically, we classify each of the instances in the classifier using

the remaining instances.

Our judgement of whether a test compresses the data is based on the Minimum Descrip-

tion Length Principle, which states that the best "hypothesis" to induce from a dataset

is the one that minimizes the length of the hypothesis plus the length of the exceptions

(Rissanen, 1989). The codelength of a classifier (the hypothesis) is the number of bits

required to encode the classifier plus the number of bits needed to encode the error vector

resulting from using the classifier to classify the instances. We say that a test compresses

the data if the number of bits required to represent the test and its corresponding er-

ror vector is less than the number of bits required to represent the error vector of the

instances. In the rules, we examine only univariate and linear combination tests for

compression.2 The details of how to compute the codelength of these two types of tests

can be found in Brodley (1994).

Before describing the rules in detail we outline how the rule set was developed. Our

method was a cyclical process of trial and error. We began with general ideas about the

situations in which one model class would be preferred to another. These ideas were

culled from the literature and from our own experience with these three model classes.

For example, it is fairly well-known that instance-based classifiers perform well for

datasets for which all the features are relevant. However, if many features are irrelevant
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Table 2. Rule for when candidate set = {}:

IF (number of instances < hyperplane capacity) OR (global-bias = U) THEN fit(U)

ELSE flt(LCTn)

then they are known to perform poorly (Aha, 1990). Whenever applicable we reference

the original source of a rule in the description of the rules presented in Section 2.2.3.

We encoded our general heuristics into a set of rules such that no conflict resolution

is required. We then used four datasets, Iris, Breast, Pixel and Heart Disease, which are

described in Section 3.1, to debug the rules. (Our empirical experiments use these four

and twelve additional datasets.) MCS generates a detailed rule trace, which prints out the

decision made at each step in the search at a node, all of the available measures of the

set of data observed at the node, and measures of the classifiers that have already been

tried. After a run, we examined this detailed rule trace to decide whether MCS had made

the correct decisions in the search. In particular, we looked for cases for which MCS

produced a classifier that was less accurate than the best of its primitive components. We

pinpointed where in the rule trace MCS made a decision that led it away from the best

model class. We then altered the rules to ensure that the better decision was made and

re-ran MCS on that dataset. Once we had corrected the problem for that dataset, we ran

MCS with the new rules across all four development datasets. If performance did not

decrease for the other datasets then the rule(s) remained, otherwise we examined why

the new rule(s) hindered performance and readjusted the rule set. This cyclical process

involved many months of experimentation. In the following description of the rules

we describe the general intuition behind each rule and in some cases give illustrative

examples.

2.2.3. Description of the rules

The description of the rules is organized by the model classes the search strategy has

investigated, which we designate as the candidate set. In the description of the rules we

use four symbols: fit(T) adds a new test, T, to the candidate set; select(T) terminates

search and selects T from the candidate set to use as a test at that node; delete(T) removes

T from the candidate set, because MCS has determined that it is not as good as the other

candidates; and examine-alt(T) compares the accuracy of T to the alternative test (if it

exists) and the chosen test, and retains the alternative with the highest accuracy. The

rules are shown in Tables 2 through 10, and we spend the remainder of this section

describing and motivating each rule.

Initially the candidate set is empty and MCS must decide where in the model space

to begin the search. To this end, MCS examines the number of instances relative to the

number of features that describe each instance. When the ratio of instances to features is

small, either a univariate test (U) or an instance-based test (IBC) is preferred over a linear

combination test (LCT). The rule shown in Table 2 determines whether to start the search
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Table 3. Rules for when candidate set = {U}:

IF accuracy(U) = 100% THEN select(U)

ELSIF average difference in info of each feature to best is < e THEN

starting with U, fit(LCI\) using SFS

ELSIF U does not compress the data THEN

IF the number of instances < hyperplane capacity THEN fit(LCTn)

ELSE fit(IBCk=2)

ELSE select(U) AND recurse

with a univariate test or an LCT. (The rules shown in Table 3 address the situation where

an IBC would be preferred to a univariate test in the case of a small number of instances.)

Specifically, if the number of training instances is fewer than twice the number of features

used to describe each instance (the capacity of a hyperplane) (Duda & Hart, 1973) then

MCS starts with a univariate test; otherwise the search begins with an LCT based on

all n features. This rule is motivated by the observation that when there are too few

instances relative to the number of features, then there are many possible orientations of

the hyperplane that are consistent with the data, and not enough information to choose

among the possibilities. This rule is overridden when the global model-class bias is

toward univariate decision trees; in this case the first test formed is always a univariate

test. This does not preclude the investigation of an LCT; it may, however, reduce search

effort.

The rules shown in Table 3 determine whether the initial choice of a univariate test was

appropriate or whether further exploration of other model classes is required. Recall that

at this point the candidate set = {U}. If the univariate test perfectly partitions the data,

then there is no need to search for a more complex test, and search halts. Otherwise MCS

tries to determine if a univariate test representation is inappropriate by checking for the

presence of one of two different data characteristics. The first characteristic is whether

no single feature is superior; several features partition the data equally well. In this case

a linear combination test may provide a better partition of the data. An example of such

a situation is shown in Figure 6, which shows a two-dimensional instance space and

the corresponding univariate decision tree, which approximates the hyperplane boundary,

x + y < 8, with a series of orthogonal splits. In the figure, the dotted line represents the

hyperplane boundary and the solid line represents the boundary defined by the univariate

decision tree. This example illustrates the well-known problem that a univariate test

using feature Fi can only split a space with a boundary that is orthogonal to Fi's axis

(Breiman, Friedman, Olshen & Stone, 1984).

In an earlier version of the rule set we explicitly tested for such situations, but we

found that by examining the the relative difference in the information score of the best

feature to the other features we could catch such situations and save a substantial amount

of computation time. If the average difference of the best U to each of the others is

less than a threshold, e, then MCS explores whether a linear combination test will do

better. We have set e to 0.20. To this end, MCS starts with a best feature (the one
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Figure 6. An example instance space; "+": positive instance, "-": negative instance and the corresponding

univariate decision tree.

