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Recursive Biorthogonal Interpolating Wavelets and
Signal-Adapted Interpolating Filter Banks
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Abstract—In this paper, by combining the ideas of the recursive
wavelets with second-generation wavelets, a family of recursive
biorthogonal interpolating wavelets (RBIWs) is developed.
RBIW’s have simple shape parameter vectors on each level, which
allows a multichannel decomposition algorithm and provides a
flexible structure for designing signal-adapted interpolating filter
banks. In the single-level case, an efficient approach to design an
optimum two-channel biorthogonal interpolating filter bank is
proposed, which maximizes the coding gain under the traditional
quantization noise assumption. Furthermore, in the multilevel
case, using level-wise optimization of the shape parameter vectors,
signal-adapted tree-structured recursive biorthogonal interpo-
lating filter banks (RBIFBs) are designed, which are efficient in
computation and can remarkedly improve coding gain. Finally,
numerical results demonstrate the effectiveness of the proposed
methods.

I. INTRODUCTION

RECENTLY, combining the interpolation theory, sub-
division scheme with the wavelet and multiresolution

analysis, Deslauriers and Dubuc [1], [2], Donoho [3], Louns-
bery [4], Sweldens [5], [6], and Harten [7], [8], [25] had
established the fundamental theory of interpolating wavelets,
recursive wavelets, and second-generation wavelets. Due to
the allowance of the use of a diverse filter pair on each level,
the new framework provides a flexible structure for designing
signal-adapted data representations and filter banks.

For tree-structured filter banks or wavelet transforms, it is
more efficient to level-wise select the filters (or scaling func-
tion and wavelet) to fit into the properties of the input signal
than the standard wavelet/filter banks. The general framework
has been established in [6]–[8], [21]–[23], [25]. In this frame-
work, the pivotal tool is the lifting scheme by which one can
freely select the decimation operator/dual lifting filter and the
prediction operator/lifting filter on each level and, yet, not influ-
ence the biorthogonality. These dramatically simplify the design
of biorthogonal filter banks and extend the standard wavelets to
interval domains, surfaces, and irregular samples.

Additionally, the signal-adapted subband coding sys-
tems/filter banks have been extensively discussed by many
researchers, for example, [9]–[19]. The basic idea is to decom-
pose a complicated signal into “more compact” and “simpler”
low-resolution parts using some adaptive techniques. In data
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and image compression applications, there are the two typical
adaptive approaches: the entropy-based adaptive wavelet packet
decompositions (AWPDs) [9]–[14] and the signal-adapted filter
banks (or principal component filter banks) [15]–[19]. The
former uses the same pair of filters in all nodes, and an optimal
time-frequency tiling or tree-structured decomposition is
achieved by the minimal entropy criterion. The associated
coding scheme often uses the zero-tree coding that creatively
exploits the interlevel correlation presented in the transform
domain. In the signal-adapted filter banks or the principal com-
ponent filter banks, we can adaptively select the coefficients
of filters by the subband coding gain. In this way, an optimal
subband coding system is obtained with the maximal subband
coding gain in which the quantizer error processes are assumed
to be zero-mean and white and interchannel uncorrelated. The
design of optimum orthogonal uniform FIR filter banks and
their unconstrained counterparts have been completely solved
[15]–[18]. In theory, the biorthogonal ones and tree-structured
ones can achieve better coding performance than orthogonal
ones. Nevertheless, the design in FIR case remains unresolved
[19].

The main interest in this paper is to exploit the lifting
scheme to design signal-adapted biorthogonal interpolating
subband coding systems. First, we develop RBIWs and the
multichannel decomposition algorithm, which is a flexible
decomposition structure based on the lifting scheme. Second,
the optimal two-channel biorthogonal interpolating filter banks
and signal-adapted tree-structured interpolating filter banks are
designed. This paper starts with a brief review on the basic
concepts and properties of the lifting Donoho wavelets and
the general interpolating filters. In Section III, combining the
ideas of recursive wavelets, second-generation wavelets, and
interpolating wavelets, we develop RBIWs with explicit shape
parameter vectors. RBIWs provide a more flexible structure
in which the free selection of the shape parameter vectors
preserves not only the biorthogonality but the regular order
and vanishing moments of filter banks as well. Next, a flexible
multichannel decomposition algorithm is given, which is the
foundation of our paper’s work. In Section IV, two adaptive
algorithms that fit into the high bit rate data compression are
given. The first is used to design the optimum two-channel FIR
interpolating filter banks, which maximize the subband coding
gain under the traditional quantization noise assumption.
The second is used to design signal-adapted tree-structured
interpolating filter banks by level-wise optimizing the shape
parameter vectors. Due to the level-wise optimization, the
algorithm is efficient in computation and can achieve a larger
coding gain, although it does not guarantee the global optimal
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one. In Section V, some numerical results are reported that
demonstrate the effectiveness of our methods. Finally, we
conclude the paper.

