
Recursive Bisection Based Mixed Block Placement

Ateen Khatkhate1 Chen Li2 Ameya R. Agnihotri1 Mehmet C. Yildiz3 Satoshi Ono1

Cheng­Kok Koh2 Patrick H. Madden1

SUNY Binghamton CSD1 Purdue University ECE2 IBM Austin Research Lab3

ABSTRACT

Many current designs contain a large number of standard cells in-
termixed with larger macro blocks. The range of size in these
“mixed block” designs complicates the placement process consid-
erably; traditional methods produce results that are far from satis-
factory.

In this paper we extend the traditional recursive bisection stan-
dard cell placement tool Feng Shui to directly consider mixed block
designs. On a set of recent benchmarks, the new version obtains
placements with wire lengths substantially lower than other current
tools. Compared to Feng Shui 2.4, the placements of a Capo-based
approach have 29% higher wire lengths, while the placements of
mPG are 26% higher. Run times of our tool are also lower, and the
general approach is scalable.

Categories and Subject Descriptors

J.6 [Computer-Aided Engineering]: CAD

General Terms

Algorithms

Keywords

Placement, floorplanning, mixed block design

1. INTRODUCTION
There has been explosive growth in the size of integrated circuits;

following the exponential curve of Moore’s law, modern designs
can have over 50 million transistors. This growth is projected to
continue, and circuit designers are having difficulty using this ca-
pacity effectively. Heirarchy is commonly used to tame unwieldly
designs.

At the highest heirarchical level, floorplanning of a few hundred
large blocks can be done effectively. At the lowest level, place-
ment tools can handle hundreds of thousands or millions of stan-
dard cells. Between these two extremes is mixed block placement,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’04 April 18–21,2004,Phoenix,Arizona,USA.
Copyright 2004 ACM 1­58113­817­2/04/0004 ...$5.00.

in which blocks of moderate size are intermixed with many stan-
dard cells. Current placement tools have had difficulty in handling
this “boulders and dust” problem.

In this paper, we adapt an earlier version of our recursive bi-
section based standard cell placement tool Feng Shui to handle
mixed block designs. While many recent academic approaches
have sought to address standard cell and macro block placement
in separate steps, we consider them simultaneously. We find that
this can be done more easily than might be expected, and produces
results that are vastly superior to recently published work. As our
approach is based on recursive bisection, the tool itself is quite fast
and scales well to large designs.

Using benchmarks derived from industry partitioning examples,
our new placement tool obtains excellent wire length results. A
multi-stage flow using the standard cell placement tool Capo, and
an integrated approach called mPG, obtain results that are respec-
tively 29% and 26% higher on average. On some benchmarks, wire
lengths obtained by our tool are roughly half of those of Capo and
mPG. The gap in solution quality may be surprising; in most areas
of design automation, we might expect only a few percent improve-
ment from a new technique. We have verified our results with pub-
licly available tools, and our placement results and the placement
tool itself are available through the web.

We suspect that the magnitude of improvement is largely due to
the limited amount of recent published research in the area: most
academic groups have focused on either standard cell placement
or block placement, with mixed block problems getting compara-
tively little attention. Inspection of our placements reveals many
opportunities for further gains, and we anticipate that there will be
additional significant improvement in mixed block placement.

The remainder of this paper is organized as follows. In Section 2,
we describe various types of placement problems, and prior work
related to mixed block designs. Section 3 describes our approach to
mixed block placement. Experimental results are given in Section
4, and we conclude the paper with Section 5.

2. PREVIOUS WORK
Circuit placement is a well studied problem, and comes in a va-

riety of forms. Most common are standard cell placement, block
placement, and our focus here, mixed block placement.

