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Recursive Consistent Estimation with Bounded Noise  x. Least squares estimates are not in general consistent with these con-
straints. Since the constraints are convex, least squares estimates can
Sundeep RangaiMember, IEEEand Vivek K Goyal Member, IEEE  pe improved by projecting onto a set of estimates that are consistent.
Recently, it has been suggested that this improvement can result
in faster order of convergence [6]-[9]. Numerical tests showed that,
Abstract—Estimation problems with bounded, uniformly distributed g [61-19]

. . p . o
noise arise naturally in reconstruction problems from over complete linear after applying consistency constraints, estimates can attdii bn")

expansions with subtractive dithered quantization. We present a simple Mean-squared error (MSE). Classical least squares estimation, which
recursive algorithm for such bounded-noise estimation problems. The does not, in general, satisfy the hard constraints, attains ol Bfwn)
mean-square error (MSE) of the algorithm is “almost” O(1/n?), where  MSE.

n is the number of samples. This rate is faster than theO(1/n) MSE The behavior and implementation of consistent estimation methods
obtained by standard recursive least squares estimation and is optimal to . 9 . .
within a constant factor. are not fully understood. While the(1/»") MSE for consistent esti-
mation has been observed in a number of simulations, the decay rate
has only been proven for certain s€ts. }. The most general condi-
tions under whichO(1/n%) MSE is provably attainable are not cur-
rently known.

|. INTRODUCTION In addition, consistent estimation is difficult to implement recur-

sively. Givenn data points, finding a consistent estimate requires the

It is common to analyze systems including quantizers by mOde“@%lution of a linear program with variables an®n constraints. No

each quantizer as a source of signal-independent additive white nOIrse%ursive implementation of this computation is presently known. The

Index Terms—Consistent reconstruction, dithered quantization, frames,
overcomplete representations, overdetermined linear equations.

This model is precisely correct only when one uses subtractive ditheﬁ% ar program must be recomputed with each new observation and the
quantization, but for simplicity it is often assumed to hold for COarsg .  tthe problem grows to infinity.
undlthgred quant|;at!on .[1]_[3]' What can gasny .be lost in using this This correspondence introduces a simple, recursively implementable
model is that the distribution of the quantization noise can belmportaggtimator with a provablé&(1/n?) MSE. The proposed estimator is
es_'?Egaélgr'rtjsbgﬁgcejﬁg‘:iz%useS on solvina an overdetermined Iinsizgnilar to the consistent estimation method of [7], [9], except that the
po ; 9 . . N&8limates are only guaranteed to be consistent with the most recent data
system of equations from quantized data. Assuming subtractive d'thpetglnt. The estimator can be realized with an extremely simple update
this can be abstracted as the estimation of an unknown vectoR"

from measurements;. € R rule whigh avoids any Iin_ear programming. Our main resglts show that,
under suitable assumptions on the vectarsthe simple estimator “al-

most” achieves the conjecturéd1/n*) MSE.

We will also show that under mild conditions on theriori prob-

) ] ability density ofz, the MSE decay rate of any reconstruction algo-

where each;. € R" isaknownvectorandthe.'s are independentand yithm is bounded below b@)(1/x2). Thus the proposed estimator is

identically distributed (_i.i.d.) ran_dom varigbles distri_buted uniforml;bptimm to within a constant factor. AR(1/n>) lower bound has also

on[-4, é]. * The maximum noise magnitude > 0 is half of the peen shown in [10] under weaker assumptions that do not require uni-

quantization step size and is knowrpriori. Estimation problems of orm|y distributed white noise. However, with the uniformly distributed

this form may arise elsewhere as well. At issue are the quality of fgnite-noise model considered here, we will be able to derive a simple
construction that is possible and the efficient computation of good &spression for the constant in this lower bound.

timates.

