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Recursive Consistent Estimation with Bounded Noise

Sundeep Rangan, Member, IEEE,and Vivek K Goyal, Member, IEEE

Abstract—Estimation problems with bounded, uniformly distributed
noise arise naturally in reconstruction problems from over complete linear
expansions with subtractive dithered quantization. We present a simple
recursive algorithm for such bounded-noise estimation problems. The
mean-square error (MSE) of the algorithm is “almost” (1 ), where

is the number of samples. This rate is faster than the (1 ) MSE
obtained by standard recursive least squares estimation and is optimal to
within a constant factor.

Index Terms—Consistent reconstruction, dithered quantization, frames,
overcomplete representations, overdetermined linear equations.

I. INTRODUCTION

It is common to analyze systems including quantizers by modeling
each quantizer as a source of signal-independent additive white noise.
This model is precisely correct only when one uses subtractive dithered
quantization, but for simplicity it is often assumed to hold for coarse,
undithered quantization [1]–[3]. What can easily be lost in using this
model is that the distribution of the quantization noise can be important,
especially its boundedness.

This correspondence focuses on solving an overdetermined linear
system of equations from quantized data. Assuming subtractive dither,
this can be abstracted as the estimation of an unknown vectorx 2 r

from measurementsyk 2

yk = a
0

kx+ ek; 0 � k � n� 1 (1)

where eachak 2 r is a known vector and theek ’s are independent and
identically distributed (i.i.d.) random variables distributed uniformly
on [��; �]. 1 The maximum noise magnitude� > 0 is half of the
quantization step size and is knowna priori. Estimation problems of
this form may arise elsewhere as well. At issue are the quality of re-
construction that is possible and the efficient computation of good es-
timates.

The classical method for estimating the unknown vectorx is least
squares estimation, which attempts to findx̂ such that thè2-norm of
the residual sequenceyk�a0

kx̂ is minimized [4], [5]. Least squares es-
timators have been extensively studied and admit efficient implementa-
tions. Under mild assumptions, least squares estimates are guaranteed
to converge to the true value as the number of samples grows to infinity.

However, least squares estimation may produce an estimate which
not only differs from the maximum-likelihood (ML) and minimum
mean-squared error estimates, but also is inconsistent with the bounds
on the quantization noise. With the bound onek, each sampleyk in (1)
places certain hard constraints on the location of the unknown vector
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with EEE andPrPrPr, respectively.

x. Least squares estimates are not in general consistent with these con-
straints. Since the constraints are convex, least squares estimates can
be improved by projecting onto a set of estimates that are consistent.

Recently, it has been suggested that this improvement can result
in faster order of convergence [6]–[9]. Numerical tests showed that,
after applying consistency constraints, estimates can attain anO(1=n2)
mean-squared error (MSE). Classical least squares estimation, which
does not, in general, satisfy the hard constraints, attains only anO(1=n)
MSE.

The behavior and implementation of consistent estimation methods
are not fully understood. While theO(1=n2) MSE for consistent esti-
mation has been observed in a number of simulations, the decay rate
has only been proven for certain setsfakg. The most general condi-
tions under whichO(1=n2) MSE is provably attainable are not cur-
rently known.

In addition, consistent estimation is difficult to implement recur-
sively. Givenn data points, finding a consistent estimate requires the
solution of a linear program withr variables and2n constraints. No
recursive implementation of this computation is presently known. The
linear program must be recomputed with each new observation and the
size of the problem grows to infinity.

This correspondence introduces a simple, recursively implementable
estimator with a provableO(1=n2) MSE. The proposed estimator is
similar to the consistent estimation method of [7], [9], except that the
estimates are only guaranteed to be consistent with the most recent data
point. The estimator can be realized with an extremely simple update
rule which avoids any linear programming. Our main results show that,
under suitable assumptions on the vectorsak, the simple estimator “al-
most” achieves the conjecturedO(1=n2) MSE.

We will also show that under mild conditions on thea priori prob-
ability density ofx, the MSE decay rate of any reconstruction algo-
rithm is bounded below byO(1=n2). Thus the proposed estimator is
optimal to within a constant factor. AnO(1=n2) lower bound has also
been shown in [10] under weaker assumptions that do not require uni-
formly distributed white noise. However, with the uniformly distributed
white-noise model considered here, we will be able to derive a simple
expression for the constant in this lower bound.