2.1 Standard Cell Placement
In standard cell placement, we may have a great many cells,

small rectangular blocks that are of uniform height, but possibly
varying width. Each cell contains the circuitry for a relatively sim-
ple logical function, and the cells are packed into rows much as one
might use bricks to form a wall. The desired circuit functionality is
obtained by connecting each cell with metal wiring. The arrange-

84

ment of cells is critical to obtaining a high performance circuit.
Due to the dominance of interconnect on system delay[9], slight
changes to the locations of individual cells can have sweeping im-
pact. Beyond simple performance objectives, a poor placement
may be infeasible due to routing issues: there is a finite amount of
routing space available, and a placement that requires large amounts
of wiring (or wiring concentrated into a small region) may fail to
route. Well known methods for standard cell placement include
simulated annealing[23, 26], analytic methods[15, 11], and recur-
sive bisection[7, 4].

2.2 Block Placement and Floorplanning
Block placement, block packing, and floorplanning[19] prob-

lems involve a small number of large rectilinear shapes. There are
usually less than a few hundred shapes which are almost always
rectangular. Each block might contain large numbers of standard
cells, smaller blocks, or a mix of both; the internal details are nor-
mally hidden, with the placement tool operating on an abstracted
problem.

For blocks, we must arrange them such that there is no overlap;
the optimization objective is generally a combination of the mini-
mization of the amount of wasted space, and also a minimization
of the total routing wire length. Small perturbations to a placement
(for example, switching the orientation of a block, or swapping the
locations of a pair of blocks) can introduce overlaps or change wire
length significantly; simulated annealing is commonly used to ex-
plore different placements, as it is effective in escaping local min-
ima. There are a number of different floorplan and block placement
representation methods[18, 17, 1, 20], each having different merits
with respect to the computational expense of evaluating a place-
ment.

2.3 Mixed Block Design
Between the extremes of standard cell placement and floorplan-

ning is mixed block design. Macro blocks of moderate size are
intermixed with large numbers of standard cells. The macro blocks
occupy an integral number of cell rows, and complicate the place-
ment process in a number of ways.

If a block is moved, it may overlap a large number of standard
cells–these must be moved to new locations if the placement is to
be legal. The change in wire length for such a move can make
the optimization cost function chaotic. There is also considerable
computational expense in simply considering a particular move.

Early researchers [24, 25, 22, 21] used a hierarchical approach,
where the standard cells were first partitioned into blocks using ei-
ther the logical hierarchy or min-cut-based partitioning algorithms.
Floorplanning was then performed on the mix of macro blocks and
partitioned blocks, with the goal of minimizing wirelength. Finally,
the cells in each block were placed separately using detailed place-
ment. While this method reduces problem size to the extent where
the floorplanning techniques can be applied, pre-partitioning stan-
dard cells to form rectangular blocks may prevent such a hierarchi-
cal method from finding an optimal or near-optimal solution.

The Macro Block Placement program [25] restricts the parti-
tioned blocks to a rectangular shape. However, using rectilinear
blocks are more likely to satisfy today’s high performance circuit
needs. The ARCHITECT floorplanner [22] overcomes this limi-
tation and permits rectilinear blocks. However, while both these
techniques have been demonstrated on small problem sizes, it is
not clear how effectively they will handle today’s much larger cir-
cuits both in terms of the number of standard cells and the number
of macro blocks.

In [24, 21], simulated annealing based techniques were used to

place mixed block designs. In [24], the placer was tested on an
industrial circuit from Texas Instruments, Inc. In [21], nine indus-
trial circuits were used for experimentation, but the placement per-
formance metrics were compared to manual layouts. While these
methods gave good results for small to medium-size designs, it is
unclear how well they scale to modern problems.

Mixed-Mode Placement (MMP)[27] uses a quadratic placement
algorithm combined with a bottom-up two-level clustering strategy
and slicing partitions to remove overlaps. MMP was demonstrated
on industrial circuits with thousands of standard cells and not more
than 10 macro blocks; these designs are also relatively small com-
pared to the designs we consider here.