The classical method for estimating the unknown veetds least
squares estimation, which attempts to finduch that the,-norm of
the residual sequengg — a4 is minimized [4], [5]. Least squares es-  As noted above()(1/n”) MSE results have already appeared in the
timators have been extensively studied and admit efficient implementiigrature. This work has two distinguishing features: Fi€stl/n*)
tions. Under mild assumptions, least squares estimates are guarantéeg is obtained with an extremely simple algorithm that works re-
to converge to the true value as the number of samples grows to infingyirsively, i.e., uses each observation only once, with no increase in

However, least squares estimation may produce an estimate wHi@mory usage with time. Second, the requirement on the set of mea-
not only differs from the maximum-likelihood (ML) and minimum surement “directions?a, } is very mild (see Theorem 2). Until re-
mean-squared error estimates, but also is inconsistent with the bouf@ftly, the only publishe@(1/»*) MSE upper bounds for finite-di-
on the quantization noise. With the boundan each samplg;, in (1) Mensional signal spaces were derived from the analogous result for

places certain hard constraints on the location of the unknown vecyersampled analog-to-digital (A/D) conversion of periodic band-lim-
ited signals [6], [7]. Thus, they were applicable to a particular family

of {ax} sets known as Fourier frames [9]. A new approach reported
Manuscript received July 28, 1998; revised June 22, 2000. This work wis[11]—not based on consistency—attaifis1 /n*) MSE more gen-
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Undithered quantization Dithered quantization [l. PROPOSEDALGORITHM AND CONVERGENCEPROPERTIES
XIRA X LA Suppose: € R" is an unknown vector, and we obtain a set of obser-
R % b vationsy;. given by (1). We wish to find an estimatg of the unknown
6 vectorx from the datay; anda; fori = 0, 1, ..., kK — 1. The noise
A / ey is unknown, but boundede| < é for all k.
00 LS We propose the following simple recursive scheme:
] Yo
i Ehyt = &k + ——0(yr — ari) (2)
akak
where
0, if le| <6
ple) =< e— 6, ife>6 3)

e+ 6, if e < —6.

(¢ is a soft-thresholding function.) Any initial estimaitg may be used.

The motivation behind this estimator is simple. If an observagion
is consistent with the estimate, (i.e., |yx — aj x| < 8), then the
estimate is unchanged; that 5,1 = . If the observation is not
consistent, thert;, is taken to be the closest pointf@ consistent
with the observation.

We will prove two results concerning this algorithm. The first result
states that the estimation error decreases monotonically for any noise
sequencey, with |e;| < 6. No statistical assumptions are made.

Fig. 1. Geometric partitions induced by representing R? by quantized - - . .
versions off !, >} * L. Discrete Fourier frames are used [9]. Comparing the first | n€orem 1: Fix a vectorz € R, and consider the algorithm (2)
and second row shows that doublingoughly quadruples the number of cells;acting on a sequence of observatigagyiven by (1). If|ex| < 6, then
this is the fundamental reason foX(1/r?) MSE behavior. When undithered
quantizers are used (left column), the properties of the partition depend on the
distance from the origin. Analysis is easier with dithered quantization (right
column) because the partition is shift-invariant.

e = el < [l — 2]l

Proof: See Appendix A. O
. ) o B For the second result, we impose the following assumption.
must be excluded from consideration. As shown in Fig. 1,ig close
to the origin its radial component is not refinedraimcreases. Assumption 1: For the measurements (1) and algorithm (2)
Use of dithered quantization gives us the simple model (1). The par-a) ¢; anda, are independently distributed random processes, inde-
tition this induces is shift-invariant, as shown in Fig. 1. We are able to pendent from each another;
analyze performance by taking expectations dver}, obtaining re- b) e is uniformly distributed orj—4, ¢]; and
sults that do not depend an c) there exist constantd/ > 0 ando > 0 such that for allk,
llax]|*> < M, and

B. Related Work Ela}.z

>0

~
z

VzeR". 4)

To further contextualize this work, we should mention several more
lines of related research. Zamir and Feder [12], [13] have studied theThe assumptions provide the simplest scenario in which to examine
rate-distortion performance of a system which uses entropy-cod&eé algorithm, and are similar to those used in the classical analysis of
dithered quantization of aoversampleccontinuous-time signal and the least mean squares (LMS) algorithm (see, for example, [4], [5]).
linear least squares reconstruction. Our main result (Theorem T3)e assumption (4), in particular, is a standard and mild persistent ex-
suggests that these results could be revisited for alternative recoitation condition.
struction strategies, and that the rate-distortion performance wouldrhe independence assumption on the vecigris, however, some-
be improved. Since our result is asymptotic in the oversampling ratidhat restrictive, especially for analysis with determiniatic While it
and does not yield simple expressions for distortion, this analysis migyossible that this assumption can be replaced with suitable averaging
be difficult. This result may also be of interest to harmonic analyst®onditions as in [4], [17], the analysis is considerably more difficult
studying the robustness of various overcomplete representations, saeth will not be considered here. It should be noted that Assumption
as nonorthonormal discrete wavelet expansions [14]. 1 does not require the vectars to be identically distributed or have

Also related to bounded noise estimation are various deterministiero mean.
an_alyses (see[15], [16] and the re_ferences therein). Dgtermlnlstlc anaLT’heorem 2: Fix a vectorz € R", and consider the algorithm (2)
ySIS concerns vyorst case gst|mat|on pe.rformance subject t(.) b.oun.d?agtri]ng on a sequence of observatigpgiven by (1). If Assumption 1
the noisez;.. This formulation does not incorporate any statistical in- -

. . ) . Is satisfied then, for every < 1
formation on the noise and will not be considered here.

