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Abstract

The notion of a recursive causal graph is introduced, hopefully capturing the essential aspects of the
path diagrams usually associated with recursive causal models. We describe the conditional indepen-
dence constraints which such graphs are meant to embody and prove a theorem relating the fulfilment
of these constraints by a probability distribution to a particular sort of factorisation. The relation of
our results to the usual linear structural equations on the one hand, and to log-linear models, on the
other, is also explained.
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Introduction

In his initial exposition of path analysis, Wright (1921) introduced into statistics
the basic idea of directed graphs whose vertices represent continuous random
variables and edges some notion of correlation and causation. Apart from simply
depicting the general nature of the linear structural equations which define the
causal relations under study, these graphs are also used to write down those
partial correlations which must vanish when the equations and the associated
distributional assumptions take a standard form, see Blalock (1962). Furthermore,
the path analysis rules of Wright (1921, 1934) involve tracing paths in the graph
as part of an algorithm giving equations relating the variances and covariances of
the random variables. More recently, Goodman (1973a, b) has drawn similar
graphs whose vertices correspond to discrete random variables and edges to a
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[2] Recursive causal models 31

notion of interaction in a probability model of the log-linear type. He has pointed
out that in certain examples, these models embody conditional independence
constraints on the distribution of the random variables.

In a different context we find that Markov fields over finite undirected graphs
(that is, probability distributions for random variables identified with the vertices
of such graphs which satisfy certain independence constraints defined by the
graph) have intimate connexions with the theory of log-linear models, see Dar-
roch et al. (1980). A fundamental result in the theory relates Markov fields to
so-called nearest-neighbour Gibbs states, and this turns out to include a descrip-
tion of a large class of independence or Markov models for discrete random
variables, see also Speed (1978). Can we do likewise with directed graphs, and
does this tie up with path analysis?

Up until now there has been little consistency in the use of graphs in path
analysis. Some authors include all possible edges between exogenous variables,
making them undirected or bidirectional as they think appropriate, whilst others
don't; some include undirectional edges associated with errors in the equations,
whereas most authors don't do so, and so on. The difference here are partly
explained by varying assumptions concerning the correlation structure on the
exogenous variables or the errors in the equations, but there still remains a
diversity of practices even when—and this is not always easy to determine—dif-
ferent writers' intentions concerning these issues appear to be the same.

If a standard form of causal graph could be agreed upon, the question of
exactly which conditional independence constraints it should be regarded as
embodying could then be addressed. These would not depend upon whether or
not discrete or continuous random variables were associated with the vertices.
Given a satisfactory answer to this question, we would then attempt to describe
all joint probability distributions which satisfy the appropriate independence
constraints. If successful, the resulting unification of discrete and continuous
models, together with the standardisation of terminology and fundamental results
which would ensue, should prove of value to those interested in defining, fitting,
testing and interpreting causal probability models of data. This has been our
program.

In Section 2 we define what we call a recursive causal graph, hopefully
capturing the essence of the path diagrams associated with recursive causal
models. These graphs permit neither causal cycles nor simultaneity. We describe
the separation properties which help define the independence constraints the
graph is meant to embody, and our main theorem relates the fulfilment of these
constraints by a probability distribution to a particular sort of factorisation. This
theorem is analysed in more detail in Section 3 for Gaussian and Section 4 for
multinomial distributions. The relationship of our results to the usual linear
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structural equations on the one hand, and to log-linear models, on the other, is
also explained in these last two sections. A much more extensive discussion of
these ideas with reference and illustrations can be found in Kiiveri and Speed
(1982).

2. General results

Our aim in this section is to prove a general result characterising the distribu-
tion of what we will be calling a recursive causal system of random variables
(equivalently, a recursive causal (probability) model). Such systems (models) will
always be associated with a particular kind of graph and we begin by collecting
up some preliminaries concerning these graphs.

2.1. Causal graphs. A causal graph is an ordered pair © = (F(@), £(©))
consisting of a finite set F(©) = Vx(@) U Fn(@) of vertices and a finite set
£(©) = £x(@) U £„(©) of edges, with vertices in Vx(Qb) being termed exogenous

and those in Fn(@) endogenous; edges in Ex(®) are undirected ones, that is,
unordered pairs of distinct exogenous vertices, whilst edges in £„(©) are directed

ones, that is, ordered pairs of distinct vertices, the second element of which is an
endogenous vertex. In what follows we denote vertices by natural numbers:
1,2,3,... or h, i,j; edges are unordered or ordered pairs of vertices and depicted
in the usual way, namely 1 — 2 (undirected) and i -> j (directed) respectively.

EXAMPLE 1. If
3,3 4,1

= {1,2}, Fn(©,) = {3,4}, £ , (0 , ) = {1 - 2},
-» 4}, then ©, may be depicted as in Figure 1.

and

FIGURE 1

We will be adapting standard graph-theoretic notions to our context in which

directed and undirected edges coexist, and it is hoped that no confusion will result

from so doing. A directed [undirected] chain in a causal graph © is a sequence

i0, /,,. ..,im of vertices such that /,_, -» / , [ / , _ , — /,] for / = 1,2,.. .,m, and such

a chain is called a cycle if i0 = im. All of the causal graphs which we consider in
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this paper are recursive, where this term means that the graph in question has no

directed cycles.