II. L IFTING DONOHO WAVELETS AND GENERAL

INTERPOLATING FILTERS

A. Lifting Donoho Wavelets

In 1992, Donoho [3] suggested the idea of wavelets built from
Deslauriers–Dubuc fundamental interpolating functions [1], [2]
and constructed a family of interpolating wavelets later referred
to as Donoho wavelets. They can be described as follows:

(1)

with the duals

where denotes the Dirac impulse, andis an interpolating
filter.

Such wavelets suffer from the following disadvantages:
Wavelets do not have any vanishing moments and thus do not
form a Riesz basis for , whereas the duals do not even
belong to , and the dual scaling filter is fullpass without
frequency localization. To overcome these disadvantages,
Sweldens uses the lifting scheme to Donoho wavelets and
obtains a novel family of interpolating wavelets, which is
termed here “lifting Donoho wavelets” [5]. In this way, the
system satisfies the following two-scale relation

(2)

with the duals

(3)

where are a pair of real FIR general interpolating filters.
Such a wavelet system can be designed by dual lifting and lifting
the “lazy wavelet” [5] in turn, and thus, the filters are also
referred as the dual lifting filter and the lifting filter, respec-
tively. Obviously, results in the “lazy wavelet,” and

in the Donoho wavelet. Due to compact support, such
interpolating wavelets are more attractive. Upon the vanishing
moments, there exists the following conclusion.

Proposition 1: and in (2) and (3) have van-
ishing moments iff the general interpolating filters satisfy
[5, th. 12]

(4)

A scaling function has vanishing moments (or reg-
ular) if it satisfies .

The regular order of a scaling function is closely related to the
approximation power of the associated multiresolution analysis
to smooth signals or functions.

B. General Interpolating Filters

The subdivision scheme and the interpolating filters have
been successfully used to design wavelets on real line and
interval, two-dimensional (2-D) inseparable wavelets [20] and
wavelets on manifolds [4].

Definition 1: An interpolating filter is of order if the
interpolator derived from it is accurate for all polynomials less
than degrees but not accurate for -degree polyno-
mials.

An equivalent condition is that the interpolating filter satisfies
the constraints in (4) and . Deslau-
riers–Dubuc filters are a family of special interpolating filters,
and a order Deslauriers–Dubuc filter can be calculated
by the Largrange interpolation formula

(5)

Each corresponds to a -order interpolating filter, and
such diversity is advantageous to boundary processing [3], [7],
[8]. They are shortest among -order interpolating filters,
and it is more important that using them as bases, the general in-
terpolating filters can be parameterized. We have the following
proposition.

Proposition 2: Let be at least a -order interpolating
filter with the support set ; then,
there exists an unique parameter vectorsatisfying

such that

(6)

By optimization of the filters and , one can design the in-
terpolating wavelets with good properties, e.g., near semi-or-
thogonal interpolating wavelets [4] and near orthogonal interpo-
lating wavelets [24]. In the lifting scheme, the free choice of the
lifting filter does not influence the biorthogonality, which dra-
matically simplifies the design of biorthogonal wavelets/filter
banks. Following (6), the free choice of the parameter vector

preserves both the biorthogonality and the regular order/van-
ishing moments of the wavelet system. Moreover, from the data
approximation view, Deslauriers–Dubuc filters originate from
the piecewise polynomial interpolation, whereas the general in-
terpolating filters originate from the piecewise polynomial fit-
ting. The latter is more flexible and efficient in many applica-
tions.