Our analysis of the recursive algorithm is based loosely on a standard ||& — &¢||k? — 0 almost surely
stochastic approximation argument. A comprehensive survey of sto-
chastic approximation methods can be found in the books by Kushner
and Lin [17] and Ljung [4]. The lower bound is derived from a recently Theorem 2 is our main result on the performance of the algorithm (2).
developed version of the Ziv—Zakai bound [18] presented in [19]. The result states that, under suitable assumptions, the estimation error

Proof: See Appendix B. O
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|l — #1])* converges to zero, and for all< 1, the rate of convergence  This last estimate shows that ||f;|| is bounded over alf, then
is o(k™27). In this sense, the MSE is “almost)(1/k?). As stated in A(v) < oo for anyv. Now Theorem 3 implies that ik (¢;) < oo
Section |, this rate is superior to tli&1/%) attained by classical least for anyi, then

squares estimation.

lim inf EE|jx — &> > 0.

Consequently, if the normige;|| are bounded, the MSE of any esti-
Ill. BAYESIAN LOWER BOUNDS AND OPTIMALITY mator #, is bounded below by)(1/%*). Since we have shown that
the recursive estimator (2) achieves an MSE/%?F) for all p < 1,
We now derive a lower bound to the MSE. A consequence of th{§® can conclude that the proposed recursive estimator has an “almost”
bound will be that the)(1/n) rate of convergence of the recursivePPtimal rate of convergence.
estimator (2) is asymptotically optimal.
Our derivation is based on a recently developed version of the
Ziv—Zakai bound given in [18], [19]. Unlike the basic form of the IV. A N UMERICAL EXAMPLE
better known Cramér—Rao bound, the Ziv—Zakai bound does not
require smooth distributions or unbiased estimators. We derive th
bound under the following assumption. re

s a numerical test, we compared the performance of the proposed
cursive algorithm against two other reconstruction methods: a linear
programming (LP) algorithm and a classical recursive least squares
Assumption 2: For the observations (1) (RLS) algorithm. For each of the algorithms, we measured the average

a) e is ani.i.d. process with, uniformly distributed orj—¢, 4]. MSE as a funct_lon of the number of samples.. _

b) = is an unknown vector with a continuous distribution function 1€ LP algorithm selects the vectowhich minimizes thé- norm

px (2). of the residual sequengg — a),z. This estimate corresponds to the
ML estimate when both andé are treated as unknown. The compu-

In these assumptions, the unknown veotds modeled as a random tation of the LP estimate involves the solution of a linear program with
variable with givera priori distribution, and the vectors; in (1) are + 4+ 1 variables an@n constraints, where is the number of samples.
assumed to be known and deterministic. This formulation providesTais computation cannot be implemented recursively, and the linear
simple framework for deriving a lower bound, although the assumprogram must be recomputed with each new sample. The LP estimate
tions differ somewhat from Section II. is the most computationally demanding of the three algorithms tested,

The following theorem is the main result of this section. In the statgut is the only one that produces estimates consistent with the noise
ment of this theorem, aestimatorwill simply mean any sequence of bounds on all the samples available.
functions on the datai,. = #«(yo, ..., ys—1) € R". The RLS algorithm selects the vectowhich minimizes the, norm
of the residual sequengg — a), . The RLS estimate is not, in general,
consistent with the noise bounds on the data, but can be computed with
a simple recursive update [5].

For the test, data in (1) was generated wite= 4 and{«.} being
an i.i.d. process, uniformly distributed on the unit spher&in We

Theorem 3 (Ziv—Zakai Bound)Fix a set of vectora, and consider
the observationg,, in (1). Under Assumption 2, the following holds
for any estimatotty:

liminf B Elle — &* > ) 26%Algi) used a noise bound ¢f = 1. The algorithms were started with an
k—oo T initial error ofz — 29 = [1, 1, 1, 1]’. Fig. 2(a) shows the results of a
single simulation. As expected, the proposed recursive method yields
whereg; is theith standard unit vector and nonincreasing distortion.

