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Abstract

Background: Classification studies using gene expression datasets are usually based on small numbers of

samples and tens of thousands of genes. The selection of those genes that are important for distinguishing

the different sample classes being compared, poses a challenging problem in high dimensional data analysis.

We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE) rather

than recursive feature elimination (RFE). We have tested this algorithm on six datasets and compared its

performance with that of two related classification procedures with RFE.

Results: We have developed a novel method for selecting significant genes in comparative gene

expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method,

to identify correlated gene clusters, and Support Vector Machines (SVMs), a supervised machine learning

classification method, to identify and score (rank) those gene clusters for the purpose of classification. K-

means is used initially to group genes into clusters. Recursive cluster elimination (RCE) is then applied to

iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-

RCE identifies the clusters of correlated genes that are most significantly differentially expressed between

the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised

classification accuracy of the same data as compared to the accuracy when either SVM or Penalized

Discriminant Analysis (PDA) with recursive feature elimination (SVM-RFE and PDA-RFE) are used to

remove genes based on their individual discriminant weights.

Conclusion: SVM-RCE provides improved classification accuracy with complex microarray data sets

when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE.

SVM-RCE identifies clusters of correlated genes that when considered together provide greater insight

into the structure of the microarray data. Clustering genes for classification appears to result in some

concomitant clustering of samples into subgroups.

Our present implementation of SVM-RCE groups genes using the correlation metric. The success of the

SVM-RCE method in classification suggests that gene interaction networks or other biologically relevant

metrics that group genes based on functional parameters might also be useful.
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Background
The Matlab version of SVM-RCE can be downloaded from
[1] under the "Tools->SVM-RCE" tab.

Classification of samples from gene expression datasets
usually involves small numbers of samples and tens of
thousands of genes. The problem of selecting those genes
that are important for distinguishing the different sample
classes being compared poses a challenging problem in
high dimensional data analysis. A variety of methods to
address these types of problems have been implemented
[2-8]. These methods can be divided into two main cate-
gories: those that rely on filtering methods and those that
are model-based or so-called wrapper approaches [2,4].
W. Pan [8] has reported a comparison of different filtering
methods, highlighting similarities and differences
between three main methods. The filtering methods,
although faster than the wrapper approaches, are not par-
ticularly appropriate for establishing rankings among sig-
nificant genes, as each gene is examined individually and
correlations among the genes are not taken into account.
Although wrapper methods appear to be more accurate,
filtering methods are presently more frequently applied to
data analysis than wrapper methods [4].

Recently, Li and Yang [9] compared the performance of
Support Vector Machine (SVM) algorithms and Ridge
Regression (RR) for classifying gene expression datasets
and also examined the contribution of recursive proce-
dures to the classification accuracy. Their study explicitly
shows that the way in which the classifier penalizes redun-
dant features in the recursive process has a strong influ-
ence on its success. They concluded that RR performed
best in this comparison and further demonstrate the
advantages of the wrapper method over filtering methods
in these types of studies.

Guyon et. al. [10] compared the usefulness of RFE (for
SVM) against the "naïve" ranking on a subset of genes.
The naïve ranking is just the first iteration of RFE to obtain
ranks for each gene. They found that SVM-RFE is superior
to SVM without RFE and also to other multivariate linear
discriminant methods, such as Linear Discriminant Anal-
ysis (LDA) and Mean-Squared-Error (MSE) with recursive
feature elimination.

In this study, we describe a new method for gene selection
and classification, which is comparable to or better than
some methods which are currently applied. Our method
(SVM-RCE) combines the K-means algorithm for gene
clustering and the machine learning algorithm, SVMs
[11], for classification and gene cluster ranking. The SVM-
RCE method differs from related classification methods in
that it first groups genes into correlated gene clusters by K-
means and then evaluates the contributions of each of

those clusters to the classification task by SVM. One can
think of this approach as a search for those significant
clusters of gene which have the most pronounced effect
on enhancing the performance of the classifier. While we
have used K-means and SVM to approach this problem,
other combinations of clustering and classification meth-
ods could be used in approaching similar data analysis
problems. Yu and Liu (2004) have discussed the redun-
dancy and the relevance of features which is a related
method [12].