A. Summary of Contribution

As noted above,O(1=n2) MSE results have already appeared in the
literature. This work has two distinguishing features: First,O(1=n2)
MSE is obtained with an extremely simple algorithm that works re-
cursively, i.e., uses each observation only once, with no increase in
memory usage with time. Second, the requirement on the set of mea-
surement “directions”fakg is very mild (see Theorem 2). Until re-
cently, the only publishedO(1=n2) MSE upper bounds for finite-di-
mensional signal spaces were derived from the analogous result for
oversampled analog-to-digital (A/D) conversion of periodic band-lim-
ited signals [6], [7]. Thus, they were applicable to a particular family
of fakg sets known as Fourier frames [9]. A new approach reported
in [11]—not based on consistency—attainsO(1=n2) MSE more gen-
erally when theak ’s are uniform samples from a closed curve inIRr ;
still, Theorem 2 given here is more general.

The previous paragraph requires a note of moderation because the
estimation problem in this correspondence differs somewhat from
those in [6]–[11]. These previous works used measurements from an
(undithered) uniform quantizeryk = q(a0

kx). The bounds are for
the squared error in estimating a fixed vectorx while increasing the
number of measurementsn; constant factors in the bounds depend on
x. Furthermore, when eachak has equal norm—as assumed in these
works—signal vectorsx within a small ball centered at the origin
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Fig. 1. Geometric partitions induced by representingx 2 by quantized
versions offa xg . Discrete Fourier frames are used [9]. Comparing the first
and second row shows that doublingn roughly quadruples the number of cells;
this is the fundamental reason forO(1=n ) MSE behavior. When undithered
quantizers are used (left column), the properties of the partition depend on the
distance from the origin. Analysis is easier with dithered quantization (right
column) because the partition is shift-invariant.

must be excluded from consideration. As shown in Fig. 1, ifx is close
to the origin its radial component is not refined asn increases.

Use of dithered quantization gives us the simple model (1). The par-
tition this induces is shift-invariant, as shown in Fig. 1. We are able to
analyze performance by taking expectations overfekg, obtaining re-
sults that do not depend onx.

B. Related Work

To further contextualize this work, we should mention several more
lines of related research. Zamir and Feder [12], [13] have studied the
rate-distortion performance of a system which uses entropy-coded
dithered quantization of anoversampledcontinuous-time signal and
linear least squares reconstruction. Our main result (Theorem 2)
suggests that these results could be revisited for alternative recon-
struction strategies, and that the rate-distortion performance would
be improved. Since our result is asymptotic in the oversampling ratio
and does not yield simple expressions for distortion, this analysis may
be difficult. This result may also be of interest to harmonic analysts
studying the robustness of various overcomplete representations, such
as nonorthonormal discrete wavelet expansions [14].

Also related to bounded noise estimation are various deterministic
analyses (see [15], [16] and the references therein). Deterministic anal-
ysis concerns worst case estimation performance subject to bounds on
the noiseek. This formulation does not incorporate any statistical in-
formation on the noise and will not be considered here.

Our analysis of the recursive algorithm is based loosely on a standard
stochastic approximation argument. A comprehensive survey of sto-
chastic approximation methods can be found in the books by Kushner
and Lin [17] and Ljung [4]. The lower bound is derived from a recently
developed version of the Ziv–Zakai bound [18] presented in [19].

II. PROPOSEDALGORITHM AND CONVERGENCEPROPERTIES

Supposex 2 r is an unknown vector, and we obtain a set of obser-
vationsyk given by (1). We wish to find an estimatêxk of the unknown
vectorx from the datayi andai for i = 0; 1; . . . ; k � 1. The noise
ek is unknown, but bounded:jekj � � for all k.

We propose the following simple recursive scheme:

x̂k+1 = x̂k +
ak

a0

kak
�(yk � a

0

kx̂k) (2)

where

�(e) =

0; if jej � �

e� �; if e > �

e+ �; if e < ��.
(3)

(� is a soft-thresholding function.) Any initial estimatex̂0 may be used.
The motivation behind this estimator is simple. If an observationyk

is consistent with the estimatêxk (i.e., jyk � a0

kx̂kj � �), then the
estimate is unchanged; that is,x̂k+1 = x̂k. If the observation is not
consistent, then̂xk+1 is taken to be the closest point tôxk consistent
with the observation.