Fig. 2(b) shows the averaged results of 1000 simulations. Also
) plotted is the Ziv—Zakai MSE lower bound from Theorem 4. The

A(v)= min hm sup - Z |a/ ). (5) asymptotic §Iop(_as of the curves confirm tHg1/n) M_SE for Ieast_

wiwv=1 oo K = squares estimation and tii&1/»?) MSE for the consistent LP esti-
mation and the proposed algorithm. While very simple and recursive,
the proposed algorithm performs only a constant factor worse than
the nonrecursive consistent reconstruction and the theoretical lower
bound.

Theorem 3 provides a lower bound on the MSE in terms of the vec-

torsay and noise magnitude For largek, A(v) can be approximated
by V. IMPLICATIONS FOR SOURCE CODING AND DECODING

forv € R".
Proof: See Appendix C. O

o Thus far our discussion has been limited to the problem of estimating
A(v) = min Z ] x given they, anda, sequences. In this section, we consider the impli-
cations for using an entropy-coded versiorypfas a source encoding
for . Specifically, lete € R" be an arbitrary source vector. A repre-
and the minimization can be solved by linear programming. This préentation ofr can be formed through = Qx (Ax), where4 is an
vides a method for computing a lower bound on the achievable MIEX r matrix andQ « (-) is an optimalk’-dimensional entropy-coded
for largek. Alternatively, one can take = v/v'v, and use the bound dithered lattice quantizer [20], [21]. (ThE = 1 case is the uniform
scalar quantizer used in previous sections.)
If @ comes from sampling a band-limited, periodic signal at the
A(v) < limsup — Z | Ay Nyquist rate and4 is a Fourier matrix, this corresponds to the en-
k—oo v coding for band-limited continuous-time signals considered by Zamir

w: w/v=1

a; U
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and Feder [12F They showed thatjsing least squares reconstruction 102 ‘ , . :

the MSE for the scheme is fixed as long as the ratio of the oversampling e RLS

factor to the second moment of the quantizer is kept constant. They also 1o’ --- ]
. . . . .. —— Recursive

showed that as the dimension of the lattice quantizer is increased, the

performance of this scheme for a Gaussian source and MSE distortion
measure approaches the rate-distortion bound [13].

Instead of least squares reconstruction, we now consider using al-
gorithm (2) for estimating the vectar from the quantized data =
Qx (Az). Although our analysis does not directly apply to the case
when A is a deterministic matrix, Assumption 1c) is satisfied under
any arbitrarily small random perturbation of the rows4fThus, our !
analysis for random matrices$ should apply taenericdeterministic
matrices as well.

Also, although we have described the algorithm (2) only for the

Squared-error distortion

scalar quantization casE = 1, it is straightforward to extend the 0 200 400 Samples 600 800 1000
algorithm to the lattice quantization case when> 1. For thek’ =1 P
case, we have taken each sample to specify a pair of hyperplane con- ()

straints one. This can be viewed as a rotated and shifted version of
the Cartesian product of a one-dimensional (1-D) lattice quantizer cell

. _ . . N AR Rr RLS
(an interval) andR"~'. For generalk’, each set ofi’ samples speci- S
" . . . . 0 H
fies a constraint or that is a rotated and shifted version of the Carte- 10 . ?;fg;fé‘fbound

sian product of @ -dimensional cell wittR" . An iterative recon-
struction algorithm could update its estimate evkrgamples with the
nearest point of this set.

Our results show that the reconstruction algorithm (2), or the ex-
tension of the algorithm for lattice vector quantization, will attain an
O(1/R?*) MSE, whereRR = n/r is the oversampling ratio. This rate
is superior to th€(1/ R) rate attained by least squares reconstruction.
We conclude that a reconstruction algorithm which utilizes the hard
bounds on the quantization error will have rate-distortion performance
better than that described in [12], [13]. In the limit of high oversam-
pling, the MSE would remain fixed when the ratio of tequareof 1075 200 700 500 500 1000
the oversampling ratio to the second moment of the quantizer is kept Samples
constant. Furthermore, with the extension to lattice quantization, the )

performance approaches the rate-distortion bound more quickly as the
lattice dimension is increased. Fig. 2. Comparison of three reconstruction algorithms. “RLS” refers to the
recursive minimumny;-error reconstruction; “LP” refers to a linear program
reconstruction which computes an estimate consistent with the smallest possible
VI. CONCLUSION noised; and “Recursive” refers to the proposed algorithm. “ZZ lower bound”