Table 4. Rule for when candidate set = {LCTn}:

IF the instances are linearly separable THEN fit(LCTn_1) using DSBE

ELSE fit(U) AND examine-alt(LCTn)

chosen for the univariate test) and performs an SFS search. The second characteristic is

whether a univariate test compresses the data. It is known that the information-theoretic

measure does not provide reliable results if the number of training instances is too small

(Quinlan, 1987; Aha, 1990). In these cases, an instance-based classifier is more likely

to be appropriate because there is no minimum number of instances required to form

an IBC. Note that if the univariate test was initially chosen based on the global bias

(indicated by the number of instances being greater than the hyperplane capacity), then

the system fits an LCT based on all n features and uses the rules shown in Table 6

to decide where next to guide the search. If neither of the above two characteristics

is observed then there is no indication that a better model class will be found, and the

univariate test is selected.

If the first model class tried (as determined by the rule shown in Table 2) was an LCT

based on all n of the input features, then MCS applies the rule shown in Table 4 to decide

whether to continue searching within the class of linear combination tests or whether

to explore other model classes. Linear combination tests are ideal for linearly-separable

instance spaces. MCS looks for this characteristic by examining the accuracy of the linear

combination test that has been fit to the data. If the LCT based on all n features is 100%

accurate then we know that the space is linearly separable, and all that remains to be done

is to search for the smallest set of features to include in the test while retaining linear

separability. This is achieved by a sequential backward elimination search procedure

(DSBE) that eliminates features one by one using the magnitudes of the corresponding

weights to determine which features to eliminate (Brodley & Utgoff, 1995).
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Table 5. Rules for when candidate set = {LCTi, LCT i_1}:

IF there is more than one feature in LCTi-1 THEN

IF accuracy(LCTi-1) = 100% THEN fit(LCTi_2) using DSBE AND delete(LCTi)

ELSIF LCTi compresses the data THEN select(LCTi) AND examine-alt(LCTi-1)

ELSE fit(U) AND delete(LCTi-1)
ELSE select(LCT1 OR LCT2 based on accuracy)

Table 6. Rule for when candidate set = {U,LCTn}:

IF info(U) > info(LCTn) AND accuracy(U) > accuracy (LCTn) THEN

fit LCTi using SFS, starting with U AND delete(LCTn)

ELSE fit(LCTi) using SBE

Even if a test is not 100% accurate, the space may be linearly separable if some of the

features are removed from the linear combination test; removing noisy features from an

LCT may increase its accuracy. However, given no certainty of this being the case, the

system fits a univariate test to the data and then uses the additional information that it

provides to determine where next to direct the search.

If the accuracy of an LCT based on all n features indicated that the instance space

was linearly separable, then the application of the rule shown in Table 4 created the

candidate set = {LCTi,LCTi-1}, where i = n. The rules in Table 5 determine whether

further feature elimination should take place and if not, what to do next. MCS continues

to eliminate features as long as there are more than two features in the smaller of the

two linear combination tests and the accuracy of the smaller of the two is 100%. If

the system eliminates features until there is only one remaining, then it selects this test.

Otherwise it checks to see whether the best LCTi does not compress the data, indicating

that it may be too complex for the data. In this case, the system fits a univariate test to

see if it will compress the data. This rule is motivated by the observation that although

an LCT may perfectly partition the training data, it may be overfitting to noise in the

data. Building a subtree of univariate tests allows MCS to do more fine-grained pruning.

The rule shown in Table 6 handles the point in search where both a best univariate

test and an LCT based on all n features have been added to the candidate set. If both

the information score and the accuracy of the univariate test are higher than the LCT,

then there is evidence that the best test is univariate. However, MCS explores the option

that a small LCT may be a better test, by constructing an LCT using SFS, starting with

the feature in the univariate test. This rule is based on results of previous research that

illustrate that the bias of an SFS search can lead to a better LCT than an SBE search for

some datasets (Brodley & Utgoff, 1995). Otherwise, there is no reason to believe that a

better LCT could not be found, and the system searches for one using SBE.
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Table 7. Rules for when candidate set = {U,LCTj}:

IF ((global-bias = Uni) AND

(info(U) > info(LCTi) OR accuracy (U) > accuracy (LCTi))) OR

((global-bias = let) AND

(info(U) > info(LCTj) AND accuracy(U) > accuracy(LCTj))) OR

((global-bias = none OR ibc) AND (info(U) > info(LCTO) THEN

examine-alt(LCTi)

IF U compresses the data THEN select(U) AND recurse

ELSE fit(IBCfc=2) AND delete(LCTi)

ELSE examine-alt(U)

IF LCT; compresses the data THEN select(LCTi) AND recurse

ELSE fit(IBCk=2) AND delete(U)

If the candidate set contains a univariate test and an LCT, based on i features formed

using either an SBE or SFS search (candidate set = {U,LCTj}), then MCS's next action

depends on whether there is a global model-class bias. If the bias is toward univariate

decision trees, then the system forms a univariate subtree of depth one. This is because

in many cases a single univariate test will not have as high an information score or

accuracy as an LCT. Because an LCT is more complex than a U, a fairer comparison is

an LCT to a univariate tree of depth one. In addition, MCS biases the information score

and accuracies of the two tests by their complexity. Specifically it uses the following

weight: j-v, where T is the number of instances and v is the number of features in

the test (Quinlan, 1993). This has the affect of penalizing the more complex test. MCS

uses these weighted information scores and accuracies in the rules shown in Table 7. If

the bias is not for univariate trees but the two tests are close in either information score

or accuracy (within 10% of one another), then the system creates a subtree for each of

the LCT and the univariate test, for which each of the children can be classifier from

any of the three model classes. Rather than choose erroneously between the LCT and

univariate tests, MCS is exploring which of the two tests make the subspaces easier to

learn. To construct the subtree, MCS chooses a classifier for each subspace from the set

of a best univariate test, an LCT test and a k-NN (k=l) test. The chosen test is the one

that maximizes the Information-Gain Ratio.