Using SVM-RCE, the initial assessment of the performance
of each individual gene cluster, as a separate feature,
allows for the identification of those clusters that contrib-
ute the least to the classification. These are removed from
the analysis while retaining those clusters which exhibit
relatively better classification performance. We allow re-
clustering of genes after each elimination step to allow the
formation of new, potentially more informative clusters.
The most informative gene clusters are retained for addi-
tional rounds of assessment until the clusters of genes
with the best classification accuracy are identified (see
Method section). Our results show that the classification
accuracy with SVM-RCE is superior to SVM-RFE and PDA-
RFE, which eliminate genes without explicit regard to
their correlation with other genes.

Several recent studies [7,13,14] have also combined the K-
means clustering algorithm and SVM but for very different
purposes. In a previous study K-means was used to cluster
the samples, rather than the features (genes). The sample
clusters, represented as centroids, were then used as input
to the SVM. In this case the sample clustering speeds the
SVM learning by introducing fewer samples for training.
Li et. al. [15] also used K-means in combination with
SVM, but in this case K-means was used to cluster unla-
belled sample data and SVM was used to develop the clas-
sifier among the clusters. However, none of the previous
studies used K-means to cluster features and none are con-
cerned with feature reduction, the principal aim of our
method. Tang et. al. [16], proposed portioning the genes
into clusters using the Fuzzy C-Means clustering algo-
rithm. However, this study ranks each gene, in each indi-
vidual cluster, by SVM coefficient weights rather than
ranking each cluster as a unit. The size of the clusters,
rather than the number of clusters, is reduced. A similar
approach has recently been described by Ma and Huang
[17] who propose a new method that takes into account
the cluster structure, as described by correlation metrics,
to perform gene selection at the cluster level and within-
cluster gene level.

The following sections describe the individual compo-
nents of the SVM-RCE algorithm. We present data show-
ing the classification performance of SVM-RCE on
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complex data sets. We compare SVM-RCE with the per-
formance of SVM-RFE and PDA-RFE and demonstrate the
superior performance of SVM-RCE as measured by
improved classification accuracy [18-20].

Results
Data used for assessment of classification accuracy

We tested the SVM-RCE method, described below, with
several datasets. The preprocessed datasets for Leukemia
and Prostate cancer were downloaded from the website
[21] and used by the study [22]. The following is a brief
description of these datasets.

• Leukemia

The leukemia dataset reported by Golub et. al. [23].
includes 72 patients to be classified into two disease types:
Acute Lymphocytic Leukemia (ALL) and Acute Myeloid
Leukemia (AML). 47 of the samples were from ALL
patients (38 B-cell ALL and 9 T-cell ALL). An additional 25
cases were from patients with AML. Gene expression data
was generated using the Affymetrix oligonucleotide
microarrays with probe sets for 6,817 human genes. Data
for 3571 genes remained, after preprocessing following
the protocol described by Dudoit et. al. [24]. For simplic-
ity we will refer to this data set as Leukemia(I). To prop-
erly compare the SVM-RCE performance with previous
[9,25] studies, we split the data into two sets, a training set
of 38 samples (27 ALL and 11 AML) and a test set of 34
samples (20 ALL and 14 AML) as in the original publica-
tion and used 7129 genes. The data was preprocessed by
subtracting the mean and dividing the result by the stand-
ard deviation [9,23,25]. For simplicity, we will refer to this
data as Leukemia (II).

• Prostate

This data set consists of 52 prostate tumor samples and 50
non-tumor prostate samples. It was generated using the
Affymetrix platform with 9,000 genes. Data for 6033
genes remains after the preprocessing stage [22].

• CTCL Datasets (I) and (II)

Cutaneous T-cell lymphoma (CTCL) refers to a heteroge-
neous group of non-Hodgkin lymphomas of skin-homing
T lymphocytes. CTCL(I) includes 18 patients and 12 con-
trols [19] while CTCL(II) consist of 58 patients and 24
controls (Loboda et. al. unpublished). For more informa-
tion about the data and preprocessing refer to [18,19].

• Head & neck vs. lung tumors (I)

Gene expression profiling was performed on a panel of 18
head and neck (HN) and 10 lung cancer (LC) tumor sam-
ples using Affymetrix U133A arrays. For further informa-
tion refer to [26].

• Head & neck vs. lung tumors (II)

Gene expression profiling was performed on a panel of 52
patients with either primary lung (21 samples) or primary
head and neck (31 samples) carcinomas, using the
Affymetrix HG_U95Av2 high-density oligonucleotide
microarray. For further information refer to Talbot et. al.
[27].

The following two sections demonstrate the advantage of
the SVM-RCE over SVM-RFE and PDA-RFE for selecting
genes and accuracy of classification.