More recently, a three stage placement-floorplanning-placement
flow [2, 3] was presented to place designs with large numbers macro
blocks and standard cells. The flow utilizes the Capo standard cell
placement tool, and the Parquet floorplanner. In the first stage,
all macro blocks are “shredded” into a number of smaller sub-
cells connected by two-pin nets created to ensure that sub-cells are
placed close to each other during the initial placement. A global
placer is then used to obtain an initial placement. In the second
stage, initial locations of macros are produced by averaging the lo-
cations of cells created during the shredding process. The standard
cells are merged into soft blocks, and a fixed-outline floorplanner
generates valid locations for the macro blocks and soft blocks of
movable cells. In the final stage, the macro blocks are fixed into
place, and cells in the soft blocks go through a detailed placement.

This flow is similar to the hierarchical design flow as both use
floorplanning techniques to generate an overlap-free floorplan fol-
lowed by standard cell placement. Rather than using pure partition-
ing algorithms to generate blocks for standard cells, this flow pro-
poses to use an initial placement result to facilitate good soft block
generation for standard cells. While this approach scales reason-
ably well, our experimental results show that it is not competitive
in terms of wire length.

A different approach is pursued in [8]. The simulated annealing
based multi-level optimization tool, mPG, consists of a coarsen-
ing phase and a refinement phase. In the coarsening phase, both
macro blocks and standard cells are recursively clustered together
to build a hierarchy. In the refinement phase, large objects are grad-
ually fixed in place, and any overlaps between them are gradually
removed. The locations of smaller objects are determined during
further refinement. Considerable effort is needed for legalization
and overlap removal; while the results of mPG are superior to those
of [3], they are also not competitive with the tool we present here.

3. NEW PLACEMENT APPROACH

Algorithm 1 Mixed Block Placement approach.

Partition the circuit using “Fractional Cut” based recursive bi-

section.

Remove overlaps using Greedy Legalization technique.

Perform branch and bound reordering on standard cells.

Our mixed block placement approach is based on recursive bi-
section; a high level outline of our approach is given in Algorithm
1. The basic recursive bisection method is well known; a partition-
ing algorithm splits a circuit netlist into two components, with the
elements of each component being assigned to portions of a place-
ment region. The partitioning progresses until each logic element
is assigned to it’s own small portion of the placement region. Place-
ment tools which follow this approach include [6, 10, 7, 4]. In our
tool, we use the multi-level partitioner hMetis[14].

85

3.1 Fractional Cut Bisection
Traditionally, the placement region is split horizontally and verti-

cally, with all horizontal “cuts” being aligned with cell row bound-
aries. In [4], the earlier version of our placement tool introduced a
fractional cut approach; this was used to allow horizontal cut lines
that were not aligned with row boundaries. Instead of row-aligned
horizontal cuts, the partitioning solution and region areas were de-
termined without regard to cell row boundaries.

After completion of the partitioning process, cells were placed
into legal (row aligned and non-overlapping) positions by a dy-
namic programming based approach.

We make an observation about the fractional cut approach that
should give intuition into our method of handling mixed block de-
signs. When bisecting a region, the area of each region must match
the the area of the logic elements assigned to it, but there is no con-
straint that the shape of the region be compatable with the logic.
For example, it is possible to have a region that is less than one
cell row tall. While the logic elements can overlap slightly during
bisection, the area constraints ensure that there is enough “space”
in the nearby area such that the design can be legalized without a
large amount of displacement.

The success of the fractional cut approach motivated our consid-
eration of its use in mixed block design. As with the standard cells,
a macro block may require space outside of the region to which it is
assigned; we rely on a legalization step to adjust locations slightly
to find an acceptable placement.

3.2 Mixed Block Enhancement
Our adaptation of the standard fractional cut based bisection pro-

cess is to simply ignore the fact that some elements of the net list
are more than one row tall. Rather than adding software to handle
macro blocks, we instead modified our source code to not distin-
guish between macro blocks and standard cells.

The partitioning process proceeds in the same manner as most
bisection based placement tools. The net list is partitioned until
each region contains only a single circuit element. The area for
each region matches the area of the circuit element that it contains–
if the element happens to be a macro block, the area is simply larger
than another region that might hold a standard cell.