MCS compares the information score and accuracy of the two tests (possibly subtrees

at this point) to decide whether to select one of the tests or whether an instance-based

classifier should be examined. MCS prefers U to LCT if one of the following three cases

is true: the global bias is toward univariate decision trees and either the accuracy or the

information score of U is better; the global bias is toward linear combination tests and

both the information score and accuracy of U are higher than those for the LCT; and

if there is no global bias or the bias is toward instance-based classifiers, then only the

information score is considered. If U is preferred, then the system examines whether U

compresses the data. If it does then the search halts and U is selected. If U does not

compress the training data, then MCS examines whether an instance-based classifier is
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Table 8. Rules for when candidate set = {LCTi,IBCk}:

IF accuracy (IBCk) > accuracy (LCTi) THEN

fit(IBCk+1) AND delete(LCTi)

ELSIF ((global-bias = IBC) OR

(more than half the features remain in LCTi) OR

(accuracy (LCTi) - accuracy(IBCk) < 10%)) THEN

Until accuracy (IBCk) < accuracy (IBC2) increase k

IF accuracy(IBCk) > accuracy(LCTi) THEN

select(IBCk) AND examine-alt(LCTi) AND recurse

ELSE select(LCTi) AND examine-alt(IBCk) AND recurse

ELSE select(LCTi) AND examine-alt(IBCk) AND recurse

a better model. Note that MCS retains the ability to select the LCT during pruning by

examining whether it would make a good alternative. If the LCT is preferred over U,

then the system performs the same compression analysis, making a decision of whether

to select the LCT or examine an IBC.

If the candidate set = {LCTi, IBCk=2}, then MCS decides whether further exploration

of IBC tests is required using the rules shown in Table 8. If the global bias is not for

instance-based classifiers, then the accuracies of the LCT and IBC are weighted by their

complexity as described above. If the accuracy of the IBC is higher than the LCT's,

then MCS explores the IBC model class, by increasing the value of k (the number of

nearest neighbors to examine during classification). In addition, MCS examines whether

the LCT would make a good alternative. If the IBC's accuracy is not higher than the

LCT's accuracy, but one of the following three cases is true then MCS explores higher

values of k for the IBC: the global bias of MCS is toward an IBC; more than half the

features remain in the LCT; or there is a less than 10% difference in the accuracies of the

IBC and the LCT. The second case captures situations in which IBCs do well because

all (or most) of the features are relevant. The third case catches situations for which a

1-NN is a poor choice but a k-NN is a good choice (k > 2). MCS investigates an IBC,

exploring increasing values of k until the accuracy of the IBC drops lower than that of

a 2-NN (which is equivalent to a 1-NN) classifier. At this point MCS selects between

the IBC or the LCT. Finally, if the LCT is the better test, then it selects LCT and retains

the IBC as a possible alternative, but does not investigate other values of k. Note that

only accuracy is used here, because in most cases for which an IBC is selected as a test

no subtree will be needed.

When search has led MCS to believe that the best candidate test is a univariate test or

an IBC, MCS applies the rules shown in Table 9. If the global bias is for univariate tests,

then MCS grows a subtree of depth one for the univariate test in which each node of the

subtree is a univariate test. MCS then biases the univariate subtree and the instance-based

classifier by their complexities if the global model-class bias is for univariate trees. The

system selects U if its accuracy is higher than that of the IBC. Otherwise it explores the
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Table 9. Rule for when candidate set = {U,IBCk}:

IF accuracy (U) > accuracy (IBCk) THEN

select(U) AND examine-alt(IBCk) AND recurse

ELSIF accuracy(IBCk) < 100% THEN flt(IBCk+1) AND delete(U)

ELSE select(IBCk) AND examine-alt(U) AND recurse

Table 10. Rule for when candidate set = {IBCk,IBCk+1}:

IF accuracy(IBCk+1) > accuracy(IBCk) THEN fit(IBCk+2) AND delete(IBCk)

ELSE select(IBCk) AND recurse

IBC model class. The test not chosen is examined to see whether it would make a good

alternative.

To reach the point in the search where the two best candidate tests are each instance-

based classifiers, the accuracy of IBCk=2 was higher than either a univariate test, an LCT,

or both. The rule shown in Table 10 handles the situation in which MCS has decided

that the best model class is instance-based classifiers and is now searching for the value

of k that leads to the best heuristic accuracy on the training data using the leave-one-out

scheme described in Section 2.1 above.

2.2.4. Pruning hybrid classifiers

To address the problem of overfitting in the hybrid formalism, the system prunes back the

classifier to minimize the estimated classification error computed for an independent set

of instances (Breiman et al, 1984; Quinlan, 1987). Overfitting occurs when the classifier

overfits the training data at the expense of generalization. In the case of domains that

contain noisy instances (instances for which the class label is incorrect or some of the

feature values are incorrect) finding the classifier that maximizes the accuracy for the

training data may overfit to the noise in the training data, and subsequently perform

poorly for previously unseen instances.

Our approach to pruning a hybrid classifier differs from the traditional approach to

pruning decision trees. Traditionally, each non-leaf subtree is examined to determine the

change in the estimated classification error if the subtree were replaced by a leaf labeled

with the majority class of the training examples used to form the test at the root of the

subtree. The subtree is replaced with a leaf if this lowers the estimated classification

error; otherwise, the subtree is retained.

A hybrid classifier that mixes different model classes has test nodes of varying com-

plexity. This can cause problems when deciding whether to replace a test node with a

class label; a complex test may overfit the training data, but removing it may decrease the
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Figure 7. Choices of hybrid classifier pruning method.

accuracy of the classifier. In such cases, one wants to replace the test with one that is less

complex. In addition, as described in Section 2.2, test nodes in a decision tree have one

of two functions: to partition or classify the instances observed at that node. During the

tree construction phase, MCS saves the most accurate candidate test if it was not chosen

as the test for that node. Currently, MCS does not bias the storage of alternatives toward

less complex tests. An issue for future research is to examine the utility of saving both

the most accurate alternative and a less complex test for consideration during pruning.