For each j G FM(©) we write Dj,= {h G F(@): h ->y}, and refer to the

elements of Dj as direct causes of y; Dj U {y} is denoted by Dj. Similarly if we

write Bj fory and the set of vertices k connected toy via a chain y ->ji~* • • • -> k,

then Aj = V(®)\Bj is termed the set of vertices anterior toy £ F(©); we also

write Aj = AjU {j}. The undirected graph with vertices Vx(®) and edges Ex(®)

will be denoted by ©x, the subgraph on the exogenous vertices. More generally,

the subgraph of © defined by any subset B c F o f vertices will be denoted by

(B)@; its vertices are the elements of B and its edges those in © both of whose

elements belong to B.

An important object associated with any causal graph © is what we call the

underlying undirected graph ©" which has the same set of vertices F(@") = V{®),

whilst its edges £(©") are the undirected ones Ex(®) of © together with the

additional undirected ones connecting pairs of vertices between which a directed

edge exists in ©, that is, £(©") = Ex(®) U £„(©), where £„(©) denotes the

directed edges of © with their direction omitted.

A triple i,j and k of distinct vertices in © is said to be in configuration [>] if

i -> k,j -> k but / and j are not connected by any edge, directed or undirected.

This notion, which first appeared in Wermuth (1980), plays a key role in

determining the admissible independence statements associated with a causal

graph.

If a, b and d are disjoint sets of vertices of © we say that a and b are separated

by d in ©" if any chain i — i0, it,...,im=j connecting a vertex i G a with a

vertex j G b necessarily intersects d. Further, we say that a, b and d are in

configuration [>] if there is a chain in @" from an element / G a to an element

j'• E b which includes a triple i,j & d and k G d in configuration [>] in ©.

Some of our induction arguments will make use of what we will call an extreme

endogenous vertex in a causal graph @, where /* G F(@) is extreme if no

directed edge /* ->y exists in £„(©). Clearly At. — K(@) for such vertices. An

easy induction argument proves the validity of the following

LEMMA 1. Every causal graph has at least one extreme endogenous vertex.

2.2. Factorisation of joint densities. Our main result below concerns factorisa-

tions of the joint density p(\,y) of an array (X; Y) = (Xh: h G Vx(@); Yy.

j G Kn(©)) indexed by the vertices of a causal graph @, and it will be convenient

to use certain suggestive abbreviations for joint, marginal and conditional densi-

ties. (All joint distributions will be given via strictly positive densities with respect

to a product measure. In fact all the examples we discuss below are either
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34 Hani Kiiveri, T. P. Speed and J. B. Carlin [s 1

Gaussian or discrete (multinomial), and these conditions are then satisfied.) In

order to illustrate our abbreviations we return to Example 1.

EXAMPLE 1 (continued). Associated with the (recursive) causal graph ©, we will

have four random variables (Xu X2; Y3, Y4), the X's being termed exogenous and

the Y's endogenous variables. Our later discussion will involve the assumption of

independence of Y3 and Xx given X2 and also of Y4 and X2 given (Xv Y3); we

abbreviate the conditions to 1 ± 3 / 2 and 2 J- 4 / 1 , 3 . Similarly the factorisations

of the joint density p of the variables which are equivalent to these independence

assertions:

and

, , />{1,2,3}(*1>*2'>'3)/>{1,3.4}(*1>.);3»

p(xx,x2, y3, y4) = r
P{i,3)\

x
\> y^)

are abbreviated to

(12)(23)
(123) = —-r\— and

(2)

Finally, the factorisation which embodies both of these conditions:

p(xux2,y3,y4) = p{U2](xu x2)p3l2(y3\x2)pm 3){y4\xu y3)

is abbreviated to

(1234) = (12)(3|2)(4| 13).

This illustration should explain how our abbreviations are intended to be read.

We will be making considerable use of the notions and results concerning

Markov random fields over finite undirected graphs which can be found in

Darroch et al. (1980) and Speed (1978, 1979). A distribution (Vx) for a set of

random variables indexed by an undirected graph ®x = (Vx, Ex) is said to be

Markov over ®x if it satisfies either of the conditions:

Local Markov Condition: For each h G Vx the conditional distribution

(h | Vx\{h}) of Xh given all the Xg, g^h, coincides with (h | dh), the conditional

distribution of Xh given all Xg with g E dh = {/: {h, i) G Ex).
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Global Markov Condition: For disjoint subsets a, b and d of Vx such that d

separates a from b in Vx, we have

An extension of the global Markov condition to disjoint subsets ax,.. .,am and d

with a^ and a, separated by d ( K k < / < m) is readily found to be equivalent to

the condition stated here. The general equivalence of the local and global Markov

conditions over an arbitrary finite graph does not seem to be explicit in the

published literature. It is well known for discrete random variables, where it

follows from a characterisation of all corresponding probability distributions, see

Speed (1979) for this result (and many references to equivalent ones), while the

remarks on page 194 of that paper show how to get the general result.