III. RBIW S AND MULTICHANNEL DECOMPOSITION

A biorthogonal recursive interpolating wavelets is the gener-
alization of the lifting Donoho wavelets and a particular case of
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second-generation wavelets. Its basic idea is not to use the cas-
cadead infinitumto construct a scaling function but, instead, to
fix the interpolating scaling function on an arbitrary finest level
and then define the interpolating scaling functions and wavelets
on the coarser level through recursive use of the two-scale re-
lation. In this section, we give the concept and properties of
RBIW’s and their multichannel decomposition algorithm.

A. RBIWs

Without loss of generality, let the initial scaling and dual
scaling functions and be determined by the lifting
Donoho wavelet in (2) and (3) with . Nat-
urally, their shifts by integer constitute a Riesz basis of

and
and satisfy the biorthogonality [3], [5]

where , , and denote the inner product in , the
Kronecker’s symbol, and the integer set, respectively.

Then, the scaling function, wavelet, and their duals on the
coarser level are defined by recursive two-scale equations as
follows:

(7)

where

(8)

According to Propositions 1 and 2, the general interpolating fil-
ters are at least of the order and have the same
support set . Moreover, from the
lifting scheme, the associated filter bank is biorthogonal, and
all scaling functions and wavelets belong to . The family
of the vector pair completely determines the filter
bank, which is referred as the shape parameter vector of the
system.

Let

(9)

Then, from the recursive relation (7), one can easily derive
a recursive relation of , which can be represented
by the shape parameter vector and as well. Through
Fourier transforms of , it can be judged whether

and
constitute the Riesz bases of the subspace

and , where

In fact, due to finite level decomposition, the Riesz condition is
not essential, and therefore, in the adaptive approaches below,
the Riesz condition is loosened. The RBIW defined in (7) has
the following properties.

i) Every scaling function has an interpolation property.
ii) The RBIW has biorthogonality.
iii) The number of vanishing moments and regular orders lie

between and .

B. Multichannel Decomposition

For a given signal , without loss of generality,
assume that . Following the interpolation property,
we have

Even though , the right band of the above equation
provides a more efficient approximation ofthan the noninter-
polating one with the same regular order [3]. For a discrete-time
signal, the initial approximation coefficients can substitute
for the samples of the signal. An -level decomposition of the
RBIW is as follows. For

(10)

In this way, the continuous-time signal is expanded as a
wavelet series

This decomposition process is level-wise implemented with a
multichannel decomposition algorithm. The algorithm is de-
scribed as follows. Assume that the approximation coefficients

have been obtained, and following (8) and (10), the de-
tail coefficients on the next coarse level are

(11)

where for

(12)
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Fig. 1. Flow diagram of adaptive decomposition.

The detail coefficients are the weigh sum of the detail coeffi-
cients of the output of subchannels and the decom-
position of every subchannel fits into the forward transform in
the lifting scheme [6].

Having obtained the detail coefficients, the approximation co-
efficients on the level are calculated by an analogous algo-
rithm, which equals the weight sum of the outputs of
subchannels or subchannels.

(13)

where are the approximation coefficients of sub-
channels

(14)

Using vector and matrix notations, their more compact forms
are obtained. Let and be a column and two column
vector sequences

and

(15)

where and denote the discrete convolution operator and
the downsampling by two operator, respectively, and each row
of is a highpass filter with the-transform

, and each row

of is a lowpass filter that equals to the lowpass analysis filter
in the lifting Donoho wavelet with and .

The synthesis process fits into the inverse transform in the
lifting scheme [6]

In terms of (7), the synthesis filters are the weight sum of some
basic filters, and the lowpass and highpass filters can be written
as and , respectively, in which each row of is a
filter with the -transform ,
and each is the highpass synthesis filter in the lifting Donoho
wavelet with . are two

matrices, and are two
matrices. The four matrices are completely determined by the
systemic parameter and or the Deslauriers–Dubuc filters in
(8) and independent of the level. In other words, the synthesis
filters are divided into the product of the shape parameter vec-
tors and the fixed matrices, which brings the great facility into
the design of signal-adapted filter banks.