The output of the bisection process is a set of “desired” loca-
tions for each block and cell; as with analytic placement methods,
these locations are not legal, and there is some overlap. Fortunately,
the amount of overlap is relatively small (due to area constraints
and the use of fractional cut lines), allowing legalization to be per-
formed with relative ease.

3.3 Placement Legalization
Our Feng Shui 2.0 placement tool[4] used a dynamic program-

ming based legalization method. The legalization process operated
on a row-by-row basis, selecting cells to assign to a row. As macro
blocks span multiple rows, this method could not be used directly.

3.3.1 Initial Attempt

Our first attempt at a legalization method used a recursive greedy
algorithm. We first attempted to find good locations for the macro
blocks in the core region, fixing them in place, and then placing the
standard cells in the remaining available space.

A block was considered to be legal if it was inside the core re-
gion and did not overlap with any of the previously placed blocks.
Blocks were processed one at a time; if the block position was ac-
ceptable, the location was finalized. If the block position was not
acceptable, a recursive search procedure ensued to find a nearby
location where the block could be fixed into place.

Horizontal stacking Improved greedy legalization

Figure 1: IBM10 placements; the simple greedy legalization

method can result in a horizontal stacking of macroblocks that

exceeds the core area. By reducing the penalty for movement

in the y dimension, the stacking problem can be eliminated.

After fixing the block locations, the standard cell rows were “frac-
tured” to obtain space in which the standard cells could be placed.
A modified version of the dynamic programming method presented
in [4] was used to assign standard cell locations.

For designs with relatively few blocks, or blocks that were uni-
formly distributed in the placement region, our initial approach
worked well. However, for the designs with many macro blocks,
the large numbers of overlaps caused this approach to fail.

3.3.2 Greedy Legalizer

While our initial attempts at placement legalization used a vari-
ety of complex methods, we have obtained the best results using a
technique that is remarkably simple. The method we describe here
is based on an algorithm presented in a technical report by Li[16];
we later learned that the algorithm was comparable to an earlier
method patented by Hill[13]. The method by Hill can handle only
objects with uniform height; we have improved on this method to
allow legalization of designs with both standard cells and macro
blocks.

For standard cell design, the method by Hill uses a simple greedy
approach. All cells are sorted by their x coordinate; each cell is then
packed one at a time into the row which minimizes total displace-
ment for that cell. To avoid cell overlaps, the “right edge” for each
row is updated, and the packing is done such that the cell being
inserted does not cross the right edge. The patent describes pack-
ing from the left, right, top, or bottom, for objects that are either of
uniform height or uniform width.

Our extension of this method removes the need for uniform height
or width. As with the patented method, all circuit elements are
sorted by their desired x coordinate, and assignment is performed
in a greedy manner. Macro blocks are considered simultaneously
with standard cells; the “right edge” checking is enhanced to con-
sider multiple rows when packing a macro block. This method is
outlined in Algorithm 2.

The macro blocks are treated very much like standard cells; they
must be placed at the end of a growing row, and not overlap with
any placed cell. The introduction of multi-row objects can result in
“white space” within the placement region. Assuming that there are
a number of nearby standard cells, the “liquidity” of the placement
allows the cells to flow into the gaps, resulting in a tight packing
while considering both blocks and cells simultaneously.

3.3.3 Horizontal Stacking

For some designs, the greedy legalization method initially failed
to place all blocks within the core area. This occurred most fre-

86

Algorithm 2 Greedy legalization; circuit elements are processed
one at a time, with each being assigned to the row that gives a
minimum displacement.