During pruning, in addition to deciding whether to retain a subtree or replace it with

a leaf, our approach examines whether replacing the subtree with the alternative would

result in a lower estimated classification error than either of the two other choices.

In Figure 7 we show these three options: Figure 7a illustrates the option of retaining

the original tree (the alternative would be deleted); Figure 7b illustrates the option of

replacing a subtree with a leaf node; and Figure 7c illustrates the option of replacing a

subtree with the saved alternative.

3. Empirical results of recursive automatic bias selection

Our experiments have two goals. First, we want to determine whether our predictions

of a best bias based on dataset characteristics computed during search works well in

practice. Second, we want to know whether there exist datasets that require hybrid

classifiers. In a previous experiment (Brodley, 1993) we illustrated that MCS is more

robust than each of its primitive components, but that it never significantly outperformed

the best primitive algorithm for each dataset. We hypothesized that this was due to one

of four causes: for the datasets in that analysis, better accuracy could not be achieved

due to noise in the data; the rules in MCS needed to be improved; those datasets do not

require a hybrid bias; or MCS's model classes are too similar to illustrate the utility of

hybrid classifiers. Since that article was published, we have changed MCS as described

in Section 2.2. In addition we have added several new datasets to our test suite. Our

new results illustrate that for some datasets, MCS does create hybrid classifiers that

are statistically significantly more accurate than classifiers constructed from each of its

primitive components.
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We present the results of two experiments that illustrate that the rules in MCS choose

an appropriate bias using characteristics of the dataset, computed from feedback from

the learning process. Our experiments were designed to test the two hypotheses put forth

in Section 1. The hypotheses were:

1. Domain independent knowledge about characteristics in the form of feedback from

learning can effectively guide an automatic algorithm selection search.

2. Our knowledge-based search strategy for finding a hybrid classifier will produce

a classifier that is never worse than, and for some data sets is better than, any

homogeneous classifier produced by its primitive components.

We report the results of two comparisons. The first compares MCS to its primitive

components. The results, reported in Section 3.3, illustrate that MCS is sometimes more

accurate and is never less accurate than each of its primitive components, demonstrating

that the heuristic rules solve the selective superiority problem for these algorithms. In

Section 3.4 we report the results of a comparison of MCS to three other hybrid classifier

construction algorithms. Each of the three applies all of the primitive algorithms in

the construction of each test node in the tree. The results of the comparison illustrate

that merely increasing the search space by permitting hybrids will not increase accuracy.

MCS's knowledge-based approach is demonstrated to be both more accurate and less

time-consuming than the alternative three hybrid methods.

3.1. Datasets

In this section we describe the datasets used in our empirical comparisons. The Breast

Cancer, Heart Disease, Iris Plants, and Pixel datasets were used for rule development.

The results of an earlier version of MCS for the Hepatitis, LED, Road Segmentation,

Congressional Votes and Vowel Recognition datasets were reported in Brodley (1993).

Breast Cancer: The breast cancer data consists of 699 instances, described by nine

numeric features. The class of each instance indicates whether the cancer was benign

or malignant (Mangasarian & Wolberg, 1990).

Congressional Votes: In this domain the task is to classify each of 435 members of

Congress, in 1984, as Republican or Democrat using their votes on 16 key issues.

There are 392 values missing.

Diabetes: The task is to decide whether a patient shows signs of diabetes according

to World Health Organization criteria. Each of 768 instances is described by eight

numeric features.

Glass Recognition: For the Glass dataset, the task is to identify a glass sample taken

from the scene of an accident as one of six types of glass using nine numeric features.

The 213 examples were collected by B. German of the Home Office Forensic Science

Service at Aldermaston, Reading, UK.
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Heart Disease: The Heart dataset consists of 303 patient diagnoses (presence or absence

of heart disease) described by thirteen symbolic and numeric attributes (Detrano,

Janosi, Steinbrunn, Pfisterer, Schmid, Sandhu, Guppy, Lee & Froelicher, 1989).

Hepatitis: The task for this domain is to predict from test results whether a patient will

live or die from hepatitis. There are 155 instances, each described by 19 features

(both numeric and symbolic features). There are 167 values missing in this dataset.

Iris Plants: Fisher's classic dataset (Fisher, 1936), contains three classes of 50 instances

each. Each class is a type of iris plant. Each instance is described by four numeric

attributes.

Landsat: The task for this domain is to predict the type of ground cover from satellite

images. Each of 1000 instances is described by seven features (the channels) and

labeled with one of four types of ground cover.

LED-7 Digit Recognition: The data for the LED-7 digit recognition problem consists

of ten classes representing whether an LED display shows a 0-9. Each of seven

Boolean attributes has a 10% probability of having its value inverted. There are 500

instances. Note that this is not the version of the dataset reported in Breiman, et al.

(1984), for which the Bayes optimal rate is known to be 74%.

LED-24 Digit Recognition: The data for the LED-24 digit recognition problem consists

of ten classes representing whether an LED display shows a 0-9. Each of seven

Boolean attributes has a 10% probability of having its value inverted. The remaining

17 attributes are irrelevant. There are 200 instances.

Liver Disorder: The task for this domain is to determine whether a patient has a propen-

sity for a liver disorder based on the results of six blood tests. There are 353 instances.

Lymphography: This dataset consists of 148 instances, each described by nineteen

attributes and labeled as one of four classes. This data was obtained from the

University Medical Centre Institute of Oncology, Ljubljana, Yugoslavia.

Pixel: In the pixel segmentation domain the task is to learn to segment an image into

one of seven classes. Each of the 3210 instances is the average of a 3x3 grid of

pixels represented by nineteen low-level, real-valued image features.

Road Segmentation: The data come from four images of country roads in Massachusetts.