IV. SIGNAL-ADAPTED RECURSIVEINTERPOLATING FILTER

BANKS

Using multichannel decomposition, one can signal-adapted
choose the parameter vectors or the pair of interpo-
lating filters on each level. The adaptive process is illustrated
in Fig. 1, where can be optimized simultaneously or in
turn. For special applications, the adaptive criterion and optimal
strategy are the pivotal issues. The high bit rate data compres-
sion [15]–[19] and the low bit rate data (or image) compres-
sion [9]–[14] are frequently encountered in applications. The
former requires that signal energy concentrates on as few sub-
bands as possible in order to achieve a large subband coding
gains, and the latter requires that signal energy concentrates on
as a small number of its decomposition coefficients as possible.
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Fig. 2. Two-channel biorthogonal filter bank.

In this paper, we mainly focus our methods on the high bit rate
case, although this flexible adaptive framework may be applied
to other aspects.

The subband coder (SBC) is commonly used in data compres-
sion for lossy encoding of audio and image signals. When the
subband quantizers are present in an orthogonal filter bank and
the average bit rate is fixed, the optimal orthogonal filter banks
were independently developed in [15]–[18]. For nonuniform or
tree-structured filter banks, the asymptotic performance anal-
ysis has been reported in [27]. In theory, the biorthogonal ones
can achieve better coding performance than orthogonal ones.
For biorthogonal case, there are some important developments
[19]. Nevertheless, the design of optimal FIR biorthogonal filter
banks remains unsolved, including-band and tree-structured
ones.

A. Optimum Two-Band Biorthogonal Interpolating Filter
Banks

Consider a two-band biorthogonal filter bank, as shown in
Fig. 2, where is a biorthogonal filter bank, the block

denotes quantizer, and the upsampling and downsam-
pling by two, and the input is a zero-mean wide sense sta-
tionary (WSS) process or a deterministic signal.

Using the mean-square error as the criterion, with high bit rate
assumption on the quantization noise sources and with optimal
bit allocation, one can write the subband coding gain as [19]

(16)

where and are the variances of and , re-
spectively, and and are the -norms of the synthesis
filters .

The biorthogonal filter bank that maximizes the subband
coding gain in (16) is referred to as the optimum filter bank
or biorthogonal PCFB. Moreover, some other constraints
can be imposed on the filters, e.g., the order of filters, van-
ishing moments, and the special structure. In the orthonormal
case, due to energy conservation, i.e., , the
design is transferred into that of optimum compaction filter,
which can be solved by a standard LSIP [16], [17]. However,
biorthogonal filter banks lack the above precondition, and the
design becomes difficult. Using the above flexible structure of
biorthogonal interpolating filter banks, the optimal biorthog-
onal interpolating filter banks can be developed.

Following (16), the maximization of the SBC gain is equiva-
lent to the minimization of . In addition, the min-
imization can be implemented by the optimization of the shape
parameter vectors and . Assume the input signal with

Toeplitz covariance , where
denotes expectation. According to (15), we have

in which and are the covariances of the column vectors
and , respectively

where denotes the submatrix formed from
to rows and to columns of . The synthesis filters

satisfy

Consequently, the design of the optimum filter bank is described
as an optimal problem:

s.t. (17)

Obviously, the objective function is a 12-degree multivariate
polynomial on and . The problem is easily simplified
as an unconstrained counterpart and then solved by the gra-
dient algorithms. In the gradient algorithms, the initial point
of iteration uses the parameter vectors to which the Deslau-
riers–Dubuc filter corresponds. When the input is a de-
terministic signal, the covariances are substituted by the sample
estimates [16]. Additionally, optimizing and , in turn, is
simpler in algorithms but often unsatisfactory in results [31].

Unlike an optimal orthonormal FIR filter banks in which all
filter have the same length, an optimal biorthogonal interpo-
lating filter bank (BIFB) is composed of four filters of different
lengths. According to (17), the constraint on vanishing moments
is naturally imposed on the filter bank. A tradeoff between the
subband coding gain and the vanishing moments can be real-
ized by the selection of the parametersand . Our approach
completely solves the design of optimum BIFB’s, and using the
lifting scheme, this approach can be extended to the design of
signal-adapted two-band biorthogonal filter banks. Its drawback
is that the iteration may sometimes plunge into the local min-
imum points.