Performance of SVM-RCE versus SVM-RFE and PDA-RFE

The three algorithms, SVM-RCE, PDA-RFE and SVM-RFE,
were used to iteratively reduce the number of genes from
the starting value in each dataset using intermediate clas-
sification accuracy as a metric.

We report the accuracy of SVM-RCE at the final 2 gene
clusters, and two intermediate levels, usually 8 and 32
clusters, which correspond to 8 genes, 32 genes and 102
genes respectively. For SVM-RFE and PDA-RFE we report
accuracy for comparable numbers of genes.

The relative accuracies of SVM-RCE, SVM-RFE and PDA-
RFE are shown in Table 1. With the Leukemia(I) dataset,
we observed an increased accuracy using SVM-RCE of 3%
and 2% with ~12 and ~32 genes, respectively when com-
pared to SVM-RFE. Comparable results with SVM-RFE
required ~102 genes. The results obtained from the CTCL
(I) analysis showed an improvement, using the SVM-RCE
of about 11% and 6% with ~8 and ~32 genes, respectively,
with a similar performance achieved with ~102 genes
using SVM-RFE. The second CTCL data set (CTCL II,
Loboda et. al. unpublished) showed an improvement
using SVM-RCE of about 7%, 11% and 9% with ~8, ~34
and ~104 genes, respectively.

We also compared results for two additional datasets:
Head and Neck Squamous Cell carcinoma (HNSCC) and
Lung Squamous Cell carcinoma (LSCC) [26] (Head &
Neck vs. Lung tumors (I)). SVM-RCE shows an increase in
accuracy over SVM-RFE of 8%, 10% and 10% with ~8,
~32, and ~103 genes, respectively. A similar dataset com-
paring HNSCC and LSCC [27] (Head & Neck vs. Lung
tumors (II)) was also subjected to both methods and a
~2% increase was observed, with the SVM-RCE, using ~8,
~32, and ~102 of genes (100% SVM-RCE and 98% SVM-
RFE). The Prostate cancer dataset yielded better accuracy
using SVM-RFE with ~8 genes (an increase of about 6%
over SVM-RCE), but similar performances were found at
higher gene numbers. The same superiority of SVM-RCE is
observed when comparing the SVM-RCE with PDA-RFE.
These results are also shown in Table 1. Figures 1 and 2
(Additional Material File 1: Hierarchical clustering and
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Multidimensional scaling (MDS) of the top genes
detected by SVM-RCE and SVM-RFE) use hierarchal clus-
tering and multidimensional scaling (MDS) [28] to help
illustrate the improved classification accuracy of SVM-
RCE for two of the data sets, Head&Neck(I) and CTCL(I).
The genes selected by SVM-RCE clearly separate the two
classes while the genes selected by SVM-RFE place one or
two samples on the wrong side of the separating margin.

Comparison with Li and Yang study

Recently, Li and Yang [9] conducted a study comparing
SVM and Ridge Regression(RR) to understand the success
of RFE and to determine how the classification accuracy
depends on the specific classification algorithm that is
chosen. They found that RR applied on the Leukemia(II)
dataset has zero errors, with only 3 genes, while SVM [25]
only attained the same zero errors with 8 genes. We com-
pared these studies to our results, using SVM-RCE (n =
100, m = 2, d = 0.1, n_g = 500), where 1 error was found
with 3 genes (KRT16, SELENBP1 and SUMO1) and zero
errors with 7 genes. The one misclassified sample is
located at the margin, between the two classes.

Tuning and parameters

We have also examined the effect of using more genes
(more than 300) selected by t-test from the training set as
input for SVM-RCE (See section "Choice of Parameters"
for more details). While no dramatic changes are
observed, there is some small degradation in the perform-
ance (1–2%) as progressively more genes are input. A sim-
ilar observation has been reported when SVM-RFE is
applied to proteomic datasets by Rajapakse et. al. [29].

For demonstrating the convergence of the algorithm to
the optimal solution and to give a more visual illustration
of the SVM-RCE method, we have tracked the mean per-
formance over all the clusters for each reduction level. Fig-

ure 1 illustrates the performance on SVM-RCE for the
Head & Neck vs. Lung tumors (I) dataset over different lev-
els of clusters. The analysis starts with 1000 genes selected
by t-test from the training set that were distributed into
300 clusters (n = 300, m = 2, d = 0.3, n_g = 1000) and then
recursively decreased to 2 clusters. The mean classification
performance on the test set per cluster at each level of
reduction (Figure 1 line AVG) is dramatically improved
from ~55% to ~95% as the number of clusters decreases
supporting the suggestion that less-significant clusters are
being removed while informative clusters are retained as
RCE is employed.