2.3. The main theorem. This subsection is devoted to the statement and proof of

the main result of the paper. It is a fairly natural extension of the corresponding

result for purely undirected graphs, although it cannot go too far without some

restrictions on the type of probability densities under consideration. Each of the

important cases—the Gaussian and the multinomial—is discussed later in the

paper, and it turns out that statement (1) of the theorem is the lead-in to a

reasonable parametrisation, that is, a complete description, of all such probability

densities in these two cases. In a sense the theorem together with Proposition 4

below provides a directed analogue of the Hammersley-Clifford or NNG — M

theorem, so-called in Speed (1979).

THEOREM. Let % be a recursive causal graph and (X; Y) a system of random

variables indexed by the vertices of®:

(X; Y) = (Xh:hG Vx(@); Yy.j G Vn(®)).

The following are equivalent for a strictly positive joint density (V):

(1) The recursive causal factorisation:

(i) (Vx) is Markov over the undirected graph ®x; and

(ii)

(2) The Global Markov property for causal graphs:

For all families ax,a2,...,am,dofm+ 1 > 3 pairwise disjoint subsets of V

satisfying

(i) U™a, U d = Vx or, for some j G Vn, U\ma,Ud = Ay,
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36 Hani Kiiveri, T. P. Speed and J. B. Carlin [7]

and

(ii) for 1 < k < I < m the sets ak and at are separated by d in %x or (Aj)@, as

the case may be, and are not in configuration [>] in (Aj)&u,

we have

(3) As in (2) above but with the — in (i) replaced by C ;

(4) The Local Markov property for causal graphs:

(i) (Vx) is locally Markov over the undirected graph @x; and

(ii) For allj G Vn\

As an illustration of the theorem, we return to our example.

EXAMPLE 1 (continued). We have already asserted the equivalence of the

factorisation (1234) = (12)(3|2)(4| 13) with the pair of factorisations (123) =

(12)(23)/(2) and (1234) = (123)(134)/(13). These assertions—which are easily

checked directly—can now be regarded as an instance of the theorem just stated;

for example, A4 = {1,2,3,4}, D4 = (1,3), whilst D4 = {1,3,4}.

REMARK. Each assertion in the statement of the theorem has essentially two

parts: one concerning (Vx) relative to ®x, and one concerning other aspects of

(V) in relation to ©. The assertions concerning (Vx) and ®x are either the same

or equivalent by the basic theorem concerning Markov probabilities over undi-

rected graphs referred to in Section 2.2, and will not be referred to any further in

the proof which follows.

PROOF. (1) implies (2). We do this by induction on the cardinality | Vn\ of Vn

assuming that | Vx \= p s* 1. Let us suppose that | Vn \— q = 1, that is, assume

( 0 (V) = (Vx)(p+l\Dp+l),

and suppose that at, a2,.. .,am and d satisfy (i) and (ii) of (2) with union Ap+X.

To begin the proof we show that Dp+i Qa,.Ud for some /* e {l,...,m}. If

p + 1 e d and ^ , + i Qd the result is obvious, so we consider the case when there

exists an / £ Dp+l and i £ d. For this / there is a (unique) /* such that / G ar.

Now suppose that we have ay G Dp+X andy G at for / ̂  /*. Then at, a,, and d are

in configuration [>] , contradicting our assumption. Hence Dp+, C a , . U</in this
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case. On the other hand if p + 1 £ a,, for some /* and i E Dp+l satisfies / £ at

for / ¥= /*, we contradict the separation assumption. Hence Dp+l c at, U d in
both cases and the assertion follows.

Our proof (of the case q — 1) is now completed separately for each of the cases
p + 1 £ d and p + \ & d. Let us start with the latter, observing that in this case
{a,: / ¥= I*} U {ar\{p + 1}} is a family of m pairwise disjoint subsets of (Vx)

separated by d C Vx. By the undirected global Markov property

. . / . . i \ \ — n/=*=/•(fl/ U d) • (a/. U d\{p + 1})
x
 I^I* (.«)

and this part of the proof would be completed if we could include the singleton
{p + 1} in those parts above where it is excluded. Integrate out all variables from
both sides of equation (1) except those in {ar U </); we obtain

(3) (a , . Ur f ) = ( a P U d\{p+ l})(p+l\Dp+l).

In a similar way we can integrate our variables* from both sides of (1) until its
left-hand side coincides with that of equation (2) except that p + 1 remains, and
we get

(4) ( U « ( U i ) = ( \J a,U dU a,.\{p + ityp + l\Dp+x).

The desired result now follows from equations (2), (3) and (4).
The remaining case is when p + 1 £ d. Here we put d* = d\{p + 1} and

observe that d* separates a,,... ,am in Vx and so we have again by the undirected
global Markov property:

(5) (Vx) =
 I['("a'Um

dP •

Now we can integrate out variables from both sides of equation (1) to obtain

(ai.Ud) = (arUd*)(p+l\Dp+l)

and this combines with equations (5) and (1) to give

nMa,^d*)(al.Ud)

(d*r
l

Finally, we integrate all variables except those in a, U d, I ¥= /*, out of equation
(6) and get down to

+ There are none in this case (q = 1) but there will be in the inductive step (q > 1).
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This, together with equation (5), gives us what we want. Thus the induction

argument has begun.