B. Signal-Adapted Recursive Interpolating Filter Banks

In a wavelet-based coder, a binary tree-structured filter
bank is often used, which is equivalent to a nonuniform
filter bank with decimation ratios that are powers of two. An

-level wavelet-based decomposition is shown in Fig. 3(a).
For simplicity, we used the plain line to represent the branches
of the tree-structure, and each line represents a filtering and
downsampling by two. An equivalent filter bank of Fig. 3(a)
are illustrated in Fig. 3(b), where and denote the
equivalent filters for analysis and and the equivalent
filters for synthesis.
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Fig. 3. M -level wavelet-based decomposition and its equivalent filter bank.

In this way, the global subband coding gain of the filter bank
in Fig. 3(b) is written as [19]

(18)
where and denote the variances of and .

For an -level recursive biorthogonal interpolating filter
bank (RBIFB), if the global coding gain in (18) is directly taken
as the objective function, it results in a complicated design.
Therefore, using the above single-level algorithm, we use
level-wise optimization of the parameter vector rather than the
global optimization. In this way, a large global subband coding
gain are achieved, although it maybe not the largest one. This
is a cost-effective tradeoff between the global subband coding
gain and the complexity of design.

Before starting the level-wise optimization, we give a brief
review of the equivalent filters, which have been widely avail-
able in tree-structured filter banks. A cascaded filtering process
including multiple filters and downsampling operators is shown
in Fig. 4(a), and its equivalent process is shown in Fig. 4(b). The
filter is referred as the equivalent filter of Fig. 4(a), satisfying

The level-wise optimization of the parameter vectorsand
is implemented by the following steps.

Step 1) For the first level, use the optimization (17) to ob-
tain the optimal parameter vector and .
Then, calculate the optimal equivalent filters for syn-
thesis and and the covariance matrix

of .
Step 2) For the th level, assume that the optimal equiv-

alent filters and for synthesis
and the covariance matrix of have
been calculated, and optimize the parameter vec-
tors and on the th level such that the

Fig. 4. Cascaded filtering process and its equivalent filter.

product is minimal. Like the
single-level case, set

where is the lowpass equivalent filter on
the th level when the interpolating filter
and is the highpass equiv-
alent filter on the th level when and

. [ denotes the th row of
].

In conclusion, the adaptive selection of
boils down to the following optimal problem:

s.t. (19)

Solve the optimal problem, and obtain the optimal pa-
rameter vectors .

Step 3) Calculate the optimal equivalent filters and the co-
variance matrix of .

Step 4) If , the process ends; otherwise, go to Step 2.

In the above design, the limitation that each level uses the
same subchannel interpolating filters can be relaxed, namely,
the different number of the interpolating filter of subchannel in
each level can be employed. In this way, there is more flexibility
in design. In orthogonal case, with the number of levelin-
creasing, the global subband coding gain is nondecreasing, but
in biorthogonal case, this conclusion is invalid for absence of
energy conservation. As a result, the level number of decompo-
sition will influence the subband coding performance.
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C. Relation to Other Work

The flexible parameter structure reported above allows us to
level-wise optimize the interpolating filters according to a pre-
determined criterion, which can be applied to several other as-
pects in filter bank design. First, for lifting Donoho wavelets,
using the optimization of parameter vectors, one can design the
interpolating wavelets with good properties, such as the more
regularity ones and nearly orthogonal ones [24]. Second, com-
bining the lifting scheme and our method, it is possible to de-
sign the optimum two-band biorthogonal filter banks. Finally, it
is an interesting problem to exploit RBIFB’s application in the
low bit rate compression.

Under the high bit rate hypothesis, the subband coding gains
efficiently measure the compression performance of a subband
coder. However, current image transform coders operate below
one bit per pixel; for such low bit rates, the subband coding
gain yields an incorrect estimate of the distortion rate. In this
case, the distortion rate depends mostly on the ability to pre-
cisely approximate a signal with a small number of larger co-
efficients [12]. In orthogonal case, duo to energy conservation,
the minimal entropy criterion fits well into this case, and the
best wavelet packet bases based on the minimal entropy crite-
rion have been widely used [9]–[11]. However, for tree-struc-
tured RBIFB’s, the energy conservation no longer holds; thus,
for every level, both the entropy of decomposition coefficients
and the interlevel redundancy should be considered together. Fu-
ture work will develop an design criterion and an efficient al-
gorithm corresponding to the low bit rate case. Additionally, a
natural generalization of RBIFB’s is the recursive biorthogonal
interpolating wavelet packets, which has been reported in our
work [32].