. . . .. is the Ziv—Zakai theoretical lower bound. (a) Single simulation. (b) Average of
We have presented a simple, recursively implementable algorithffog simulations.

for estimation with uniformly distributed noise. This algorithm exhibits

anO(1/n?) MSE wheren is the number of samples. It is shown that

this rate is asymptotically optimal to within a constant factor. More- . . )
over, the rate is faster than th&1/») MSE attained by classical least"umberm of samples. Th's woult_:i again improve performance but in-
squares methods. crease complexity; the increase in complexity jumps wieexceeds

However, while the proposed estimator has an optimal order of thpecause the consistent set is not a Cartesian product of intervals.

vergence, there is still considerable potential for improvement. Our nu_These results serve as areminder that simple linear filtering is not op-

merical tests indicated a large gap in performance between the re¢[ffal for removing non-Gaussian additive noise, even if itis white. Ac-
sive estimator, and both the nonrecursive linear programming metHtfdingly, the improvement from consistent reconstruction in [6], [7],
and the theoretical lower limit. We are currently investigating variodg]_'s not because of th? determinism Of_ quantlz_atlon noise, butbecause
methods to reduce this gap, while maintaining the recursive algorithn?5tS Poundedness. Itis an open and interesting question whether the
computational simplicity. One promising avenue is to employ the J@sult_s pr_esented in this correspondencg can be e_xtended to un_dlthered
lipsoidal bounding methods presented in [23] which have been usedW}a”“Z‘_"‘t'on' thus at least partially settling a conjecture of [9] in the
deterministic estimation problems [15], [16]. afnrma_mve. ) L .
Of course, if we are willing to sacrifice recursiveness we may cycle Motivated by a source-coding application, and for concreteness in
through the data more than once, or we may reuse the data accordi goProof of Thec’“?m 2’_ uniformly distributed noise was ass,‘%med-
a sliding window. In either case, the performance would be improv&iPWever. the algorithm itself uses only the bound on the néise
with an increase in complexity proportional to the number of times eadfiS raises the broader issue of the value of hard information. It
data point is used. Since our focus was on obtaining thedsdst of seemf, thaE hard |nforr_n_at|_on may be _fundamentally more informative
convergencethis was not explored. We may also define a consistefffan "soft,” or probabilistic, information. In many systems, all the

set to project to not based on a single sample, but rather based on sgi@iga!S—including the noise—can be bounded using certain physical
considerations. This sort of “hard” information should be exploited

2A similar situation without the constraint of periodicity is studied in [22]. fully.

Squared-error distortion
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APPENDIX A
PROOF OFTHEOREM 1
Letwr = x — &5. We must show thatwi+1|| < |Jwk||. Rewrite
(2) as
ak

W41 = Wk — —
alw‘,al“

o(apwy + e ).
Taking the norm of both sides and manipulating the result gives

[—2up + ¢(ur +ex)]  (6)

. h(uwp + ep
s 7 = fla |+ 2L )
alay

whereu;, = aj,wy. Now, it can be verified from the definition af in
(3) that for anye € [-6, 6] andu € R
olute) >0« u>0
olu+te)—2u>0< u<0.

Thus, sinces;. € [—6, 6]
d(up + er)(P(ur + ex) — 2uy) < 0.

Hence, (6) shows thdltw11|| < ||wk|| for all k.

APPENDIX B
PROOF OFTHEOREM 2

It suffices to prove the theorem for € (1/2, 1). Thus, fix any
p € (1/2,1) and letz;, = kP (x — 4% ). We must show that;, — 0
almost surely.

The proof will follow that of [17, Theorem 5.4.2]. For> 0, define
the set

Qx={z e R[|I=|I” <AL

We will show that there exists a constarit > 0 such that for all
A > 0, the following two events occur almost surely:
a) the set). isrecurrent, i.e.z; returns toQ) infinitely often; and
b) there are at most a finite number of transitionspfrom @ to
Qfi+cp)a-
Together, these two assertions imply that, for\at 0 and all% suffi-
ciently large,zi. € Q(14c,)x- Thatiis,

limsup ||z ]]* < (14 C1)A.
v

Since thisistrue foralh > 0, z; — 0 almost surely, which s precisely

the statement of the theorem.
We begin by proving assertion a).