Sort all cells/macros by their “left edge” locations.

for each row r do

right edge
�
r ✁✄✂ lx

�
r ✁ ;

end for

for each cell/macro c do

llx
�
c ✁☎✂ legal x ✆ lx � c ✁✞✝ ;

for each row r do

if macro crosses upper/lower boundary then

continue;

end if

if llx
�
c ✁✠✟ right edge

�
r ✁ then

dx ✂ Di f f ✆ lx � c ✁☛✡ right edge
�
r ✁✞✝ ;

else

dx ✂ Di f f ✆ lx � c ✁☛✡ llx � c ✁✞✝ ;
end if

dy ✂ Di f f ✆ ly � c ✁☛✡ ly � r ✁☞✝ ;
cost ✂ COST ✆ dx ✡ dy ✝ ;
Store best cost, best llx, best row.

end for

llx
�
c ✁☎✂ best llx;

row
�
c ✁✌✂ best row;

end for

quently on the benchmark IBM10; the problem is shown in Figure
1. Our fractional cut representation created regions that did not
match the shape of the actual blocks, resulting in them “stacking”
during the greedy legalization step.

This problem motivated the slight enhancement shown in Algo-
rithm 3. If the legalization results in circuit elements being placed
outside of the core region, we gradually reduce the penalty for dis-
placing a cell or macro block in the vertical direction. During legal-
ization, rather than shifting blocks horizontally (creating a “stack”),
the reduced vertical displacement penalty results in blocks and cells
moving up or down to find positions in rows that are closer to the
left side of the placement region. While this generally increases the
total wire length, it allows all benchmarks to be legalized within the
allowed core area.

3.4 Detailed Placement
Following legalization, we apply a window-based branch-and-

bound detailed placement step. Macro blocks are not moved during
this step–we consider only a small number of standard cells at a
time, and enumerate all orderings to find an order which minimizes
wire length.

By default, we consider groups of six cells at a time, with the
window spanning one or more rows at a time. The detailed place-
ment engine in Feng Shui 2.4 can be used to post-process the place-
ment results of other tools, and a number of research groups are
currently using our tool in this manner.

3.5 Summary
To summarize our approach–we use a number of fairly simple

techniques to obtain good results. The basic placement frame-
work is traditional recursive bisection, with a fractional cut rep-
resentation. We essentially ignore the difference between standard
cells and macro blocks during bisection, and consider only the total
area. Following bisection, we apply a very simple greedy legaliza-
tion technique. Detailed placement is performed with traditional
window-based branch-and-bound.

Algorithm 3 Improved greedy legalization. For some circuits,
macro block overlaps resulted in a horizontal arrangement that ex-
ceeded the core width. By reducing ycost, the penalty of shifting
blocks vertically, we obtain placements that fit within the core area.

done ✂ 0;
Initialize “ycost”.

while !done do

done ✂ 1;
for each cell/macro do

greedy legalize();

if cell crosses right boundary then

Decrease ycost.

done ✂ 0;
break;

else

Store best solution.

end if

end for

end while

4. EXPERIMENTAL RESULTS
To validate our approach, we performed placements on the mixed

block benchmarks available on the GSRC bookshelf site[12]. The
benchmarks are derived from partitioning examples released by
IBM[5]. The partitioning benchmarks were in fact derived from
mixed block circuit designs–information related to block shapes,
net signal directions, etc., was removed. The partitioning bench-
marks have been used to create standard cell placement bench-
marks, and have also been used to generate synthetic benchmarks.

The mixed block designs are relatively large, and contain many
macro blocks and standard cells (except for IBM05, which has no
macro blocks). All macro blocks are assumed to be hard blocks
with fixed aspect ratios. The circuit characteristics are listed in Ta-
ble 1; we list the number of nets, cells, macro blocks, and pads, as
well as the total area of all cells and all macro blocks. Each design
contains roughly 20% “white space”–the core area for placement is
larger than the total area of cells and macro blocks. We assume a
fixed die placement paradigm, with our legalizer ensuring that all
circuit elements are placed within the core region.