We will prove two results concerning this algorithm. The first result
states that the estimation error decreases monotonically for any noise
sequenceek with jekj � �. No statistical assumptions are made.

Theorem 1: Fix a vectorx 2 r , and consider the algorithm (2)
acting on a sequence of observationsyk given by (1). Ifjekj � �, then

kx� x̂k+1k � kx� x̂kk:

Proof: See Appendix A.

For the second result, we impose the following assumption.

Assumption 1:For the measurements (1) and algorithm (2)

a) ek andak are independently distributed random processes, inde-
pendent from each another;

b) ek is uniformly distributed on[��; �]; and
c) there exist constantsM > 0 and� > 0 such that for allk,

kakk
2 � M , and

EEEja0

kzj � �kzk 8 z 2 r
: (4)

The assumptions provide the simplest scenario in which to examine
the algorithm, and are similar to those used in the classical analysis of
the least mean squares (LMS) algorithm (see, for example, [4], [5]).
The assumption (4), in particular, is a standard and mild persistent ex-
citation condition.

The independence assumption on the vectorsak is, however, some-
what restrictive, especially for analysis with deterministicak. While it
is possible that this assumption can be replaced with suitable averaging
conditions as in [4], [17], the analysis is considerably more difficult
and will not be considered here. It should be noted that Assumption
1 does not require the vectorsak to be identically distributed or have
zero mean.

Theorem 2: Fix a vectorx 2 r , and consider the algorithm (2)
acting on a sequence of observationsyk given by (1). If Assumption 1
is satisfied then, for everyp < 1

kx� x̂kkk
p ! 0 almost surely:

Proof: See Appendix B.

Theorem 2 is our main result on the performance of the algorithm (2).
The result states that, under suitable assumptions, the estimation error
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kx� x̂kk
2 converges to zero, and for allp < 1, the rate of convergence

is o(k�2p). In this sense, the MSE is “almost”O(1=k2). As stated in
Section I, this rate is superior to theO(1=k) attained by classical least
squares estimation.

III. B AYESIAN LOWER BOUNDS AND OPTIMALITY

We now derive a lower bound to the MSE. A consequence of this
bound will be that theO(1=n2) rate of convergence of the recursive
estimator (2) is asymptotically optimal.

Our derivation is based on a recently developed version of the
Ziv–Zakai bound given in [18], [19]. Unlike the basic form of the
better known Cramér–Rao bound, the Ziv–Zakai bound does not
require smooth distributions or unbiased estimators. We derive the
bound under the following assumption.

Assumption 2:For the observations (1)

a) ek is an i.i.d. process withek uniformly distributed on[��; �].
b) x is an unknown vector with a continuous distribution function

pX(x).

In these assumptions, the unknown vectorx is modeled as a random
variable with givena priori distribution, and the vectorsak in (1) are
assumed to be known and deterministic. This formulation provides a
simple framework for deriving a lower bound, although the assump-
tions differ somewhat from Section II.

The following theorem is the main result of this section. In the state-
ment of this theorem, anestimatorwill simply mean any sequence of
functions on the data:̂xk = x̂k(y0; . . . ; yk�1) 2

r .

Theorem 3 (Ziv–Zakai Bound):Fix a set of vectorsak and consider
the observationsyk in (1). Under Assumption 2, the following holds
for any estimator̂xk:

lim inf
k!1

k2EEEkx� x̂kk
2 �

r

i=1

2�2�(qi)
�2

whereqi is theith standard unit vector and

�(v) = min
w: w v=1

lim sup
k!1

1

k

k�1

j=0

ja0jwj: (5)

for v 2 r .
Proof: See Appendix C.

Theorem 3 provides a lower bound on the MSE in terms of the vec-
torsak and noise magnitude�. For largek, �(v) can be approximated
by

�(v) � min
w: w v=1

1

k

k�1

j=0

ja0jwj

and the minimization can be solved by linear programming. This pro-
vides a method for computing a lower bound on the achievable MSE
for largek. Alternatively, one can takew = v=v0v, and use the bound

�(v) � lim sup
k!1

1

k

k�1

j=0

ja0jvj

v0v
:

This last estimate shows that ifkajk is bounded over allj, then
�(v) < 1 for any v. Now Theorem 3 implies that if�(qi) < 1
for any i, then

lim inf
k!1

k2EEEkx� x̂kk
2 > 0:

Consequently, if the normskajk are bounded, the MSE of any esti-
mator x̂k is bounded below byO(1=k2). Since we have shown that
the recursive estimator (2) achieves an MSEo(1=k2p) for all p < 1,
we can conclude that the proposed recursive estimator has an “almost”
optimal rate of convergence.