Each instance represents a 3X3 grid of pixels described by three color and four tex-

ture features. The classes are road, road-line, dirt, gravel, foliage, trunk, sky, tree

and grass. There are 2056 instances in this dataset and 105 values are missing.

Vowel Recognition: The task is to recognize the eleven steady-state vowels of British

English independent of the speaker. There are ten numeric features describing each

vowel. Eight speakers were used to form a training set, and seven different speakers

were used to form an independent test set. Each of the 15 speakers said each vowel

six times creating 528 instances in the training set and 462 in the test set. For runs

using this dataset we retained the original training and test sets.
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Waveform: This dataset originates from Breiman, et al. (1984). In this version of the

dataset there are 300 instances each described by forty continuous-valued attributes.

3.2. Experimental method

In this section we describe the experimental method used in each of the two comparisons.

In each experiment we compare two or more different learning methods across a variety

of learning tasks. For each learning method, we performed ten runs on each dataset.3

For each run we split the original data randomly into 70% training data, 20% pruning

data and 10% testing data. To ensure that the distribution of instances across the classes

of a dataset is the same in the training, pruning and test sets, we first sorted the data into

their classes. We then dealt the instances out randomly to the training, pruning and test

sets in the specified proportions (70, 20 and 10). Each method in a comparison was run

using this partition.4

To estimate the accuracy of classifiers produced by each method, we average, for each

method, the results of the ten runs. In the experiments we report both the sample average

and standard deviation of each method's classification accuracy for the independent test

sets. To determine the significance of the differences between two learning methods we

used paired t-tests. Because the same random splits of each dataset were used for each

method, the variances of the errors for any two methods are each due to effects that are

point-by-point identical.

One learning algorithm, Thermal Training, has a random component: the resulting

linear combination test's weights depend on the order in which the instances are observed.

To eliminate this effect when comparing MCS to the primitive class of linear discriminant

functions, we ran both of these algorithms with the same random seed. Therefore, if

MCS determines that a single linear combination test (LCT) is the best classifier for the

data, then the linear combination test's weights will be identical to those produced by

running the primitive learning algorithm. We used the same random seed for each of the

hybrid algorithms (described in Section 3.4) so that if any of the three determines that a

single LCT is the best classifier for the data, then the LCT's weights will be identical to

those produced by primitive learning algorithm for an LCT.

3.3. Comparison of MCS to its primitive components

Our first experiment is a baseline comparison of MCS to a univariate decision tree algo-

rithm, a linear discriminant algorithm (which constructs a linear machine for multiclass

tasks) that builds a classifier using all of the input features, a k-nearest neighbor algo-

rithm (k = 1), and to a method that uses a ten-fold crossvalidation (CV) over the training

data to select the best method. Our goal in this first comparison is to illustrate what the

accuracy of a classifier produced by MCS would be if MCS had selected a single ho-

mogeneous representation. For each of the sixteen datasets, Table 11 shows the sample

average and standard deviation of the classification accuracy for ten runs. In Table 12
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Table 11. MCS and its primitive components: Accuracy

dataset

Breast Cancer

Congressional Votes

Diabetes

Glass Recognition

Heart Disease

Hepatitis

Iris Plants
Landsat

LED-7 Digit

LED-24 Digit

Liver Disorder

Lymphography

Pixel

Road Segmentation

Vowel Recognition
Waveform

k-NN

96.2 ± 2.1

94.5 ± 3.4

71.6 ± 4.3

68.3 ± 8.3

76.6 ± 8.1

82.0 ± 8.9

92.7 ± 6.6

81.7 ± 2.5

54.3 ± 9.8

37.5 ± 12.8

61.5 ± 4.0

80.7 ± 5.9

95.4 ± 2.1

78.9 ± 1.6

50.2 ±
66.4 ± 7.4

LCT

97.2 ± 2.5
96.2 ± 2.3
72.0 ± 5.4
56.1 ± 13.5
79.7 ± 5.7
80.0 ± 5.4
92.0 ± 4.2
69.5 ± 16.0
72.3 ± 4.2
57.5 ± 7.7
62.1 ± 5.8
73.6 ± 6.8

89.7 ± 2.2

76.0 ± 7.0
38.7 ±
83.2 ± 6.1

UTree

95.7 ± 2.6

96.2 ± 2.6

72.5 ± 3.1

75.0 ± 9.5

77.6 ± 4.9
84.0 ± 7.2
93.3 ± 7.0

82.2 ± 3.3

74.3 ± 4.0
62.5 ± 12.1

66.5 ± 6.7

77.1 ± 8.1
93.8 ± 1.8

81.3 ± 1.7

40.5 ±
68.6 ± 9.2

CV

97.2 ± 2.5

95.7 ± 2.2

73.3 ± 3.3

68.9 ± 8.8

79.0 ±5.7

81.3 ± 8.2
92.7 ± 6.6

80.3 ± 4.5
74.2 ± 4.0
63.1 ± 11.9

62.9 ± 7.9

80.7 ±5.9

95.4 ± 2.1

81.3 ± 1.7

50.2 ±
83.2 ± 6.1

MCS

96.2 ± 1.7
96.4 ± 2.3

73.7 ± 4.3
75.0 ± 9.5
83.1 ± 4.4
84.7 ± 10.0

96.0 ± 4.7
82.2 ± 4.4
73.3 ± 4.4
62.5 ± 13.8
67.4 ± 9.8

85.0 ± 7.1
95.4 ± 2.1

83.4 ± 1.9

50.2 ±
83.2 ± 6.1

Table 12. Comparison of MCS to primitives: Results of paired t-tests

dataset

Breast Cancer

Congressional Votes

Diabetes
Glass Recognition

Heart Disease

Hepatitis

Iris Plants
Landsat

LED-7 Digit

LED-24 Digit

Liver Disorder

Lymphography

Pixel
Road Segmentation

Waveform

IBC

1.000

0.410

0.173

0.005

0.016

0.382

0.430

0.656

0.000

0.000
0.133

0.054

1.000

0.000

0.000

LCT

0.163

0.996

0.115

0.011

0.056

0.163

0.297

0.042

0.349

0.285
0.102

0.006

0.000
0.004

1.000

UTree

0.390

0.336

0.207

1.000

0.000

0.815

0.433

1.000

0.121

1.000

0.842

0.033

0.056
0.008
0.003

CV

0.163

0.373

0.713

0.018

0.063

0.323

0.666

0.129

0.216

0.590
0.214

0.054

1.000

0.008

1.000

we show the results of a paired t-test between MCS and each of the primitive learning

methods.5

For three of the sixteen datasets (Heart Disease, Lymphography and Road Segmen-

tation) MCS constructed a classifier that is statistically significantly (at the 0.05 level

using a paired Mest) more accurate than each of its primitive components. For the Glass