Suppose now that the implication has been proved for all recursive causal

graphs © having | Vn\< q vertices, q > 1, and let us consider such a graph with

| Vn | = q. Take an extreme endogenous vertexy* £ V{%) and consider the smaller

graph ©* with j * and its incident edges removed from %. This satisfies our

induction hypothesis, and we now prove the induction step in much the same way

that the induction argument was begun. For this reason we present the argument

only in outline.

Given a system ax,...,am, d satisfying (i) and (ii) of (2) in the statement with

U, a, U d — Aj, we first note that if j * £ Aj, then the result follows from our

inductive hypothesis. Thus we need only consider the casey* £ Aj, and here we

readily observe that / £ Aj also holds for all i £ Dj, that is, that D}, C Aj. An

earlier argument now proves that Dj. c a,» U d for a unique /*, and the first part

of this proof is indicated.

The remainder of the proof of the induction step goes as before. If j * £ d then

the {a,, I ¥= / * } , fl/«\{./*} a n d d satisfy the conditions (i) and (ii) of (2) in ©* and

the induction hypothesis together with the earlier argument completes the proof.

On the other hand, if j * £ d, then {at: I ~ 1 , . . . ,m) and d* = d\{j*} can be

used; again the details are the same as in the earlier argument. Thus the induction

step and so the whole implication is proved.

(2) implies (3). This implication will be proved if we can extend any system

{ a , , . . . , am} and d satisfying 2(i) and (ii) with only C in 2(i), to a system

{a*,...,a^} and dwithaf D a,, I = l,...,m satisfying 2(i) and (ii) but with = in

2(i). For then the variables in af\a,, I = l,...,m may be integrated out to prove

that the desired factorisation for the original sets is a consequence of that for the

enlarged sets.

The desired extension is a purely graph-theoretic matter. We begin with a

system {a , , . . . ,am} and d satisfying 2(i) and (ii), but with U,a, U d C Aj say.

Consider the class of all systems {bu... ,bm) and d which satisfy all the relevant

separation properties of 2(i) and (ii), and further, b,D a,, I = \,...,m. This is

clearly a finite non-empty class and so must possess elements maximal in the

componentwise ordering. Let £: {a*, . . . ,a£} and d, be such a maximal system,

and suppose that U,af U d C Aj. Then there exists j * belonging to Aj but not to

U,af U d, and for each /, 1 < / < m, the system 6,: {a*,...,af U {j*},...,a*m}

and d, must violate one or the other of the restrictions of 2(ii). Let us consider £, .

Then there exists k G {2,...,m} and a chain j0 = j * , . . .,jp £ a* which either fails

to intersect d, and so violates the separation requirement of 2(ii), or meets d in

configuration [ > ] , thereby violating the other requirement of 2(ii). In a similar

way we may consider £,k; there will exist / £ {!,.. .,m}\{k) and a chain
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JQ=j*,...,jqGaf which violates either the separation or the configuration [>]
requirement of 2(ii). This gives us four cases, each of which leads to a contradic-
tion, and so we conclude that no such j * exists.

To see this, suppose that the separation requirement is violated in both cases.
Then we will have a chain from jp G a£ toj^ G af (via>*) which does not meet d,

contrary to our hypothesis about £*. The other three possibilities are dealt with in
a similar manner and our conclusion follows.

Thus any maximal system £ has union the whole of Aj and the remainder of the
proof that (2) implies (3) is as outlined at the beginning.

(3) implies (4). This is immediate: simply take m = 2, a, = {j}, a2 = AJ\DJ

and d = Dj in (GM) and (LM) follows.
(4) implies (1). Once more we use induction on | Vn{%) \. When | Vn |= 1, that is,

when Vn = {p + 1}, the factorisation (LM) withy - p + 1 is just (RCF). Thus
our induction argument can begin.

Suppose now that the implication is true for all ® with | Vn{%) |< q, q > 1, and
that we have a © with \Vn{%)\= q. Take an extreme endogenous vertex, j * say,
and notice t h a t ^ . = K\{y*}. Thus (LM) withy =j* gives us

whilst our inductive hypothesis gives us

n
These last two equations combine to give (RCF) for the whole of V.

Our next result incorporates the work of Wermuth (1980) into the present
framework. Decomposable graphs are defined and discussed in Darroch et al.

(1980); they are simple graphs possessing no cycles of length n > 4 without
chords.

COROLLARY. Suppose that the recursive causal graph % of the theorem has no

configuration [>]. Then each of the conditions (RCF), (GM) and (LM) is equivalent

to:

(UM) The joint distribution (V) is Markov over the underlying undirected graph

©".
Moreover, if®x is decomposable, then ®" is also decomposable.

PROOF. Let us suppose that a joint distribution (V) over such a © satisfies the
equivalent conditions of the theorem. Choose an extreme exogenous vertex j * ,
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noting once more that Aj. = V. Then for any system ax,...,am and d for which ak

and a, are separated byrf in®", l < A : < / < m , we conclude that ax,...,am are

mutually conditionally independent given d under (V). But this is just the

Markov property of (F) over @".

To prove the converse we need to check that there are no additional independen-

cies arising from a system a,,... ,am and d whose union is contained in AJfj not

extreme. Suppose that d separates these (pairwise) in (Aj)@« but not in @". Then

there is a chain ak 3 jo,...,jp_i,jp,jp+u.. .,jq G a, connecting some pair ak and

at from the system which involves &jp$ Aj, that is, jp G Ej. Supposing, as we

may, that the chain under discussion is a minimal length one having this property,

we will derive a contradiction.