IV. A N UMERICAL EXAMPLE

As a numerical test, we compared the performance of the proposed
recursive algorithm against two other reconstruction methods: a linear
programming (LP) algorithm and a classical recursive least squares
(RLS) algorithm. For each of the algorithms, we measured the average
MSE as a function of the number of samples.

The LP algorithm selects the vectorx which minimizes thè1 norm
of the residual sequenceyk � a0kx. This estimate corresponds to the
ML estimate when bothx and� are treated as unknown. The compu-
tation of the LP estimate involves the solution of a linear program with
r+ 1 variables and2n constraints, wheren is the number of samples.
This computation cannot be implemented recursively, and the linear
program must be recomputed with each new sample. The LP estimate
is the most computationally demanding of the three algorithms tested,
but is the only one that produces estimates consistent with the noise
bounds on all the samples available.

The RLS algorithm selects the vectorxwhich minimizes thè2 norm
of the residual sequenceyk�a0kx. The RLS estimate is not, in general,
consistent with the noise bounds on the data, but can be computed with
a simple recursive update [5].

For the test, data in (1) was generated withr = 4 andfakg being
an i.i.d. process, uniformly distributed on the unit sphere in4. We
used a noise bound of� = 1. The algorithms were started with an
initial error ofx � x̂0 = [1; 1; 1; 1]0. Fig. 2(a) shows the results of a
single simulation. As expected, the proposed recursive method yields
nonincreasing distortion.

Fig. 2(b) shows the averaged results of 1000 simulations. Also
plotted is the Ziv–Zakai MSE lower bound from Theorem 4. The
asymptotic slopes of the curves confirm theO(1=n) MSE for least
squares estimation and theO(1=n2) MSE for the consistent LP esti-
mation and the proposed algorithm. While very simple and recursive,
the proposed algorithm performs only a constant factor worse than
the nonrecursive consistent reconstruction and the theoretical lower
bound.

V. IMPLICATIONS FORSOURCECODING AND DECODING

Thus far our discussion has been limited to the problem of estimating
x given theyk andak sequences. In this section, we consider the impli-
cations for using an entropy-coded version ofyk as a source encoding
for x. Specifically, letx 2 r be an arbitrary source vector. A repre-
sentation ofx can be formed throughy = QK(Ax), whereA is an
n � r matrix andQK(�) is an optimalK-dimensional entropy-coded
dithered lattice quantizer [20], [21]. (TheK = 1 case is the uniform
scalar quantizer used in previous sections.)

If x comes from sampling a band-limited, periodic signal at the
Nyquist rate andA is a Fourier matrix, this corresponds to the en-
coding for band-limited continuous-time signals considered by Zamir
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and Feder [12].2 They showed that,using least squares reconstruction,
the MSE for the scheme is fixed as long as the ratio of the oversampling
factor to the second moment of the quantizer is kept constant. They also
showed that as the dimension of the lattice quantizer is increased, the
performance of this scheme for a Gaussian source and MSE distortion
measure approaches the rate-distortion bound [13].

Instead of least squares reconstruction, we now consider using al-
gorithm (2) for estimating the vectorx from the quantized datay =
QK(Ax). Although our analysis does not directly apply to the case
whenA is a deterministic matrix, Assumption 1c) is satisfied under
any arbitrarily small random perturbation of the rows ofA. Thus, our
analysis for random matricesA should apply togenericdeterministic
matrices as well.

Also, although we have described the algorithm (2) only for the
scalar quantization caseK = 1, it is straightforward to extend the
algorithm to the lattice quantization case whenK > 1. For theK = 1
case, we have taken each sample to specify a pair of hyperplane con-
straints onx. This can be viewed as a rotated and shifted version of
the Cartesian product of a one-dimensional (1-D) lattice quantizer cell
(an interval) and r�1. For generalK, each set ofK samples speci-
fies a constraint onx that is a rotated and shifted version of the Carte-
sian product of aK-dimensional cell with r�K . An iterative recon-
struction algorithm could update its estimate everyK samples with the
nearest point of this set.