Speed and stability

The execution time for our SVM-RCE MATLAB code is
greater than PDA-RFE or SVM-RFE, which use the C pro-
gramming language. For example, applying the SVM-RCE
on a Personal Computer with P4-Duo-core 3.0 GHz and
2GB RAM on Head & Neck vs. Lung tumors (I) took approx-
imately 9 hours for 100 iterations (10-folds repeated 10
times), while SVM-RFE (with the svm-gist package) took 4
minutes.

To estimate the stability of the results, we have re-run
SVM-RCE while tracking the performance at each itera-
tion, over each level of gene clusters. The mean accuracy
and the standard deviation (stdv) are calculated at the end
of the run. The Head & Neck vs. Lung tumors (I) data set
with SVM-RCE has a stdv of 0.04–0.07. Surprisingly, SVM-
RFE with the same data yields a stdv range of 0.2–0.23. A
similar stdv range (0.17–0.21) was returned when SVM-
RFE was re-employed with 1000 iterations. Therefore,
SVM-RCE is more robust and more stable than SVM-RFE.

K-means is sensitive to the choice of the seed clusters, but
clustering results should converge to a local optimum on
repetition. For stability estimations, we have carried out

Table 1: Summary results for the SVM-RCE, SVM-RFE and PDA-RFE method. Summary results for the SVM-RCE, SVM-RFE and PDA-

RFE method applied on 6 public datasets. #c field is the number of clusters for the SVM-RCE method. The #g field is the number of 

genes in the associated #c clusters for SVM-RCE, while for the SVM-RFE and PDA-RFE indicates the number of genes used.

Leukemia(I) CTCL(I) CTCL(II) Head & Neck vs. Lung tumors 
(I)

Head & Neck vs. Lung tumors 
(II)

Prostate

#c #g ACC #c #g ACC #c #g ACC #c #g ACC #c #g ACC #c #g ACC

SVM- 2 12 99% 2 8 100% 2 8 91% 2 8 100% 2 9 100% 2 8 87%

RCE 3 32 98% 9 32 100% 9 34 96% 8 32 100% 6 32 100% 11 36 95%

28 100 97% 32 101 100% 28 104 96% 28 103 100% 25 103 100% 32 100 93%

SVM-RFE 11 96% 9 89% 8 84% 8 92% 8 98% 8 93%

32 96% 32 94% 32 85% 32 90% 32 98% 36 95%

102 97% 102 100% 102 87% 102 90% 102 98% 102 94%

PDA-RFE 8 96% 8 92% 8 83% 8 89% 8 70% 8 94%

32 96% 32 92% 33 81% 31 96% 32 98% 32 94%

104 96% 104 95% 108 79% 109 96% 102 98% 104 90%
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SVM-RCE (on Head & Neck vs. Lung tumors (I)) with values
of u of 1, 10, and 100 repetitions (see sub-section K-
means Cluster), and compared the most informative 20
genes returned from each experiment. ~80% of the genes
are common to the three runs, which suggests that the
SVM-RCE results are robust and stable. Moreover, similar
accuracy was obtained from each experiment.

Is there an advantage, besides increased accuracy, to using 

SVM-RCE for gene selection?

Our results suggest that SVM-RCE can reveal important
information that is not captured by methods that assess
the contributions of each gene individually. Although we
have limited our initial observations, for simplicity, to the
top 2 clusters needed for separation of datasets with 2
known classes of samples, one can expand the analysis to

capture, for example, the top 4 clusters of genes. We
hypothesized that by increasing the number of clusters
selected that we might be able to identify sample sub-clus-
ters, which may be present in a specific dataset. The
CTCL(I) dataset illustrates this possibility. Figure 2 shows
the hierarchical clusters generated using the top 4 signifi-
cant clusters (about 20 genes) revealed by SVM-RCE (Fig-
ure 2(b)) and (Figure 2(a)) with comparable numbers of
genes (20 genes) identified by SVM-RFE. The 4 clusters of
genes in Figure 2(b) (two up-regulated in patients and
another two down-regulated) appear to identify sub-clus-
ters of samples present in each class. For example, we see
that four samples from the control class (C021.3.Th2,
C020.6.Th2, CO04.1.UT and C019.6.Th2) form a sub-
cluster identified by the genes TNFRSF5, GAB2, IL1R1 and
ITGB4 (See Figure 2(b) "Control sub-cluster" label). Three