Bench # # # # %Cell %Macro
Mark Nets Cells Macro Pads Area Area

ibm01 14111 12260 246 246 37.23 42.76
ibm02 19584 19071 271 259 24.69 55.31
ibm03 27401 22563 290 283 30.04 49.96
ibm04 31970 26925 295 287 38.03 41.98
ibm05 28446 28146 0 1201 80.01 0.00
ibm06 34826 32154 178 166 34.60 45.41
ibm07 48117 45348 291 287 44.07 35.93
ibm08 50513 50722 301 286 38.79 41.20
ibm09 60902 52857 253 285 40.18 39.82
ibm10 75196 67899 786 744 20.34 59.66
ibm11 81454 69779 373 406 42.36 37.63
ibm12 77240 69788 651 637 28.35 51.65
ibm13 99666 83285 424 490 43.82 36.18
ibm14 152772 146474 614 517 60.36 19.64
ibm15 186608 160794 393 383 53.26 26.74
ibm16 190048 182522 458 504 42.11 37.89
ibm17 189581 183992 760 743 62.80 17.20
ibm18 201920 210056 285 272 71.31 8.69

Table 1: Statistics for the 18 IBM Benchmarks. In each design,

there is roughly 20% white space available.

87

IBM 01 before legalization IBM 01 after legalization IBM 04 before legalization IBM 04 after legalization

Figure 2: IBM 01 and 04, before and after legalization.

For comparison, we use recently published results on these bench-
marks. In [2], a “shredding” approach was used with the Capo

standard cell placement tool; macro blocks were handled using a
multiple stage approach. This method subsequently improved in
[3]. The multi-level approach of mPG was described in [8], and is
also used for comparison.

Table 2 shows half perimeter wire length (HPWL) results for the
the Capo-based and mPG placement tools on the IBM mixed block
benchmarks. We also show the results of our own tool, and give
the percentage difference between our tool and mPG and the best
result from any Capo-based approach. The gap in half perimeter
wire length may be quite unexpected; we have verified our results
using public tools, and have also exchanged placement results with
our colleagues to check for errors.

Run times are given for each tool, but are not directly compara-
ble. Capo I results are from runs on a 1 GHz Pentium 3 based work-
station, Capo II and III results are with a 2 GHz Pentium 4 worksta-
tion, mPG results are from a 750MHz Sun Blade 1000 workstation,
and our results were obtained on a 2.5GHz Pentium 4 workstation.
With equalized hardware resources, we expect that our placement
method would still obtain the lowest run times. None of the tools
have exceptionally high run times, and all should scale reasonably
well.

In Figure 2, we show placements for IBM 01 and 04, before and
after legalization. We refrain from showing larger benchmarks, as
this increases the size of the electronic version of this paper. With
the electronic version, it should be possible to zoom in to see a
detailed view of the placements.

5. SUMMARY AND FUTURE WORK
In this paper, we have shown that a traditional recursive bisection

placement approach can be adapted to handle mixed block designs.
Key elements of our tool are the use of a fractional cut represen-
tation, and a remarkably simple legalization method. While it is
certainly possible to have designs that cannot be legalized by our
method, we find that in the currently available benchmark circuits,
this is not a problem.

It should be obvious that mixed block placement is far from a
mature research area. The improvement we have obtained is not
incremental, and we anticipate that there is still a great deal of opti-
mization potential. We have focused solely on half perimeter wire
length in this paper; still to be addressed are issues such as tim-
ing, power consumption and thermal issues, and the host of other
problems that plague modern integrated circuit design.

Routability of placements is a significant concern. Our legal-
ization method does not perform the deliberate insertion of “white

space,” so our designs may be somewhat more dense than those of
Capo or mPG. In our research on standard cell placement, however,
we find that a lack of white space does not necessarily imply rout-
ing failures–one of our current efforts is on improving routability
without the need for excess white space insertion.

As part of our current work, we are attempting to improve the
quality of the legalizer–we anticipate that another 5 to 10% re-
duction in wire length can be obtained easily. Our current mixed
block placement tool cannot handle fixed macro blocks or obsta-
cles within the placement area, and we are working on methods to
handle this as well.
Acknowledgements:

This work was supported by the SRC under project 947.1, an
IBM Faculty Partnership Award, and an equipment grant from In-
tel. We would like to than the EDA research staff at the IBM T. J.
Watson labs (particularly David Kung), and also Bill Halpin from
Intel, for helpful discussions.