Our results show that the reconstruction algorithm (2), or the ex-
tension of the algorithm for lattice vector quantization, will attain an
O(1=R2) MSE, whereR = n=r is the oversampling ratio. This rate
is superior to theO(1=R) rate attained by least squares reconstruction.
We conclude that a reconstruction algorithm which utilizes the hard
bounds on the quantization error will have rate-distortion performance
better than that described in [12], [13]. In the limit of high oversam-
pling, the MSE would remain fixed when the ratio of thesquareof
the oversampling ratio to the second moment of the quantizer is kept
constant. Furthermore, with the extension to lattice quantization, the
performance approaches the rate-distortion bound more quickly as the
lattice dimension is increased.

VI. CONCLUSION

We have presented a simple, recursively implementable algorithm
for estimation with uniformly distributed noise. This algorithm exhibits
anO(1=n2) MSE wheren is the number of samples. It is shown that
this rate is asymptotically optimal to within a constant factor. More-
over, the rate is faster than theO(1=n) MSE attained by classical least
squares methods.

However, while the proposed estimator has an optimal order of con-
vergence, there is still considerable potential for improvement. Our nu-
merical tests indicated a large gap in performance between the recur-
sive estimator, and both the nonrecursive linear programming method
and the theoretical lower limit. We are currently investigating various
methods to reduce this gap, while maintaining the recursive algorithm’s
computational simplicity. One promising avenue is to employ the el-
lipsoidal bounding methods presented in [23] which have been used in
deterministic estimation problems [15], [16].

Of course, if we are willing to sacrifice recursiveness we may cycle
through the data more than once, or we may reuse the data according to
a sliding window. In either case, the performance would be improved
with an increase in complexity proportional to the number of times each
data point is used. Since our focus was on obtaining the bestorder of
convergence, this was not explored. We may also define a consistent
set to project to not based on a single sample, but rather based on some

2A similar situation without the constraint of periodicity is studied in [22].

(a)

(b)

Fig. 2. Comparison of three reconstruction algorithms. “RLS” refers to the
recursive minimum̀ -error reconstruction; “LP” refers to a linear program
reconstruction which computes an estimate consistent with the smallest possible
noise�; and “Recursive” refers to the proposed algorithm. “ZZ lower bound”
is the Ziv–Zakai theoretical lower bound. (a) Single simulation. (b) Average of
1000 simulations.

numberm of samples. This would again improve performance but in-
crease complexity; the increase in complexity jumps whenm exceeds
r because the consistent set is not a Cartesian product of intervals.

These results serve as a reminder that simple linear filtering is not op-
timal for removing non-Gaussian additive noise, even if it is white. Ac-
cordingly, the improvement from consistent reconstruction in [6], [7],
[9] is not because of the determinism of quantization noise, but because
of its boundedness. It is an open and interesting question whether the
results presented in this correspondence can be extended to undithered
quantization, thus at least partially settling a conjecture of [9] in the
affirmative.

Motivated by a source-coding application, and for concreteness in
the proof of Theorem 2, uniformly distributed noise was assumed.
However, the algorithm itself uses only the bound on the noise�.
This raises the broader issue of the value of hard information. It
seems that hard information may be fundamentally more informative
than “soft,” or probabilistic, information. In many systems, all the
signals—including the noise—can be bounded using certain physical
considerations. This sort of “hard” information should be exploited
fully.
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APPENDIX A
PROOF OFTHEOREM 1

Let wk = x � x̂k. We must show thatkwk+1k � kwkk. Rewrite
(2) as

wk+1 = wk �
ak
a0

kak
�(a0

kwk + ek):

Taking the norm of both sides and manipulating the result gives

kwk+1k
2 = kwkk

2 +
�(uk + ek)

a0

kak
[�2uk + �(uk + ek)] (6)

whereuk = a0

kwk. Now, it can be verified from the definition of� in
(3) that for anye 2 [��; �] andu 2

�(u+ e) � 0() u � 0

�(u+ e)� 2u � 0() u � 0:

Thus, sinceek 2 [��; �]

�(uk + ek)(�(uk + ek)� 2uk) � 0:

Hence, (6) shows thatkwk+1k � kwkk for all k.