Classification performance of SVM-RCE of Head & Neck vs. Lung tumors (I)Figure 1
Classification performance of SVM-RCE of Head & Neck vs. Lung tumors (I). All of the values are an average of 100 
iterations of SVM-RCE. ACC is the accuracy, TP is the sensitivity, and TN is the specificity of the remaining genes determined 
on the test set. Avg is the average accuracy of the individual clusters at each level of clusters determined on the test set. The 
average accuracy increases as low-information clusters are eliminated. The x-axis shows the average number of genes hosted 
by the clusters.
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of these 4 controls represent a control class (Th2) that has
been treated with IL-4. In addition, a sub-cluster of genes
up-regulated in patients (SLC9A3R1 through cig5) cluster
9 patients distinguished as long-term survivors (LT) and 1
short-term (ST) survivor from the remaining patients (See
Figure 2(b) "LT sub-cluster" label). However, no specific
sub-pattern is apparent in Figure 2(a) using the top 20
genes obtained from SVM-RFE. See "Additional Material
File 2: Comparison of the CTCL(I) genes selected by SVM-
RCE and SVM-RFE and concomitant clustering of genes
and samples", which shows additional structure of the
data obtained in the classifications with gene clusters
obtained using SVM-RCE compared with SVM-RFE. This
structure arises because SVM-RCE selects different genes
for the classification.

Conclusion
In this paper we present a novel method SVM-RCE for
selecting significant genes for (supervised) classification
of microarray data, which combines the K-means cluster-
ing method and SVM classification method. SVM-RCE
demonstrated improved (or equivalent in one case) accu-
racy compared to SVM-RFE and PDA-RFE on 6 microarray
datasets tested.

Defining the minimum number of clusters required for
accurate classification can be a challenging task. With our
approach, the number of clusters and cluster size is deter-
mined arbitrarily at the onset of the analysis by the inves-
tigator and, as the algorithm proceeds, the least
informative clusters are progressively removed. However,
in order to avoid producing redundant clusters, we believe
that this step needs to be automated to obtain an opti-
mum final value. A number of statistical techniques
[30,31] have been developed to estimate this number.

The RFE procedure associated with the SVM (or PDA) is
designed to estimate the contributions of individual genes
to the classification task, whereas the RCE procedure,
associated with SVM-RCE, is designed to estimate the con-
tribution of a cluster of genes for the classification task.
Other studies [32-36] have used biological knowledge-
driven approaches for assessment of the generated gene
clusters by unsupervised methods. Our method provides
the top n clusters required to most accurately differentiate
the two pre-defined classes.

The relationship between the genes of a single cluster and
their functional annotation is still not clear. Clare and

Hierarchal cluster of CTCL(I) on the top 20 genes from SVM-RFE and SVM-RCEFigure 2
Hierarchal cluster of CTCL(I) on the top 20 genes from SVM-RFE and SVM-RCE. (a) Hierarchal cluster on the top 
20 genes from SVM-RFE (b) Hierarchal cluster on the top 20 (~4 clusters) genes from SVM-RCE. Sample names that start with 
S are CTCL patients, while those that start with C are for controls. LT = long term, ST = short term.
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Kind [37] found in yeast, that clustered genes do to not
have correlated functions as might have been expected.
One of the merits of the SVM-RCE is its ability to group
the genes using different metrics. In the present study, the
statistical correlation metric was used. However, one
could use biological metrics such as gene interaction net-
work information or functional annotation for clustering
genes (Cluster step in the SVM-RCE algorithm) to be exam-
ined with the SVM-RCE for their contribution to the clas-
sification task [38]. In this way, the outcome would be a
set of significant genes that share biological networks or
functions.

The results presented suggest that the selection of signifi-
cant genes for classification, using SVM-RCE, is more reli-
able than the SVM-RFE or PDA-RFE. SVM-RFE uses the
weight coefficient, which appears in the SVM formula, to
indicate the contribution of each gene to the classifier.
However, the exact relation between the weights and per-
formance is not well understood. One could argue that
some genes with low absolute weights are important and
their low ranking is a result of other dominant correlated
genes. The success of SVM-RCE suggests that estimates
based on the contribution of genes, which share a similar
profile (correlated genes), is important and gives each
group of genes the potential to be ranked as a group.
Moreover, the genes selected by SVM-RCE are guaranteed
to be useful to the overall classification since the measure-
ment of retaining or removing genes (cluster of genes) is
based on their contribution to the performance of the
classifier as expressed by the Score (·) measurement. Sim-
ilarly Tang et. al. [16] has shown that partitioning the
genes into clusters, followed by performing estimates of
the ranks of each gene by SVM, generates improved results
compared to the traditional SVM-RFE. Ma and Huang [17]
have also shown improved results when feature selection
takes account of the structure of the genes clusters. These
results suggest that clustering the genes and performing an
estimation of individual gene clusters is the key to
enhance the performance and improve the grouping of
significant genes. The unsupervised clustering used by
SVM-RCE has the additional possibility of identifying bio-
logically or clinically important sub-clusters of samples.