Since © has no instance of configuration [>] we cannot havey^, -+jp*-jp+\,

and so jp-*jp_v say, holds. Theny/,_1 -»./),_2
 m u s t a l s o nold> f o r ^JP-2^JP-\

then we would need to havejp_2 -*jp or jp -+jp-2 to avoid a configuration [>],

but this would contradict minimality of the length of the path. This argument

continues down toy", ->j0. At no stage can j r , 0 «£ r «£/?, belong to Vx, for every

one of them belongs to Ej by construction. But this is just our contradiction, for

j0 G ak C Aj was part of our assumptions. Thus separation in (Aj) coincides with

separation in ©" and the first part of the corollary is proved.

The decomposability of ©" is proved by induction on | Fn(©)|. Suppose that

| Vn | = 1. By assumption the graph ©" without p + 1 and its incident edges

contains no /"-cycles, r > 4. This must continue to be the case when p + 1 and its

incident edges are included, for an r-cycle, r > 4, involving p + 1 must include a

configuration [>] with/? + 1 at its apex. The inductive step is proved in a similar

way with the role of p + 1 in the foregoing taken by an extreme endogenous

vertex. This completes the proof of the corollary.

EXAMPLE 2. Let Fx(©2) = {1,2,3} and Fn(©2) = (4,5), with ©2 being as

depicted in Figure 2(i) below.
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1 3

FIGURE 2(ii)

Then any joint distribution (12345) satisfying the causal Markov constraints of
© 2 also satisfies those of © ", and conversely.

EXAMPLE 3. The graph Figure 3(i) below arises as part of the causal system
described as two-wave two-variables, see Kiiveri and Speed (1982).

FIGURE 3(i) FIGURE 3(ii)

The associated causal factorisation is (1234) = (1)(2| 1)(3| 1)(4| 123) and this
corresponds to the single conditional independence constraint 2 and 3 indepen-
dent given 1. It is clear that there is one instance of configuration [>], involving
4, and so the Markov constraint of the underlying undirected graph Figure 3(ii),
namely 2 and 3 independent given 1 and 4, do not coincide with the causal
Markov constraints. To see this directly we note that Gaussian random variables
with covariance matrix 2 of the form given below satisfy the causal constraints of
Figure 3(i) but not those of Figure 3(ii).

2 =

3. Gaussian distribution

The most thoroughly studied causal systems or causal models are those in
which the underlying distributions are Gaussian, see Joreskog (1977) and Wermuth
(1980), although many people treat the subject as an aspect of regression and
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correlation analysis, not requiring a complete specification of the joint distribu-

tion of the random variables under study, see Kang and Seneta (1980) and

references therein. It is not hard to see that all the (conditional) independence

statements concerning our variables can be interpreted on terms of zero {partial)

correlations, if we assume only that the random variables have a finite covariance

matrix. The structure of 2~' in 3.1 also lends itself to deriving recursive systems of

linear equations, and it is to this topic which we now turn. A byproduct of our

analysis is a proof of one form of the familiar path analysis rules. General

references in this area include Boudon (1965), Duncan (1966, 1975), Goldberger

and Duncan (1973), Moran (1963) and Simon (1953, 1954).

Throughout this section 2 = (aAl) will denote the covariance matrix of the

random variables (X; Y), arranged in some order beginning with the p exogenous

(X-) variables followed by the q endogenous (Y-) variables. The matrix 2 will be

partitioned in a way compatible with (X; Y) but we place its elements in the

reverse of the usual order, that is, with au in the bottom right-hand corner. All

mean values will be taken to be zero.

3.1. Factorisation o / 2 " ' . Most of the results in Section 3 relate to our particular

parametrisation of 2 which is a variant of the Choleski-type factorisation used in

Wermuth (1980). No use is made of the graph @ in this first lemma; we are

simply dealing with p + q random variables labelled as above.

LEMMA 2. The inverse covariance matrix 2" 1 o/ the Gaussian system (X; Y) of

random variables has a unique representation 2" 1 = LALT where L and A have the

form

\C 0 ] Q I"*"1 0

L = [B l\ P A = [O $-'
1 P q p

with C lower-triangular and having + Is downs the diagonal, ty diagonal, with

positive elements, and 4> positive definite, I denoting the p X p identity matrix.

PROOF. The easiest way to get this result—which is just a modification of the

familiar Choleski decomposition of 2"1 , involving the treatment of the first p

variables en bloc is to define the matrices L and A and check that H'1 = LALT

actually coincides with 2"1 . We do this as follows:

Forj>p,i<j, hj'-~ ~Pji{\ i - i i + i j - \ ) \

forp <~j^*p~^~q, \p •=z o .n — i)>

and for 1 < g, h < /> , <j>gh:= agh.
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Here /?,•,-.fl is the partial regression coefficient of the yth variable on the ith,
eliminating the variables with indices in the set a, and Ojj.a is the residual variance
of theyth variable after eliminating those with indices in a.