APPENDIX B
PROOF OFTHEOREM 2

It suffices to prove the theorem forp 2 (1=2; 1). Thus, fix any
p 2 (1=2; 1) and letzk = kp(x � x̂k). We must show thatzk ! 0
almost surely.

The proof will follow that of [17, Theorem 5.4.2]. For� > 0, define
the set

Q� = fz 2 rj kzk2 � �g:

We will show that there exists a constantC1 > 0 such that for all
� > 0, the following two events occur almost surely:

a) the setQ� is recurrent, i.e.,zk returns toQ� infinitely often; and
b) there are at most a finite number of transitions ofzk fromQ� to

Qc
(1+C )�.

Together, these two assertions imply that, for all�>0 and allk suffi-
ciently large,zk 2Q(1+C )�. That is,

lim sup
k

kzkk
2 � (1 + C1)�:

Since this is true for all� > 0,zk ! 0 almost surely, which is precisely
the statement of the theorem.

We begin by proving assertion a).

Lemma 1: For all� > 0, the setQ� is recurrent.
Proof: Usingzk = (x� x̂k)k

p, rewrite (2) as

zk+1 =
k + 1

k

p

zk �
(k + 1)pak

a0

kak
�(a0

kzkk
�p + ek): (7)

Assumption 1a) implies thatzk is a Markov process.
Let V (z) = kzk2 andVk = V (zk). Denote byEEEk(�) the con-

ditional expectation givenzk. The lemma will be proven with the
following standard Martingale result (see, for example, [17, Theorem
4.4.4]): if there existT > 0 andK > 0 such that

EEEkVk+1 � Vk �K; when k > T andVk � � (8)

then the setQ� = fzjV (z) � �g is recurrent. Thus, the lemma re-
duces to showing (8) for someT > 0 andK > 0.

Unfortunately, proving (8) requires us to estimateEEEkVk+1 � Vk,
which demands a somewhat long and tedious calculation. For space
considerations, we will omit many of the details.

Squaring both sides of (7), one can obtain

kzk+1k
2 =

k + 1

k

2p

kzkk
2 + hk (9)

where

hk =
(k + 1)2p

a0kak
�2(uk + ek)� 2�(uk + ek)uk

uk = k�pa0kzk: (10)

Sincep 2 (1=2; 1), the mapw 7! w2p is convex inw so

k + 1

k

2p

� 1 �
2p

k
:

Using this inequality along with (9) and the fact thatVk = kzkk
2 we

get

Vk+1 � Vk +
2p

k
kzkk

2 + hk: (11)

We next computeEEEkhk. To this end, supposeu is a constant ande
is uniformly distributed on[��; �]. Then it can be verified that

EEE �2(u+ e)� 2u�(u+ e) = �'(juj) (12)

where

'(u) =

1

3�
juj3; juj � 2�

juj2 � 4
3�

2; juj > 2�:
(13)

Also, by explicitly computing the derivative of'(u), it can be shown
that the derivative is monotonically increasing and hence' is convex.

Now, sinceek is independent ofak andzk, we can apply (12) to (10)
to obtain

EEE (hkjzk; ak) = �
(k + 1)2p

a0kak
'(ja0kzkk

�pj)

� �
(k + 1)2p

M
'(ja0kzkk

�pj)

where in the last step we used the bound in Assumption 1c). Taking
expectations overak , using the fact thatak is independent ofzk and
using the estimate in Assumption 1c)

EEEkhk = EEE(hkjzk) � �
(k + 1)2p

M
EEEk'(ja

0

kzkk
�pj)

� �
(k + 1)2p

M
'(EEEkja

0

kzkk
�pj)

� �
(k + 1)2p

M
'(�kzkkk

�p): (14)

Note that we have used the convexity of' along with Jensen’s in-
equality. Finally, using (13), it can be shown that for any� > 0, there
exists aK > 0 andT > 0 such that

'(�jzjk�p) >
2p

k
kzk2 +K

whenk > T andkzk2 � �. Using this along with (11) and (14) shows
(8), and the proof of the lemma is complete.

We now turn to proving assertion b) stated at the beginning of the
proof. This will be done in the next three lemmas. We will continue to
use the notation in Lemma 1.