Recognition, Landsat, LED-24 Digit, Pixel, Vowel Recognition and Waveform datasets,

the accuracy of the classifier produced by MCS is identical to the best of the other al-

gorithms. For the remaining datasets, MCS produced classifiers that are not statistically

different from the best homogeneous classifier for each dataset.
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Table 13. Model classes in the MCS classifiers

dataset

Breast Cancer

Congressional Votes

Diabetes

Glass Recognition

Heart Disease

Hepatitis

Iris Plants

Landsat

LED-7 Digit

LED-24 Digit

Liver Disorder

Lymphography

Pixel

Road Segmentation

Vowel Recognition

Waveform

Leaves

5.0
2.5

12.7

12.5

2.9
2.5
3.5

16.6

28.4

14.9

8.2
4.4
7.0

54.1

11.0
3.0

k-NN

0.3
0.0
2.3
0.3
0.9
1.2
0.5
3.5
0.8
0.3
1.5
0.9
1.0
2.4
1.0
0.0

LCT

1.6
0.3
3.4
0.3
0.5
0.2
1.0
1.8
2.1
0.1
2.8
0.4
0.0
4.7
0.0
1.0

UT

2.1
1.2
6.0

10.2

0.5
0.1
0.0
4.4

12.5

11.8

2.9
0.0
0.0

25.7

0.0
0.0

Hybrids

5
3
9
4
3
4
3
9
9
4
9
4
0

10
0
0

Prim- Alg

LCT
UTree

IBC
Utree

IBC(6), LCT(1)

IBC(5), LCT(l)

1BC(I), LCT(6)

IBC
LCT
Utree

LCT
IBC(5), LCT(l)

IBC

IBC
LCT

The problem that no single model class will be best for all tasks is illustrated by the

results for the individual model classes; for some datasets the difference between the

accuracy of best and the worst of the primitive algorithms is greater than 20. In contrast,

the classifiers found by MCS for each dataset were never significantly less accurate and

were sometimes significantly more accurate than the best of the primitive algorithms,

indicating that a hybrid can provide a significant performance improvement for some

datasets. This property of robustness is desirable in an automated algorithm selection

system. Note that these sixteen datasets are not biased toward one of the primitive

algorithms; each of the primitive algorithms is best for at least three of the datasets.

From these results we conclude that MCS's rules effectively choose a learning bias that

produces an accurate classifier for each dataset. The relationships that we have drawn,

from dataset characteristics to bias, allow MCS to find a classifier at least as accurate as

the best of its primitive components and sometimes better. In contrast, the CV method

is never statistically significantly more accurate and is sometimes less accurate than the

best primitive algorithm for each dataset.

Table 13 shows the average over the ten runs of the number of leaves and the number

of test nodes, of each type of model class, in the MCS classifiers. The last two columns

are not averages; the second to last column shows, out of the ten runs, the number of

classifiers produced by MCS that were hybrids and the last column shows the primitive

algorithm(s) that was chosen by MCS when it did not produce a hybrid. For example,

MCS produced a hybrid in three of the ten runs for the Iris Plants dataset. Of the

remaining seven runs, MCS selected an LCT six times and an IBC once. For one dataset,

MCS produced a hybrid for each of the ten runs. For four datasets MCS produced a

hybrid for nine of the ten runs. Except for the Road Segmentation data, this did not

result in higher accuracy for MCS than the best of the primitive algorithms. For three

cases, Pixel, Vowel Recognition and Waveform, MCS found a classifier that is identical

to the best primitive algorithm. For the remainder of the datasets, the results are mixed.
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Table 14. Comparison of MCS to other hybrid methods: Accuracy

dataset

Breast Cancer
Congressional Votes

Diabetes

Glass Recognition

Heart Disease

Hepatitis

Iris Plants

Landsat Segmentation

LED-7 Digit Recognition

LED-24 Digit Recognition

Liver Disorder

Lymphography

Pixel
Road Segmentation

Vowel Recognition
Waveform

RAcc

96.5 ± 2.3
94.0 ± 3.2
72.4 ± 4.5
68.9 ± 6.0

82.4 ± 5.7
81.3 ± 8.8
96.0 ± 4.7
83.7 ± 3.6
72.4 ± 3.9
60.0 ± 13.2
62.6 ± 8.2

74.3 ±7.7
95.4 ± 2.1
83.7 ± 1.4
50.2 ±
78.6 ± 8.6

RInfo

96.7 ± 1.9
95.5 ± 1.8
74.5 ± 4.6
62.2 ± 6.3
80.0 ± 6.0
81.3 ± 8.8
96.7 ± 4.7
82.1 ±2.9
73.8 ± 3.9
59.4 ± 12.9
67.1 ± 8.7
74.3 ± 7.7
95.4 ±2.1
83.2 ± 2.0
50.2 ±
78.6 ± 8.6

RCV

96.8 ± 3.0
95.2 ± 2.3
73.0 ± 3.4
68.9 ± 6.0
82.4 ± 4.7
83.3 ± 1.1
94.7 ± 4.2
82.6 ± 3.1
74.6 ± 4.4
60.6 ± 1.3
62.4 ± 6.0
77.9 ± 9.8
95.4 ± 2.1
83.9 ± 1.7
50.2 ±
78.2 ± 7.2