Methods
The following sub-sections describe our method and its
main components. SVM-RCE combines K-means, a clus-
tering method, to identify correlated gene clusters, and
Support Vector Machines (SVMs), a supervised machine
learning classification method, to identify and score
(rank) those gene clusters for accuracy of classification. K-
means is used initially to group genes into clusters. After
scoring by SVM the lowest scoring clusters are removed.
The remaining clusters are merged, and the process is
repeated.

The SVM-RCE method-scoring gene clusters

We assume that given dataset D with S genes. The data
partitioned into two parts, one for training (90% of the
samples) and the other (10% of the samples) for testing.

Let X denote a two-class training dataset that consisting of
� samples and S genes. We define a score measurement for
any list S of genes as the ability to differentiate the two
classes of samples by applying linear SVM. To calculate
this score we carry out a random partition the training set
X of samples into f non-overlapping subsets of equal sizes
(f-folds). Linear SVM is trained over f-1 subsets and the
remaining subset is used to calculate the performance.
This procedure is repeated r times to take into account dif-
ferent possible partitioning. We define Score(X(S), f, r) as
the average accuracy of the linear SVM over the data X rep-
resented by the S genes computed as f-folds cross valida-
tion repeated r times. We set f to 3 and r to 5 as default
values. Moreover, if the S genes are clustered into sub-
clusters of genes S1, S2,..., Sn then we define the Score(X(si),
f, r) for each sub-cluster while X(si) is the data X repre-
sented by the genes of Si.

The central algorithm of SVM-RCE method is described as
a flowchart in Figure 3. It consists of three main steps
applied on the training part of the data: the Cluster step for
clustering the genes, the SVM scoring step for computing
the Score(X(si), f, r) of each cluster of genes and the RCE
step to remove clusters with low score, as follows:

Algorithm SVM-RCE (input data D)

X = the training dataset

S = genes list (all the genes) or top n_g genes by t-test

n = initial number of clusters

m = final number of clusters

d = the reduction parameter

While (n ≤ m) do

1. Cluster the given genes S into n clusters S1, S2,..., Sn

using K-means (Cluster step)

2. For each cluster i = 1..n calculate its Score(X(si), f, r)
(SVM scoring step)

3. Remove the d% clusters with lowest score (RCE step)

4. Merge surviving genes again into one pool S

5. Decrease n by d%.
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The description of the SVM-RCE algorithmFigure 3
The description of the SVM-RCE algorithm. A flowchart of the SVM-RCE algorithm consists of main three steps: the 
Cluster step for clustering the genes, the SVM scoring step for assessment of significant clusters and the RCE step to remove clus-
ters with low score

`

Compute cluster significance by SVM and assign a 

score as mean accuracy of f-folds repeated r times 

Cluster by K-means the pool S of genes into n

clusters

Remove clusters of genes with low scores. 

Merge surviving genes into one pool S

Cluster 1 Cluster 2 Cluster n

Cluster step

SVM scoring step

RCE step

Is n less than the 

desired number 

of clusters m?

n= n – 

n*d

NO

STOP

YES

 Training Set (90% of D) Test Set (10% of D)

Input samples data D

 represented by S genes 

Test Evaluate classification

accuracy using the pool 

genes S
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The basic approach of the SVM-RCE is to first cluster the
gene expression profiles into n clusters, using K-means. A
score Score(X(si), f, r), is assigned to each of the clusters by
linear SVM, indicating its success at separating samples in
the classification task. The d% clusters (or d clusters) with
the lowest scores are then removed from the analysis.
Steps 1 to Step 5 are repeated until the number n of clus-
ters is decreased to m.

Let Z denote the testing dataset. At step 4 an SVM classifier
is built from the training dataset using the surviving genes
S. This classifier is then tested on Z to estimate the per-
formance. See Figure 3 the "Test" panel on the right side.