Lemma 2: There exist constantsC1 > 0 andC2 > 0 such that for
all k > 0 andzk

PrPrPr(hk < �2C1kzkk
2jzk)> C2k

�p

wherehk is defined in (10).
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Proof: For k � 0, define the events

Ak = fek 2 [� � uk=2; �] [ [��; �� � uk=2]g
Bk = fja0

kzkj � �kzkk=2g
where, as before,uk = k�pa0kzk. Using the definition of� in (3), it
can be verified that if the eventAk occurs, then

�(uk + ek)
2 � 2uk�(uk + ek) � �u2k=2 = �k�2pja0kzkj2=2:

Hence, (10) and Assumption 1c) show that if bothAk andBk occur

hk � � (k + 1)2p

2k2pa0kak
ja0kzkj2 � � �2

2M
kzkk2:

We setC1 = �2=4M , so that the lemma will be proven, if we can show

PrPrPr(Ak \Bkjzk) > C2k
�p (15)

for someC2 > 0 and allk > 0 andzk.
To find aC2 > 0 such that (15) holds, first observe that sinceek is

uniformly distributed on[��; �] and is independent ofak andzk

PrPrPr(Akjzk; ak) = jukj
4�

=
k�pja0kzkj

4�
:

Hence

PrPrPr(AkjBk; zk) � �

8kp�
kzkk: (16)

Also, using Assumption 1c)

�kzkk �EEE(ja0kzkj jzk)
� 1

2
�kzkk+

p
MkzkkPrPrPr(ja0kzkj � 1

2
�kzkkjzk)

and, therefore,

PrPrPr(Bkjzk) = PrPrPr(ja0kzkj � 1

2
�kzkkjzk) � �

2
p
M
: (17)

Thus, if we define

C2 =
�2

16�
p
M

(16) and (17) show that (15) holds for allk > 0, and the lemma is
proven.

Now, fix a� > 0. The sequencezk will be said to have arun from�
to� atn if there exists anm > 0 such thatkznk2 � �, kzn+mk2 � �,
andkzkk2 2 (�; �) for all k 2 (n; n + m). The numberm will
be called thelengthof the run. The next lemma will show that asn
increases, the probability of a run atn becomes small.

Lemma 3: Let� > 0 and letC1 be as in Lemma 2. Then there exist
constantsN > 0 and� 2 (0; 1) such that forn � N , the probability
of a run atn from � to (1 + C1)� is less than�n .

Proof: We first claim that there exists an� > 0 such that the
length of any run from� to (1 + C1)� atn is at least�n. To see this,
supposezk has a run atn of lengthm. Then

� �kznk2 = n2pkwnk2
(1 + C1)� �kzn+mk2 = (n+m)2pkwn+mk2

wherewk = x� x̂k as before. By Theorem 1,kwn+mk � kwnk, and,
therefore,

1

1 + C1
� n2pkwnk2

(n+m)2pkwn+mk2 �
n

n+m

2p

:

This implies that with� = (1 +C1)
1=2p � 1 > 0, we havem � �n.

Thus, the length of any run atn is at least�n.
Now chooseN such thatk � N implies that

1 +
1

k
(1 + C1) � 1 + 2C1 (18)

and

�k � 2 � �k=2: (19)

Then, ifk � N , kzkk2 2 (�; (1+C1)�) andkzk+1k2 � �, (11) and
(18) show that

hk �kzk+1k2 � (1 + 1=k)kzkk2
��� (1 + 2C1)� = �2C1� � �2C1kzkk2:

Therefore, Lemma 2 implies that ifk � N andkzkk2 2 (�; (1 +
C1)�)

PrPrPr(kzk+1k2 � �jzk) �PrPrPr(hk � �2C1kzkk2jzk)
� 1� k�pC2kzkk2 � 1� k�pC2�:

Therefore,

PrPrPr(kzk+1k2 � �j kzkk2 2 (�; (1 + C1)�)) � 1� k�pC2�: (20)

Now, if zk has a run from� to (1+C1)� atn, we have shown above
that the length of this run must be at least�n. Hence,

kzkk2 2 (�; (1 + C1)�); for all k 2 (n; n+ �n):

Using (19), (20), the Markov property ofzk, and the inequalitylog(1�
x) � �x, the probability of a run atn must be less than

n+�n�1

k=n+1

(1� k�pC2�) � (1� n�pC2�)
�n�2

= exp (�n� 2) log(1� n�pC2�)

� exp �(�n=2)n�pC2� = �n

where

� = e��C �=2 < 1:

This completes the proof of the lemma.