V. NUMERICAL RESULTS

Wavelet techniques have been successfully applied to data
compression, and the adaptive subband coders markedly im-
prove the performance in compression. Below, our method is
tested on three input signals. These three WSS input signals are
commonly used in [16]–[18], and they are typical narrowband
processes.

1) process with correlation coefficient
(simple image model). In this case, the correlation func-
tion .

2) process with poles at in which
and (models certain types of image tex-

ture). The correlation function
with .

3) Lowpass process with box spectrum
with and the

correlation function .
At first, the experiments reported below are the subband

coding gains of optimum two-band biorthogonal interpolating
filter banks, maximal regular interpolating filter banks, and
optimum two-band orthogonal filter banks where the length
of filters is . In BIFB’s, the lowpass and highpass
filters are not equal in length; in order to contrast them with

TABLE I
SUBBAND CODING GAINS OF OPTIMUM BIFBS, MAXIMAL REGULAR BIFBS,

AND OPTIMUM ORTHOGONAL FILTER BANKS

TABLE II
GLOBAL SUBBAND CODING GAINS OF THREE-LEVEL SIGNAL-ADAPTED

RBIFBS AND THREE-LEVEL MAXIMAL REGULAR BIFBS

orthogonal ones, we use optimum orthogonal filter banks that
provide the same number of free parameters as the lowpass
filter in BIFB’s. Below, take , respectively, and .
Here, the two maximal regular filters satisfy the interpolating
filters , and the two optimum
orthogonal filter banks are eight-tap and 12-tap, respectively.
The experiment results are illustrated in Table I.

The results show that compared with their maximal regular
counterparts, the optimum BIFB’s can markedly improve the
subband coding gain, and they achieve larger subband coding
gains than the optimum orthogonal ones. The biorthogonal
subband coders have an advantages over orthogonal subband
coders, which have been demonstrated in many papers [19],
[28]–[30]. Without the order constraint, the optimal design
of biorthogonal filter banks has recently had some important
developments [19]. However, for the FIR case, the optimal
design remains unsolved. Our method allows the design of the
optimal two-band interpolating filter banks. We envision that
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the lifting scheme may make a fresh start of the optimal design
of FIR biorthogonal filter banks.

Second, we consider three level signal-adapted recursive filter
banks. Take and ; the global subband coding
gains for three tested signals are shown in Table II.

From experiment results, for and the box-spectrum,
signal-adapted RBIFB’s perform considerably better in global
subband coding gains. However, for , compared with the
maximal regular ones, the global subband coding gains degrade
a little. These results happen for two reasons: the is a
typical lowpass process, and the maximal regular one is close
to the optimal one. The level-wise optimization is not a global
optimal algorithm.

VI. CONCLUSION

In this paper, a novel family of recursive biorthogonal in-
terpolating wavelets is developed, and a flexible multichannel
decomposition technique based on RBIW’s is proposed. For
signal-adapted RBIFB’s, an efficient method to design optimum
two-band FIR BIFB’s is given first. Its underlying tool is the
lifting scheme, and this new idea may make a breakthrough in
the design of optimum two-band biorthogonal filter banks. Next,
a level-wise optimization algorithm is proposed to design multi-
level signal-adapted RBIFB’s, and this algorithm can achieve a
considerable improvement in global subband coding gain. How-
ever, due to level-wise optimization, it does not always achieve
the maximal global coding gain. Finally, the experimental re-
sults are reported, which confirm the effectiveness of our ap-
proaches.

Future work will focus on incorporating the method into the
design of the optimal FIR biorthogonal filter banks and signal-
adapted tree-structured RBIWP’s. Especially for low bit rate
compression, it is an interesting issue to exploit new adaptive
algorithm based on the framework of multichannel decomposi-
tion.
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