Lemma 1: For allA > 0, the sek), is recurrent.
Proof: Usingzy = (z — #)kP, rewrite (2) as

4+ 1\? k+ 1DPay | _
Zhyr = <T> Zh — (,¢¢(a2»ZL:L' Ptoer).
ayag

(@)

Assumption 1a) implies that, is a Markov process.
Let V(z) = ||z]|* andVi = V(z:). Denote byE,(-) the con-

ditional expectation given,. The lemma will be proven with the
following standard Martingale result (see, for example, [17, Theoreﬁz\

4.4.4]): if there exisf” > 0 and K" > 0 such that

EViy <Vp - K, when k& > T andV;, > A (8)

then the set), = {z|V(z) < A} is recurrent. Thus, the lemma re-

duces to showing (8) for son¥ > 0 and X’ > 0.
Unfortunately, proving (8) requires us to estim#eVi+1 — Vi,

which demands a somewhat long and tedious calculation. For space

considerations, we will omit many of the details.
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Squaring both sides of (7), one can obtain

: E+1\"
vl = (5 ) el + ©)
where
. 2p
hy = (11—1;71) [652(71//@ +er) — 20(ug + Gk)"/c]
ay ak
uy, =k Paj zg. (10)

2p

Sincep € (1/2, 1), the mapw — w*? is convex imv so

E+1\*
—1<
() -1

Using this inequality along with (9) and the fact tHat = ||z ||* we
get

2
L.

, ;2
Vi < Vet lell® + P (11)

We next computeE ;. To this end, supposeis a constant and
is uniformly distributed orj—¢, §]. Then it can be verified that

E [¢*(u+e) — 2ud(u+e)] = —p(|u]) (12)
where
1 3 .
wlu) = %Ju T ul < 26 (13)
lul> = 267, Ju| > 26.

Also, by explicitly computing the derivative gf(w), it can be shown
that the derivative is monotonically increasing and hepég convex.

Now, sincez, is independent of, andz,, we can apply (12) to (10)
to obtain

(k+1)%

E(h"‘r|37~"/ a’ﬂ) = - \,/(|(127;/},~k7p|)

ayag
(k+1)%r
< - 7
- M
where in the last step we used the bound in Assumption 1c). Taking
expectations ovet,, using the fact that, is independent of, and
using the estimate in Assumption 1c)

(k+1)%F
M

Pk k)

Ey hy = E(hg|ze) < — Ek;p(|a;,2kk’7p|)

E+1)% -

<_ <T)¢(E,€|a;€;kk 4)
E+1)% —p

< - EEDT Gl ag)

Note that we have used the convexity ofalong with Jensen’s in-
equality. Finally, using (13), it can be shown that for ang 0, there
exists ak” > 0 andT > 0 such that

_ 2 . .
plolzlk ) > Zl|* + &

whenk > T and||z||* > A. Using this along with (11) and (14) shows
), and the proof of the lemma is complete. O

We now turn to proving assertion b) stated at the beginning of the
proof. This will be done in the next three lemmas. We will continue to
use the notation in Lemma 1.

Lemma 2: There exist constants; > 0 andC> > 0 such that for
allk > 0andz
Pr(hy < =2C1 ||z |25) > Cok™"
whereh, is defined in (10).
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Proof: Fork > 0, define the events and
A ={ek €6 —ur/2, 5]U[=6, =6 —ug/2]}
By = {lakzk| > ollz]l/2}

where, as before;, = k™ ?aj,z,. Using the definition ofs in (3), it
can be verified that if the event; occurs, then

our + er)’ — 2urd(ur +ex) < —ui/? = —k72p|akz;¢ 2/2.
Hence, (10) and Assumption 1c) show that if bath and B, occur

ak —2 > ak/2. (29)
Then, ifk > N, ||z]12 € (A, (1+C1)N) and|| 2141 ||?
(18) show that
hie > lzrel” = (L4 1/B) ||kl
>\ — (142C)A = —2C X > —2C4 || =%
Therefore, Lemma 2 implies thatif > N and||z¢||* € (\, (1 +