For the current version, the choice of n and m are deter-
mined by the investigator. In this implementation, the
default value of m is 2, indicating that the method is
required to capture the top 2 significant clusters (groups)
of genes. However, accuracy is determined after each
round of cluster elimination and a higher number of clus-
ters could be more accurate than the final two.

Various methods have been used for classification studies
to find the optimal subset of genes that gives the highest
accuracy [39] in distinguishing members of different sam-
ple classes. With SVM-RCE, one can think of this process
as a search in the gene-clusters space for the m clusters, of
correlated genes, that give the highest classification accu-
racy. In the simplest case, the search is reduced to the iden-
tification of one or two clusters that define the class
differences. These might include the important up-regu-
lated and the important down-regulated genes. While
SVM-RCE and SVM-RFE are related, in that they both
assess the relative contributions of the genes to the classi-
fier, SVM-RCE assesses the contributions of groups of cor-
related genes instead of individual genes (SVM scoring
step in Figure 3). Additionally, although both methods
remove the least important genes at each step, SVM-RCE
scores and removes clusters of genes, while SVM-RFE
scores and removes a single or small numbers of genes at
each round of the algorithm.

Implementation

The gist-svm [40] package was used for the implementa-
tion of SVM-RFE, with linear kernel function (dot prod-
uct), with default parameters. In gist-svm the SVM
employs a two-norm soft margin with C = 1 as penalty
parameter. See [41] for more details.

SVM-RCE is coded in MATLAB while the Bioinformatics
Toolbox 2.1 release is used for the implementation of lin-
ear SVM with two-norm soft margin with C = 1 as penalty
parameter. The core of PDA-RFE is implemented in C pro-
gramming language in our lab (Showe Laboratory, The
Wistar Institute) with a JAVA user interface (Manuscript in

preparation). We haven't used any tuning parameter pro-
cedure for optimization.

Choice of parameters

In order to ensure a fair comparison and to decrease the
computation time, we started with the top 300 (n_g =
300) genes selected by t-test from the training set for all
methods. However, as was observed by Rajapakse et.
al.(2005) [29], using t-statistics for reducing the number
of onset genes subjected to SVM-RFE is not only efficient,
but it also enhances the performance of the classifier.
However, a larger initial starting set might result in biolog-
ically more informative clusters.

For all of the results presented, 10% (d = 0.1) is used for
the gene cluster reduction for SVM-RCE and 10% of the
genes with SVM-RFE and PDA-RFE. For SVM-RCE, we
started with 100 (n = 100) clusters and stopped when 2 (m
= 2) clusters remained. 3-fold (f = 3) repeated 5 (r = 5)
times was used in the SVM-RCE method to evaluate the
score of each cluster (SVM scoring step in Figure 3). It is
obvious that one can use more stringent evaluation
parameters, by increasing the number of repeated cross-
validations, at the price of increasing the computational
time. In some difficult classification cases, it is worth
doing this in order to enhance the prediction accuracy.

Evaluation

For evaluating the over-all performance of SVM-RCE and
SVM-RFE (and PDA-RFE), 10-fold cross validation (9 fold
for training and 1 fold for testing), repeated 10 times, was
employed. After each round of feature or cluster reduc-
tion, the accuracy was calculated on the hold-out test set.
For each sample in the test set, a score assigned by SVM
indicates its distance from the discriminate hyper-plane
generated from the training samples, where a positive
value indicates membership in the positive class and a
negative value indicates membership in the negative class.
The class label for each test sample is determined by aver-
aging all 10 of its SVM scores and it is based on this value
that the sample is classified. This method for calculating
the accuracy gives a more accurate measure of the per-
formance, since it captures not only whether a specific
sample is positively (+1) or negatively (-1) classified, but
how well it is classified into each category, as determined
by a score assigned to each individual sample. The score
serves as a measure of classification confidence. The range
of scores provides a confidence interval.