6. REFERENCES

[1] S. N. Adya and I. L. Markov. Fixed-outline floorplanning
through better local search. In Proc. IEEE Int. Conf. on

Computer Design, pages 328–334, 2001.

[2] S. N. Adya and I. L. Markov. Consistent placement of
macroblock using floorplanning and standard-cell placement.
In Proc. Int. Symp. on Physical Design, pages 12–17, 2002.

[3] S. N. Adya, I. L. Markov, and P. G. Villarrubia. On
whitespace in mixed-size placement and physical sysnthesis.
In Proc. Int. Conf. on Computer Aided Design, pages
311–318, 2003.

[4] A. Agnihotri, M. C. YILDIZ, A. Khatkhate, A. Mathur,
S. Ono, and P. H. Madden. Fractional cut: Improved
recursive bisection placement. In Proc. Int. Conf. on

Computer Aided Design, pages 307–310, 2003.

[5] C. J. Alpert. The ispd98 circuit benchmark suite. In Proc. Int.

Symp. on Physical Design, pages 80–85, 1998.

[6] M. A. Breuer. A class of min-cut placement algorithms. In
Proc. Design Automation Conf, pages 284–290, 1977.

[7] Andrew E. Caldwell, Andrew B. Kahng, and Igor L. Markov.
Can recursive bisection alone produce routable placements?
In Proc. Design Automation Conf, pages 477–482, 2000.

[8] C. C. Chang, J. Cong, , and X. Yuan. Multi-level placement
for large-scale mixed-size ic designs. In Proc. Asia South

Pacific Design Automation Conf., pages 325–330, 2003.

[9] Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H.
Madden. Performance optimization of VLSI interconnect

88

Bench Capo I[2] Capo II[3] Capo III[3] mPG[8] Feng Shui 2.4

mark HPWL CPU HPWL CPU HPWL CPU HPWL CPU HPWL %Better %Better CPU Legal.
(min) (min) (min) (min) (Capo) (MPG) (min) (sec)

ibm01 3.96 18 3.36 13 3.05 20 3.01 18 2.41 26.56 24.90 3 1
ibm02 8.37 31 8.23 240 6.83 11 7.42 32 5.34 27.90 38.95 5 ✟ 1
ibm03 12.16 42 11.53 22 10.38 59 11.20 32 7.51 38.22 49.13 6 2
ibm04 13.48 47 11.93 25 10.11 15 10.50 42 7.96 27.01 31.91 7 ✟ 1
ibm05 11.51 8 11.20 5 11.10 5 10.90 36 10.10 9.90 7.92 8 1
ibm06 10.25 56 9.63 19 9.94 18 9.21 45 6.82 41.20 35.04 10 2
ibm07 15.75 58 15.80 39 15.25 25 13.70 68 11.71 30.23 16.99 13 1
ibm08 21.18 94 18.85 111 17.91 29 16.40 82 13.60 31.69 20.59 16 1
ibm09 19.59 66 17.52 178 19.88 29 18.60 84 13.83 26.68 34.49 15 1
ibm10 60.72 229 53.58 490 45.46 116 43.60 172 37.48 21.29 16.33 22 17
ibm11 28.49 106 26.47 69 29.40 45 26.50 112 19.96 32.62 32.77 21 2
ibm12 51.74 675 55.12 119 55.79 25 44.30 153 35.57 45.46 24.54 23 3
ibm13 39.39 151 33.56 88 37.73 53 37.70 151 24.95 34.51 51.10 26 2
ibm14 56.19 286 52.67 333 50.26 155 43.50 276 38.48 30.61 13.05 52 5
ibm15 70.48 237 64.69 264 65.00 195 65.50 385 52.14 24.07 25.62 87 10
ibm16 N/A N/A 83.14 580 90.01 162 72.40 436 61.33 35.56 18.05 93 15
ibm17 92.38 443 91.50 249 89.17 188 78.50 606 70.60 26.30 11.19 104 16
ibm18 54.90 378 54.11 397 51.84 127 50.70 437 45.05 15.07 12.54 114 18