Writing L = (Ijj), $ = (<t>gh) and ¥ = diag(«^) (where we have added in Os and
Is to the definition of L) we readily see that if H'x = LALT, then HL = L~TA'\

Beginning with the bottom right-hand p X p-b\ock and continuing recursively we
can check easily from this equation that 2 = H. We omit the details.

Uniqueness is easily proved and again the details are omitted.

It is worthwhile gathering up some formulae associated with this decomposition
of 2"1; they are all easily checked.

C Olf*"
1
 0

i f IT* IT* 1

nT I I Cty~ C C^~ 8 I

Forj>p,

0 i f*<y .

The factorisation described in the preceding lemma will be called the (L; A) or
(L; *, $) or (C, 5; ¥, O) decomposition of 2"1 in what follows. Notice that it
does depend on the ordering of the random variables.

For our main result in this section we need the notion of a strict ordering of the
vertices of a recursive causal graph ® compatible with the graph structure, which is
an ordering <p: V -* {1,2,... ,| V\) such that

®<P(VX) = {1,2,...,| Fx |}, (u)(p(O<<Ky) whenever./E K B a n d i - j .
It is not hard to see that for any recursive causal graph © there is always at

least one compatible strict ordering of V{ %).
The following result concerns random variables (X; Y) indexed by the vertices

of a recursive causal graph ($ and ordered in the same way as these vertices. Their
joint Gaussian distribution has density p%, corresponding to mean 0 and covari-
ance matrix 2.

PROPOSITION 1. The distribution p% satisfies the equivalent conditions of the

theorem if and only if for all strict orderings of F(@) compatible with ©, the
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elements of the associated (L; ty, <$>) factorisation of I,'1 satisfy the zero constraints

for all g,heVxJEVn and i £ V

(i) 4>gh = 0 whenever {g, h) <£ Ex(®);

(ZC)

(ii) lu = 0 whenever (i, j)«£„(©).

REMARK. It is clear from this result that the (L; ^ , $) parametrisation is a
natural one for describing the causal Markov property of a Gaussian distribution.
Statistical matters such as the fitting and testing of such models with this
parametrisation are discussed in Kiiveri (1982).

PROOF. We will compare the density />2, where 2 has the (C, B;^, $)
factorisation, with (1) of the main theorem. Suppose that L and $ satisfy the zero
constraints (i) and (ii) when some strict ordering is used for labelling the Xs and
Ys, and hence the elements of 2. Then a little simplification shows that -2 log p?

involves the log of two determinants plus

g.h

b
jh

x
h

But as soon as we recall the interpretations of ^ , cJi and bjh given in Lemma 2 this
is seen to be just the -2 log(F) in the form (RCF).

The converse is proved by reversing the above argument.

EXAMPLE 1 (continued). The (L; A) factorisation of the inverse covariance
matrix 2"' of four random variables (A",, X2; ^3,^4) whose Gaussian distribution
satisfies the causal Markov constraints of ©, has the form

L =

1 0 ' 0 0

1 J 0 0
r* 1

* 0 1 0

4 3 2

4

3

2

1

A =

+
0

0

0

4

0

+

0

0

3

I

1
I

1

I
i

1

0
0

+
*
2

0

0

*

+
1

4

3

2

1

where * (resp. + ) denote freely-varying real (resp. positive) numbers, and the

lower right-hand 2 X 2 submatrix of A must be positive definite. For example, the

element /34 of L is in fact -/?43 .12 , whilst l24 — -/642.13 = 0. Similarly /13 = -/?31.2

= 0, whilst a^ = 044.123.
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EXAMPLE 2 (continued). The (L; A) factors here have the form

45

1

0

*

0

0

0

1

*

*

0

0

0

1

0

0

0
0

0

1

0

0

0

0

0

1

5

4

3

2

1

A -

+
0

o"
0

L 0

5

0

+

"6"
0

0

4

i

i
i -

i

i
1
1

i

0

0

+

*
*

3

0

0

*

+
*
2

0
0

*

*
+
1

5

4

3

2

1

L =

5 4 3 2 1

but we note that it is not necessary to use these matrices with Example 2 since © 2

is decomposable. In such cases the non-causal Markov constraints coincide with

the causal ones, and positive definite matrices 2~' having zeros in the positions

corresponding to those {g, h) £ Ex((&), and those ( j , j) £ £„(©) with / £ Dj,

give a more compact description of the associated distribution /?2 . This coincides

with the approach of N. Wermuth (1980), see the expression for 2" 1 associated

wi th®. Su
2) below.

+
0

*

0

0

5

+
* +
* * +
0 * * +

4 3 2 1

5

4

3

2

1

3.2. Structural equations. We can now describe the connexion between our

approach to recursive causal systems of random variables and the much more

familiar one used in econometrics and elsewhere involving linear equations. Let us

begin with a system (X; Y) of p + q Gaussian random variables having covariance

matrix 2 as in 3.1. The following is an easy consequence of Lemma 2.

LEMMA 3. 7 /2" 1 is decomposed into (C, B; ¥ , $ ) as in Lemma 2, then X and Y

satisfy the linear structural equations

(SE) CT\ + Br\ = U,

where U and X are independent Gaussian vectors with covariance matrices ty and 0.