MCS

96.2 ± 1.7
96.4 ± 2.3
73.7 ± 4.3
75.0 ± 9.5

83.1 ± 4.4
84.7 ± 10.0
96.0 ± 4.7
82.2 ± 4.4
73.3 ± 4.4
62.5 ± 13.8
67.4 ± 9.8
85.0 ± 7.1
95.4 ± 2.1
83.4 ± 1.9
50.2 ±
83.2 ±6.1

In many cases MCS formed a hybrid classifier, but its accuracy was not significantly

different from the best of the primitive algorithms. In previous work (Brodley, 1993) we

reported results of an experiment that calculated the percentage overlap in the classifi-

cation decisions made by MCS and the best primitive algorithm for each dataset. Our

conclusion in that experiment was: because all of the primitive algorithms are piecewise

linear, for many datasets they will each form classifiers that define the same decision

boundaries (Figure 4 illustrates one such case).

3.4. Comparison of MCS to other hybrid algorithms

In our second experiment we compared MCS to three hybrid algorithms, which have the

same primitive components as MCS, but different search strategies. The three algorithms,

RAcc, RInfo and RCV each search for a best classifier for each node by trying all possible

algorithms. All three have the same general recursive procedure shown in Table 1. They

differ from MCS in how a best algorithm is chosen for a dataset. The classifiers compared

at each node in the tree are a univariate test, a k-nearest neighbor (they search for the

best value of k) and two linear combination tests, one constructed using SFS the other

using SBE.

The three hybrid algorithms differ in the criterion used to choose among the candidates.

RAcc uses the accuracy of the classifiers on the training data. RInfo uses the Information-

Gain Ratio (Quinlan, 1986). Finally, RCV uses the results of a four-fold crossvalidation

over the data observed at the node to select the best learning algorithm. It then applies

that algorithm to the set of data observed at the node to produce the classifier to place

at that node in the hybrid tree. It is important to note that the comparison criteria used

by RAcc, RInfo and RCV to choose a classifier are part of the feedback used by MCS

to guide the rule-based search strategy.



RECURSIVE AUTOMATIC BIAS SELECTION 89

The results of the experiment are shown in Table 14. In Table 15 we show the results

of paired t-tests of MCS and each of the other hybrid methods. MCS is statistically

significantly more accurate than RAcc for three datasets. MCS is significantly more

accurate than RInfo for three datasets and more accurate than RCV for three datasets.

None of the methods is significantly more accurate than MCS for any of these sixteen

datasets.

A comparison of RAcc, RInfo and RCV to the primitive algorithms shows that each

performs worse than the best of the primitive algorithms for some datasets. RAcc is

statistically significantly worse than a univariate decision tree for the Congressional

Votes, Hepatitis and LED-7 datasets, worse than an instance-based classifier for the

Lymphography data, and worse than a linear combination test for the Waveform dataset.

RInfo is signigicantly worse than the best primitive algorithm for the Glass Recognition,

Hepatitis, Lymphography and Waveform datasets. RCV is significantly worse than the

best primitive algorithm for the Congressional Votes and Waveform datasets. In contrast,

MCS never produced a classifier than was significantly less accurate than the best of the

primitive algorithms.

The results demonstrate that using feedback characteristics in a "knowledge-poor" way

can lead to worse performance than the best of the primitive algorithms. These three

algorithms attempt to choose a best algorithm with which to form each node in the hybrid

classifier, but they do so using a single selection criterion that may not be appropriate for

the given dataset. For example, RAcc performs worse than a linear discriminant function

for the Liver Disorder data set (the best primitive algorithm for this dataset), whereas

RInfo performs roughly the same as a linear discriminant function. This difference is

due to the bias used to select the classifier for each node in the hybrid tree; the bias of

the Information-Gain Ratio is preferable to the bias of accuracy for this dataset. Indeed,

the results show that performing automatic algorithm selection with an inappropriate bias

can lead to worse performance than the best of the primitive algorithms.

In contrast, MCS is never worse than the best of the primitive algorithms. MCS's

strategy for selecting an algorithm is itself a static bias; the rules do not change for a

particular dataset. However, MCS's strategy does not depend on only one source of

feedback; the rules are designed to account for situations in which two or more measures

yield conflicting results. For example, even if an LCT (based on i features) is more

accurate than an IBC (k=l) for the training data, MCS continues to explore IBCs if more

than half of the features remain in the LCT or the difference in accuracy is less than

10% (see Table 9).

From the results of this experiment we conclude that MCS is more robust than each

of the other methods. In addition, MCS is, on average, less time consuming than each

of the other hybrid classifier construction algorithms. In Table 16 we show the average

across the ten runs of the number of seconds that each method used to form a hybrid

classifier.6 MCS required less time than RAcc in twelve cases, RInfo in thirteen cases

and RCV in all sixteen cases. For cases in which RAcc and RInfo took less time than

MCS, the difference can be attributed to RAcc and RInfo selecting tests early on that

preclude further search. For example, when an instance-based classifier is chosen for

which k is equal to 1, no subtree will be grown below such a node. If for many nodes
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Table 15. Comparison of MCS to other hybrid methods: Results of paired t-tests

dataset

Breast Cancer

Congressional Votes

Diabetes

Glass Recognition

Heart Disease

Hepatitis

Iris Plants

Landsat Segmentation

LED-7 Digit Recognition

LED-24 Digit Recognition

Liver Disorder

Lymphography

Pixel

Road Segmentation

Waveform

RAcc

0.619

0.021

0.457

0.072

0.726

0.230

1.000

0.092

0.294

0.747

0.163

0.007

1.000

0.579

0.010

RInfo

0.428

0.579

0.579

0.005

0.160

0.230

0.678

0.930

0.519

0.680

0.919

0.007

1.000

0.778

0.010

RCV

0.458

0.144

0.772

0.072

0.642

0.327

0.990

0.713

0.090

0.697

0.023

0.044

1.000

0.285

0.053

in the tree an IBC is selected over a linear combination or a univariate test, and if none

of the three is 100% accurate for the training data, search terminates more quickly then

if the linear combination or univariate test were chosen. For example, RAcc produced

hybrid trees for the Diabetes dataset that on average have 4.6 leaves (the trees produced

by MCS have on average 12.7 leaves) and for which the majority of the test nodes are

instance-based classifiers.