> A, (11)and

(k+1)% ” A
hkS UT'ak < 2‘[””‘” /1) ) ) ,
We set’; = ¢2/4 M, so that the lemma will be proven, if we can sho Prillzrll” 2 Mzw) < Pr(hy 2 =2C1z4 1)
1 =0 pi7 N Wi p v , [T W W Sl_L—pCZHZk”ZS1_}‘713(42)\
/ L.—P
PT(A}; n B},»|Z],r-,) > Cqok (15) Therefore,
for someC> > 0 and allk > 0 andzy. P 2 2 —»
> Al |z A A+CHA)) <1 -EkE""CoM (20
To find aC', > 0 such that (15) holds, first observe that sirges ) 2 Mzl e A L+ C)Y) < 2A- (20)
uniformly distributed orj—4, §] and is independent af, andz Now, if = has arun fromk to (1+C1)A atn, we have shown above
that the length of this run must be at least. Hence,
PriA lue] _ klag 2 ) ,
r(Ax|zk, ar) = 15 T [|z&]]” € (A, (1 4+ C1)A), forall k € (n, n + an).
Hence Using (19), (20), the Markov property of , and the inequalitiog (1 —
x) < —u, the probability of a run at must be less than
PT(A"'|BI~"7 Z""') - 8k 6 ||’4I‘ || (16) n+an—1
H (1 —k7PCoN) < (1 —n"PCoA)*"
Also, using Assumption 1c) [ it
e ) = exp[(an — 2)log(1 — n "Ca)]
1 1 — nl—®
< gollzell + V|l Pr(laizs] 2 Sollzellz) < exp(=(an/2n~"CA) = p
and, therefore, where
—aCa A/
Pr(Byi|z1) = Pr(|a, =] > a||~,‘|||~,‘) Z‘TW 17) p=e M1
Thus, if we define This completes the proof of the lemma. O
c a2 Our final lemma proves assertion b) made at the beginning of the
2= 166/ proof.

(16) and (17) show that (15) holds for &l > 0, and the lemma is = -emma4:LetA > 0 and [etC's be as in Lemma 2. Then there can
proven. [ be atmost a finite number of runs fralnto A1+ CY).

Proof: Let P, denote the probability of arunatfrom A to A\(1+
Now, fixaA > 0. The sequence,. will be said to have aunfromX (). Lemma 3 states that far > N

to 41 atr if there exists ame > 0 suchthat]z, [|* < A, ||zatm|® > &, p o< 7

¢ (\p)foralk € (n,n + m). The numbem will n=P

be called thdengthof the run. The next lemma will show that as Hence

increases, the probability of a runabbecomes small. > = i- oo -
P y ZP,L§Z/)'11P</ pllpd;r
Lemma 3: LetA > 0 and letC, be asin Lemma 2. Then there exist n=N n=N N-1
constantsV > 0 andp € (0, 1) such that fom > N, the probability _ 1 e uP! =) gy < oo
of a run atn. from A to (1 4+ C1)\ is less thap™  ~ 1—p Jiv > o '

Proof: We first claim that there exists am > 0 such that the The result now follows from the Borel-Cantelli lemma. O
length of any run from\ to (1 + C1 ) atn is at leastvn. To see this, ) o
suppose;, has a run ab of lengthm. Then Lemmas 1 and 4 prove assertions a) and b) made at the beginning of

A S o2 = n® a2 the proof. As argued there, these two facts prove the theorem.
= Zn —_— W
(14 COA < lzntml® = (0 + ) [t ||
APPENDIX C
wherew;, = x — &3, as before. By Theorem iy, 4. || < ||w. ||, and, PROOF OFTHEOREM 3
therefore,

2P 2 We begin with describing the general Ziv—Zakai bound. For any
LN [[wn® _ > < n ) ) vectorzo € R, let Pr(-|zo) denote the conditional probability given
1+C1 = (n+m)?|lwngm|® = \n+m the unknown vector = z,. Given vectorseg, 21 € R”, let
This implies that withy = (1 + C1)*/?? —1 > 0, we havem > an.
Thus, the length of any run atis at leastvn.
Now chooseV such thatc > N implies that (21)
where the minimum is taken over all estimatars. The quantity
Prin, k (21, 20) represents the minimum probability of error in

.1 . .
Prin, £ (21, 0) = min 5 [Pr(2r = x1|xo) + Pr(&,r = wo|1)]

<1+%)(1+01)31+201 (18)
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estimatinge given thate is a priori known to be either; orxy. The Using Lemma 5
Ziv—Zakai bound can now be stated as follows.