Conversely, if X and Y satisfy a system such as (SE), if U and X are independent

with covariance matrices ^ and 4>, and further, if C is lower triangular with +\s

down its diagonal and ¥ is diagonal, then the matrices B, C, ¥ and 4> combine as in

Lemma 2 to give 2"1.
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PROOF. This result is an immediate consequence of Lemma 2 and the formulae

which follow it.

REMARKS, (i) It is perhaps more usual with structural equations to specify that

(SE) hold with C, ty having the properties stated, and that only the conditional

distribution of U given X be Gaussian (with mean zero and covariance matrix ty).

In other words, either X is not regarded as a random vector, or it is, but no

assumptions are made about its distribution. In the latter case such a specification

still corresponds to 2" 1 having the form LALT with L and A having their usual

structure. For if CTY + BTX is normal with zero mean and covariance matrix ¥ ,

given X, then Y has mean -C~TBTX and covariance matrix C'T^C'^ given X,

whence Var(y) = CT*Cl + CTBTQ>BCl and Cov(7, X) = - C " r f i r $ , where

$ = E(XXT) is assumed to be finite. These formulas may be compared with those

following Lemma 2 and the assertion will then be evident.

A consequence of the remarks just made is the following: any conditional

independence statements concerning (X; Y) involving A'-variables only in the

conditioning which are valid when the whole system is jointly Gaussian are also

valid if we assume only that Y given X (equivalently, U given X in the above)

Gaussian.

(ii) All of the foregoing extends to the case in which only second-order

assumptions concerning U given X are made; simply replace conditional indepen-

dence statements by the corresponding zero partial correlation ones.

Turning now to the Markov properties enjoyed by (X; Y) when they satisfy a

set of equations such as (SE) under the further assumptions stated in Lemma 3,

we have the following immediate consequence of Proposition 1.

PROPOSITION 2. A Gaussian system (X; Y) satisfying the equations (SE) with U

independent ofX and having covariance matrices ¥ , $ respectively, C lower-triangu-

lar with + ls down the diagonal and ty diagonal, also satisfies the equivalent

conditions of the theorem if and only if L = (£ °t) and O satisfy the zero constraints

(ZC) of Proposition 1.

In other words, we can use the theorem to draw causal graph associated with

any system of structural equations such as (SE) having zeros in the lower-triangu-

lar matrix C (and also in the inverse of the covariance matrix of the exogenous

variables), and then make direct conditional independence statements concerning

the endogenous variables (and also the exogenous variables) valid under the

further assumption that Y | X [(X; Y)] is Gaussian. Once more we remark that the

same argument yield zero partial correlation statements which are generally valid.
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3.3. Path analysis. There is now quite a large literature on path analysis but few

precise formulations or proofs of the so-called path analysis rule, see Kang and

Seneta (1980) for references. Suppose that (X; Y) is a Gaussian system of random

variables indexed by the vertices of a recursive causal graph © in the manner of

our earlier discussion. The path regression coefficient associated with an edge / -> j

of £„(©) is simply the coefficient -lijy that is, ^ .p .^ , . ) = pJiA x ( l ) hereafter

abbreviated to fijt, and one form of the basic rule expresses the covariance atJ

between any of the variables at vertex i G V and j £ Vn in terms of path

regression coefficients and covariances ogh, g, h e Vx, of pairs of exogenous

variables. A more refined rule, which will not be given here, applies when the

graph structure assumed involves a decomposable graph %x on the exogenous

vertices. For in that case we can further decompose the covariance ogh, g, h G

Fx(@) into sums of products of covariances which are associated with edges

{g, h) G Ex(®).

PROPOSITION 3. In the notation introduced above

2

where 2 is the sum over all non-self-intersecting paths

i = hx *- • • • «- hr_x «- hr - hr+x -» hr+2 -» • • • -> hu =j, r 3= 1, u > r + 2,

and 2 is the sum over all non-self-intersecting paths

/ = / , « - • • • • - / ,_, «-»,-»/ ,+ ! - • • • • -» '„ =j, s > 1, v> s + 2.

REMARK. In terms of path-tracing we are in effect supposing that every pair g, h

of exogenous vertices is connected by an edge (unless ogh = 0). This will in

general be inconsistent with the edge structure Ex(<&) assumed over Vx(@), but as

we have already indicated a completely satisfactory but rather more complicated

reformulation of the rules exist when © x is decomposable. In practice it is

common to have one or the other of the extreme cases: all exogenous variables

arbitrarily correlated, or all mutually independent, and in both of these our

reformulation is unnecessary.

PROOF. By induction on | Vn(®)\. If | Vn(®)\— 1 then we need only consider
ah P+1 where/> = | Vx(<§>) \. By the formula following Lemma 2
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The first term is seen to correspond to 22 if h -»p + 1 G £„(©) whilst the second
sum corresponds to 2|, being over all paths of the form h — g,g -»p + 1.

Now assume that the result holds for all causal graphs with fewer than
q —\Vn(®)\, q> 1, endogenous vertices, and let us consider an extreme exoge-
nous vertex,/* of ©. We need only check that a,y, takes the form of our statement,
for all other covariances have that form by the inductive hypothesis. Once more
we use the formula following Lemma 2, and this time it reads

a
ij*

=
 2 fy'iPik-

But for k £ Dj,, i e V\{j*} our inductive hypothesis tells us that (in an obvious
notation)

°,k = 2 + 2
1

whence

completing the proof of the inductive step and so the proposition.