The results illustrate that MCS's rules not only produce more accurate classifiers than

the other methods' more exhaustive approach to searching for a classifier at a node, but

MCS requires less computation time, on average. The reduction in time is due to the

fact that MCS does not necessarily need to try each algorithm at each node, unlike the

other three methods.

3.5. Implications of the results

Our results support the claim that domain-independent knowledge about characteristics in

the form of feedback from learning can effectively guide an automatic algorithm selection

search. First, recall that twelve of the datasets used in the empirical evaluation were not

used to develop the rule base. Second, MCS was never less accurate than each of its

primitive components. Taken together this provides strong support for the claim that

domain independent knowledge about the biases of machine learning algorithms exists

and is useful for automatic algorithm selection.

In addition, our results support the claim that our knowledge-based search strategy for

finding a hybrid classifier produces classifiers that are sometimes better, but never worse

than a homogeneous classifier. Although we have no analytical proof of this claim, our

results across sixteen datasets in the empirical evaluation of MCS provide strong support

for such a claim. MCS created classifiers that were significantly more accurate than

each of the homogeneous classifiers for three of the sixteen datasets. For the remaining
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Table 16. Training time of hybrid algorithms (seconds)

dataset

Breast Cancer

Congressional Votes

Diabetes

Glass Recognition

Heart Disease

Hepatitis

Iris Plants

Landsat Segmentation

LED-7 Digit Recognition

LED-24 Digit Recognition

Liver Disorder

Lymphography

Pixel

Road Segmentation

Vowel Recognition

Waveform

RAcc

91.7

144.1

165.0

37.9

133.1

128.4

3.0
255.7

203.6

718.6

27.1

122.6

1310.4

1292.1

149.0

1530.0

RInfo

87.6

271.4

214.4

63.6

150.7

128.1

3.2
195.7

144.9

716.3

51.1

122.6

1809.3

624.2

149.0

1530.2

RCV

354.1

391.1

765.6

167.9

702.5

864.6

11.3

777.6

524.3

2722.7

161.5

615.9

4782.4

2863.6

459.0

2556.1

MCS

67.2

128.2

172.5

71.2

80.7

70.9

2.6
181.3

164.7

803.2

38.7

75.1

1076.3

528.0

83.0

834.2

thirteen, the accuracy of the hybrid classifiers produced by MCS was equal to the best

of the homogeneous learning algorithms.

4. Conclusion

In this article we have presented a recursive heuristic approach to automatic bias selec-

tion for classifier construction. We demonstrated that a recursive automatic algorithm

selection system, MCS, can evaluate a dataset, using feedback from the learning process,

to select an appropriate representation-language bias from a set of candidate biases. A

fundamental aspect of our approach is the use of knowledge about the biases of machine

learning algorithms and their representation languages to guide a search for a best learn-

ing bias for a given dataset. Our experimental results demonstrated that MCS performed

as well as or better than each of its primitive learning algorithms across a variety of

learning tasks, illustrating that MCS is a robust method for choosing among the biases of

decision trees, linear discriminant functions and instance-based classifiers. In MCS we

have solved the selective superiority problem for these algorithms by providing a robust

automatic algorithm selection system.

The classifiers found by MCS for each dataset were never significantly less accurate

and were sometimes significantly more accurate than the best of the primitive algo-

rithms, indicating that a hybrid can provide a significant performance improvement for

some datasets. In many cases MCS formed a hybrid classifier, but its accuracy was

not significantly different from the best of the primitive algorithms. We attribute this

phenomenon to the fact that all of MCS's primitive model classes and the hybrids pro-

duced by MCS are from the set of piecewise-linear concept descriptions and therefore,

will define similar hypotheses for many datasets. However, the empirical results indicate
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that using MCS increases the number of datasets for which a good generalization can be
found over its primitive components.

The results of an empirical comparison of MCS to three hybrid algorithms, which

each apply all candidate algorithms to construct each node of a hybrid tree, illustrated

that MCS's knowledge-based search strategy is less time consuming and produces more

accurate classifiers. Each of the three other hybrid algorithms, RAcc, RInfo and RCV,

performed worse than MCS for several datasets, and for some data sets, worse than

the best of the primitive learning algorithms. This illustrates that using the feedback

characteristics in a knowledge-poor way can lead to worse performance than the best

of the primitive algorithms. In contrast, MCS never produced a classifier that was

less accurate than the best of the primitive algorithms. Unlike the other three hybrid

methods, MCS's rule-based search strategy does not get misled by the larger search

space that permitting hybrids creates. We conclude that MCS is more robust and less

time consuming than each of the other methods.

One limitation of the current implementation of our approach is that all three represen-

tation languages are piecewise linear. We conjecture that with the addition of non-linear

model classes, the hybrid classifiers will outperform the homogeneous classifiers more

frequently. The addition of a new model class to MCS will require the addition of new

heuristic rules, which in turn requires understanding the biases of the new model class

in relation to the biases of the existing model classes in MCS.
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Notes

1. Anorexia patients typically have a potassium deficiency due to lack of food, which in turn may cause heart

failure.

2. Lack of compression is used to decide whether an instance-based classifier should be tried. Therefore the

rules do not test whether an IBC compresses the data.

3. For the Vowel dataset, we used the original training and test sets and therefore did not perform multiple
runs.

4. Our goal in ensuring an even distribution of classes among the training, testing and pruning sets was to

reduce variation in performance across different runs. We wanted both the data used for training and testing

to mirror the distribution of the entire dataset.
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5. For the Vowel dataset, we used the original training and test sets and therefore ran each algorithm once.

6. All algorithms were performed on a DEC 3000 running under OSF/1.
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