Avg 29.16 25.84

Table 2: Half perimeter wire length (HPWL) and runtime comparisons for the IBM benchmarks between Capo, mPG, and our

tool. For ratio comparisons with Capo, we used their best result. Run times cannot be directly compared: our experiments use

2.5GHz Linux/Pentium 4 workstations, Capo I used 1GHz Linux/Pentium 3 workstations, Capo II and III used 2GHz Linux/Pentium

4 workstations, and mPG used 750MHz Sun Blade 1000 workstations. All run times are in minutes, with the exception of our

legalization step, which is in seconds.

layout. Integration, the VLSI Journal, 21:1–94, 1996.

[10] A. E. Dunlop and B. W. Kernighan. A procedure for
placement of standard-cell VLSI circuits. IEEE Trans. on

Computer-Aided Design of Integrated Circuits andSystems,
CAD-4(1):92–98, January 1985.

[11] H. Eisenmann and F. M. Johannes. Generic global placement
and floorplanning. In Proc. Design Automation Conf, pages
269–274, 1998.

[12] GSRC. Bookshelf slot. http://www.gigascale.org/bookshelf.

[13] D. Hill. US patent 6,370,673: Method and system for high
speed detailed placement of cells within an integrated circuit
design, 2002.

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Application in VLSI
domain. In Proc. Design Automation Conf, pages 526–529,
1997.

[15] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich.
GORDIAN: VLSI placement by quadratic programming and
slicing optimization. IEEE Trans. on Computer-Aided

Design of Integrated Circuits andSystems, 10(3):356–365,
1991.

[16] C. Li and C.-K. Koh. On improving recursive
bipartitioning-based placement. Technical Report
TR-ECE-03-14, Purdue University ECE, 2003.

[17] J.-M. Lin and Y.-W. Chang. TCG: A transitive closure graph
based representation for non-slicing floorplans. In Proc.

Design Automation Conf, 2001.

[18] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI
module placement based on rectangle-packing by the
sequence pair. IEEE Trans. on Computer-Aided Design of

Integrated Circuits andSystems, 15(12):1518–1524, 1996.

[19] R. H. J. M. Otten. What is a floorplan? In Proc. Int. Symp. on

Physical Design, pages 201–206, 2000.

[20] Yingxin Pang, Florin Balasa, Koen Lampaert, and
Chung-Kuan Cheng. Block placement with symmetry
constraints based on the o-tree non-slicing representation. In
Proc. Design Automation Conf, pages 464–467, 2000.

[21] C. Sechen. Chip-planning, placement, and global routing of
macro/custom cell integrated circuits using simulated
annealing. In Proc. Design Automation Conf, pages 73–80,
1988.

[22] A. Shanbhag, S. Danda, and N. Sherwani. Floorplanning for
mixed macro block and standard cell designs. In Proc. Great

Lakes Symposium on VLSI, pages 26–29, 1994.

[23] W. Swartz and C. Sechen. Timing driven placement for large
standard cell circuits. In Proc. Design Automation Conf,
pages 211–215, 1995.

[24] W. P. Swartz. Automatic layout of analog and digital mixed
macro/standard cell integrated circuits. Yale Thesis, Chapter

4, 1993.

[25] M. Upton, K. Samii, and S. Sugiyama. Integrated placement
for mixed macro cell and standard cell designs. In Proc.

Design Automation Conf, pages 32–35, 1990.

[26] Maogang Wang, Xiaojian Yang, and Majid Sarrafzadeh.
Dragon2000: Standard-cell placement tool for large industry
circuits. In Proc. Int. Conf. on Computer Aided Design,
pages 260–263, 2000.

[27] H. Yu, X. Hong, , and Y. Cai. Mmp: a novel placement
algorithm for combined macro block and standard cell layout
design. In Proc. Asia South Pacific Design Automation Conf.,
pages 271–276, 2000.

89