EXAMPLE 2 (continued). Applying the rule just given to calculate a45 we find
that

a45 = &2a23&3 + ^43a33^53

these being the sums over the paths 4 *- 2 — 3 -> 5 and 4 «- 3 -> 5 respectively.

We close this section with some remarks on the relation between the above and
the work of others. Moran (1961) operates within a framework similar to ours,
making Markov-type conditional independence assumptions concerning his sys-
tem of random variables. These (Assumption II) suffice to give him a form of our
Proposition 3, but do not characterise the systems. More recently Kang and
Seneta (1980) prove results which relate closely to the material concerning
Gaussian arrays. Specifically, their Lemma 1 is a second-order version of part of
the main theorem and their Lemma 3 is a more general version of our Proposition
3. Finally, Wermuth (1980) considers the relationship between the pattern of
zeros of 2"1 and that of L in 2~' = LA~xl7, proving that they are essentially the
same iff the corresponding Gaussian distribution (or graph) is decomposable. It is
in this paper that the condition we term [>] (there called reducible zero pattern)
is introduced.
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4. Discrete distributions

One of the main reasons why an independence formulation of the basic results
of recursive causal models is desirable is their immediate applicablity to discrete
data. In this section we examine the problems of parametrising discrete recursive
causal models, and relate such models to the more familiar log-linear models for
discrete data, see Goodman (1972, 1973a, b) and Fienberg (1977). We begin with
some extra notation and terminology.

Let us suppose that the exogenous variable Xh takes value xh from a finite set
%h,he Vx(@>), and similarly that Yj takes valuesj, from ^J G Fn(@). Then the
full array (X;Y) takes values (x;y) from Uheyx%h X RJIEyn% = % X ^ and
throughout this section we will suppose that for all (x; y) we have the positivity
constraint:

/>(x; y) = P(Xh = xh,hG Vx; Y} = Vj,j G Vn) > 0.

If A C V we write xA [resp. y j for (xh: h G Vx D A) [resp. (yy. j G Vn Pi A)]. In
order to relate our main theorem to log-linear models, we need to refer to the
vector space S of all real-valued functions on % X ty, and to the subspaces S(A),

A C V, of functions depending only on (x^y^). They have been discussed in
Speed (1979). (There, however, the subspace S(A) is denoted by EA; we have
changed notation to avoid confusion with edge sets.)

For a probability distribution p over % X ^ and for j G Vn let us write D for
the marginal distribution of the variables indexed by Aj, and 0- for the conditional

distribution of Yj given (X^ ; Y^.). Note that 0, depends only on Ay, indeed

«J = PJ/2PJ
j

where 1j denotes a summation over all yi G %.. Furthermore, write px for the
marginal distribution over Vx.

The following reformulation of the main theorem shows that a recursive causal
model for discrete data is, in general, the conjunction of a set of log-linear models
for the full array and certain of its marginals. Recall, see Speed (1978), that a
maximal clique in an undirected graph is a set of vertices each pair of which is
connected by an edge, and is maximal with respect to this property. The set of all
maximal cliques of %x = (Vx(®), Ex(®)) is denoted by Qx.

PROPOSITION 4. A probability distribution p satisfies the equivalent conditions of

the main theorem if and only if

(i) log px G S(GX) = 2{S(a): a G e,}; and for allj G Vn,

https://doi.org/10.1017/S1446788700027312 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027312


50 Harri Kiiveri, T. P. Speed and J. B. Carlin [21 ]

PROOF. These conditions are just a reformulation of (4) from the main theorem

using the Hammersley-Clifford theorem, see for example the main result of Speed

(1979) for a proof in the present spirit.

Many instances of this result, with a different parametrisation, can be found in

the papers of Goodman (1972, 1973a, b; 1974a, b).

The subspace sum S(Aj) + S(Dj) may be written as

S(Aj) +[s(Dj) eS(Aj)] = S{Aj) +[S(DJ) es(Dj)],

where 0 denotes orthogonal complement in the usual inner product. This fact is a
consequence of the fact that the projections onto the various subspaces S(A) C S
all commute, and that Aj D Dj = Dj. Thus we see that if pj = exp(£y + i)j),
ij e S(Aj), i\j G S(Dj)Q S(Dj), then 0, may be represented as

0, = expi j y /2 exprj7,
j

and furthermore, the i\j G S(Dj) © S(Dj) is unique. Putting this into (1) of the
main theorem we see that a probability p over 9C X ^ which satisfies the causal
Markov constraints has a unique representation

p =p* n T~V' whereT», e S(»J)
 e

 S(DJ)J e vn.

Further, one can easily prove that the {r\j} are pairwise orthogonal. With p

represented in this form we see that it is possible to restrict even further the

higher-order interactions between an endogenous variable and its direct causes

without disturbing the causal Markov constraints. Thus causal modelling with

discrete data has two aspects: the underlying causal model, and the higher-order

interactions just mentioned.

In closing this section we remark that when © contains no configurations [>]

the causal Markov constraints collapse into a single set of log-linear constraints,

those associated with what Darroch et al. (1980) call a graphical log-linear model.
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