Theorem 4: Suppose thaPuin, » (1, o) is only a function of Pr(‘/fi’ = @ileo) =Pr(a1 € Quly)leo) = Pi(wr = o) (28)
xr1 — Yo, i'e'v Pmln k(71 TU) - Prnln k( r — TU) Then fOI’ any PT((IT;‘» = IO"/EI) = 1 - Pr(wl e SZL(y)|I1) (29)
vectorv € R™ and estimatoti:, =1— P (x, —a)=0. (30)

T 2|2 - Al . )
Elv'(z — )" 2 /0 w:nj?f:h[hz{(uf)Pmm,k(u)] h - (22) Substituting (28) and (30) into (27) proves the result. O

where Now, using the above expression fdfuin, (21, xo) in the

A(w) = / min(px (2), px(z + w)) da 23) Ziv—Zakai bound, we obtain the following.

Lemma 7: If v € R" andi;. is any estimator
andpx () is thea priori distribution ofx.

C e e g2 F a2 o2 _2
Proof: See [19, Property 4]. O liminf "Bl (z = 20)[" 2 20°A()

To apply this bound, we must derive expressions Agw) and WhereA(v) is defined in (5). . .
Prin. x(w). We begin the derivation with a simple computation. For ~ Proof: Substituting (25) into the Ziv—Zakai bound (22) and per-

any sequence;, let forming a change of variables gives
Q ER iy, —dix| <6, Vj=0,..., kb Y .
ely) = {= lys = ael < ] J o ; ) PEl (x — 21)]? > —/ max  [hA(w)Pr(w)]dh
That is,€2(y) is the set of vectors consistent with the observations w: wiv=h
y; up to timek. Our first lemma provides a simple expression for the _ hA hw P hw m
probability that a given vector lies within this consistent set. - 2 o wiwet |0\ E )RR

Lemma 5: For any constant vectors), 1 € R" (1)

Pr(z; € Q(y)|wo) = Pe(z1 — 20) where A(w) is defined in (23). The lemma can now be proven by
simply taking the limits ag — oo.

where
First consider the functiod (w). Using the Dominated Convergence
k |asv] Theorem and the continuity @fx (z)
=0 * | hﬁrn A(w) = / " hﬁrn min(px(z +w), px(w))dz
w||—0 e
and[u]+ = max(u, 0).
Proof: For anyj, e, is uniformly distributed or[—$, §], and, = /px(r) dr = 1. (32)
therefore, .
Pr(ly; — dyar| < 8|eo) = Pr(|a) (z0 — 21) + ;] < ) For the functionP, (w), we note that for smailb
_ ) (21 — 20)] u |a;w]
= |:1—T L Pi(w) = exp ;log(l— 2% )
Since thee;’s are independent L&
Prizs € u(ylro) = Prly; - dier| <6 j=0.... k) R exp [—25 3 ||}
j=0

|f1 v|
= H {1 - N = Pe(er —20). O \here we have used the fact theg (1 — =) ~ —z for smallx. Thus

hmmf exp [—m Z |a) w|:|

We next computéi'mm,k(ml, xp) defined in (21).

liminf P (%)
Lemma 6: Forzo andz; € R” koo '

Puuin, k(21, 20) = %Pk(it‘l — o) (25) = exp {—%j\o(w)} (33)
whereP;, is given in (24).
Proof: A standard hypothesis testing result states that the esthere
mator achieving the minimum in (21) is given by the ratio test
N if py|x(ylz1) > pyx(ylxo) Ao(w) = hm sup Z ;).
i = { (26)
To, else
where py|x (y|z) is the conditional probability distribution of note that
Yo, - .., Yr givenz. This estimator is optimal in that
Poin, 1 (71, 7"0) = 1[P" k = T1|To +PT( Ty = T0|T1 ] (27) A(U) B 10113}1'1:1 Ao(w). (34)

Now, sincey, = ajz +¢e; ande; isi.i.d. withe; uniformly distributed Using (31)—(34) and Fatou’s lemma

on[6, ] ‘
=5.0] li}}niuf B (x — &)

\ N\ —k
pyvix (Wlri) = Ya,e, () (26) . 00 .
= > %/ lim inf |: max. hA <hktu> Py <h%>:| dh
Thus, the estimator (26) simplifies to o Koo fwrwiv=l

x x, if @ (1 1 [ hw hw
Fp(y) = {‘Ll if 21 € L (y) 5/ max |:hm inf hA < v ) Py < 7_1 ):| dh
0 w: w/v=1 k k k

o, else.

Y
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