K-means cluster

Clustering methods are unsupervised techniques where
the labels of the samples are not assigned. K-means [42] is
a widely used clustering algorithm. It is an iterative
method that groups genes with correlated expression pro-
files into k mutually exclusive clusters. k is a parameter
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that needs to be determined at the onset. The starting
point of the K-means algorithm is to initiate k randomly
generated seed clusters. Each gene profile is associated
with the cluster with the minimum distance (different
metrics could be used to define distance) to its 'centroid'.
The centroid of each cluster is then recomputed as the
average of all the cluster gene members' profiles. The pro-
cedure is repeated until no changes in the centroids, for
the various clusters, are detected. Finally, this algorithm
aims at minimizing an objective function with k clusters:

where || ||2 is the distance measurement between gene gi

profile and the cluster centroid cj. The "correlation" dis-
tance measurement was used as a metric for the SVM-RCE
approach. The correlation distance between genes gr and gs

is defined as:

K-means is sensitive to the choice of the seed clusters (ini-
tial centroids) and different methods for choosing the
seed clusters can be considered. At the K-means step
(Cluster step in Figure 3) of SVM-RCE, k genes are ran-
domly selected to form the seed clusters and this process is
repeated several times (u times) in order to reach the opti-
mal, with the lowest value of the objective function
F(data; k).

Clustering methods are widely used techniques for micro-
array data analysis. Gasch and Eisen [43] used a heuris-
tically modified version of Fuzzy K-means clustering to
identify overlapping clusters and a comparison with the
standard K-means method was reported. Monti et. al. [44]
report a new methodology of class discovery, based on
clustering methods, and present an approach for valida-
tion of clustering and assess the stability of the discovered
clusters.

Support Vector Machines (SVMs)

Support Vector Machines (SVMs) is a learning machine
developed by Vapnik [11]. The performance of this algo-
rithm, as compared to other algorithms, has proven to be
particularly useful for the analysis of various classification
problems, and has recently been widely used in the bioin-
formatics field [45-47]. Linear SVMs are usually defined as
SVMs with linear kernel. The training data for linear SVMs
could be linear non-separable and then soft-margin SVM
could be applied. Linear SVM separates the two classes in
the training data by producing the optimal separating
hyper-plane with a maximal margin between the class 1
and class 2 samples. Given a training set of labeled exam-
ples(xi, yi), i = 1,..., � where xi ∈ R' and yi ∈ {+1, -1}, the

support vector machines (SVMs) find the separating
hyper-plane of the form w·x+b = 0 w ∈ R', b ∈ R. Here, w
is the "normal" of the hyper-plane. The constant b defines
the position of the hyper-plane in the space. One could
use the following formula as a predictor for a new
instance: f(x) = sign(w·x + b) for more information see
Vapnik [11].

The application of SVMs to gene expression datasets can
be divided into two basic problems: one for gene function
discovery and the other for classification. As an example
of the first category, Brown, Grundy et. al. [48] success-
fully used SVM for the "identification of biological function-
ally related genes", where essentially two group of genes are
identified. One group consists of genes that have a com-
mon function and the other group consists of genes that
are not members of that functional class. Comparisons
with several SVMs, that use different similarity metrics,
were also conducted. SVMs performance was reported to
be superior to other supervised learning methods for func-
tional classification. Similarly, Eisen, Spellman et. al. [49]
used a clustering method with Pearson correlation, as a
metric, in order to capture genes with similar expression
profiles.

As an example of the second category, Furey et. al. [50]
used SVM for the classification of different samples into
classes and as a statistical test for gene selection (filter
approach).

SVM Recursive Feature Elimination (SVM-RFE)

SVM-RFE [25] is a SVM based model that removes genes,
recursively based on their contribution to the discrimina-
tion, between the two classes being analyzed. The lowest
scoring genes by coefficient weights are removed and the
remaining genes are scored again and the procedure is
repeated until only a few genes remain. This method has
been used in several studies to perform classification and
gene selection tasks [9,51].

Furlanello et. al. [51] developed an entropy recursive fea-
ture elimination (E-RFE) in order to accelerate (100×) the
RFE step with the SVM. However, they do not demon-
strate any improvement in the classification performance
compared to the regular SVM-RFE approach. Several other
papers, as in Kai-Bo et. al. [6], propose a new technique
that relies on a backward elimination procedure, which is
similar to SVM-RFE. They suggest that their method is
selecting better sub-sets of genes and that the performance
is enhanced compared to SVM-RFE. Huang et. al. [52]
explore the influence of the penalty parameter C on the
performance of SVM-RFE, finding that one dataset C
could be better classified when C was optimized.
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In general, choosing appropriate values of the algorithm
parameters (penalty parameter, kernel-function, etc) can
often influence performance. Recently, Zhang et. al. [5]
proposed R-SVM as a recursive support vector machine
algorithm to select important features in SELDI data. The
R-SVM was compared to the SVM-RFE and is suggested to
be more robust to noise. No improvement in the classifi-
cation performance was found.
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