Our final lemma proves assertion b) made at the beginning of the
proof.

Lemma 4: Let � > 0 and letC1 be as in Lemma 2. Then there can
be at most a finite number of runs from� to �(1 + C1).

Proof: LetPn denote the probability of a run atn from� to�(1+
C1). Lemma 3 states that forn � N

Pn � �n :

Hence
1

n=N

Pn �
1

n=N

�n �
1

N�1

�x dx

=
1

1� p

1

(N�1)

up=(1�p)�u du <1:

The result now follows from the Borel–Cantelli lemma.

Lemmas 1 and 4 prove assertions a) and b) made at the beginning of
the proof. As argued there, these two facts prove the theorem.

APPENDIX C
PROOF OFTHEOREM 3

We begin with describing the general Ziv–Zakai bound. For any
vectorx0 2 r , letPrPrPr(�jx0) denote the conditional probability given
the unknown vectorx = x0. Given vectorsx0; x1 2 r , let

Pmin; k(x1; x0) = min
1

2
[PrPrPr(x̂k = x1jx0) + PrPrPr(x̂k = x0jx1)]

(21)

where the minimum is taken over all estimatorsx̂k. The quantity
Pmin; k(x1; x0) represents the minimum probability of error in
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estimatingx given thatx is a priori known to be eitherx1 or x0. The
Ziv–Zakai bound can now be stated as follows.

Theorem 4: Suppose thatPmin; k(x1; x0) is only a function of
x1 � x0, i.e., Pmin; k(x1; x0) = Pmin; k(x1 � x0). Then for any
vectorv 2 r and estimator̂xk

EEEjv0(x� x̂k)j
2 �

1

0

max
w: w v=h

[hA(w)Pmin; k(w)] dh (22)

where

A(w) = min(pX(x); pX(x+ w))dx (23)

andpX(x) is thea priori distribution ofx.
Proof: See [19, Property 4].

To apply this bound, we must derive expressions forA(w) and
Pmin; k(w). We begin the derivation with a simple computation. For
any sequenceyi, let


k(y) = fx 2 r : jyj � a
0
jxj � �; 8 j = 0; . . . ; kg:

That is,
(y) is the set of vectorsx consistent with the observations
yi up to timek. Our first lemma provides a simple expression for the
probability that a given vector lies within this consistent set.

Lemma 5: For any constant vectorsx0; x1 2 r

PrPrPr(x1 2 
k(y)jx0) = Pk(x1 � x0)

where

Pk(v) =

k

j=0

1�
ja0jvj

2� +

(24)

and[u]+ = max(u; 0).
Proof: For anyj, ej is uniformly distributed on[��; �], and,

therefore,

PrPrPr(jyj � a
0
jx1j � �jx0) =PrPrPr(ja0j(x0 � x1) + ej j � �)

= 1�
ja0j(x1 � x0)j

2� +

:

Since theej ’s are independent

PrPrPr(x1 2 
k(y)jx0) =PrPrPr(jyj � a
0
jx1j � �; j = 0; . . . ; k)

=

k

j=0

1�
ja0jvj

2� +

= Pk(x1 � x0):

We next computePmin ; k(x1; x0) defined in (21).

Lemma 6: Forx0 andx1 2 r

Pmin; k(x1; x0) =
1

2
Pk(x1 � x0) (25)

wherePk is given in (24).
Proof: A standard hypothesis testing result states that the esti-

mator achieving the minimum in (21) is given by the ratio test

x̂
�
k(y) =

x1; if pY jX(yjx1) � pY jX(yjx0)

x0; else
(26)

where pY jX(yjx) is the conditional probability distribution of
y0; . . . ; yk givenx. This estimator is optimal in that

Pmin; k(x1; x0) =
1

2
[PrPrPr(x̂�k = x1jx0) + PrPrPr(x̂�k = x0jx1)]: (27)

Now, sinceyj = a0jx+ej andej is i.i.d. withej uniformly distributed
on [��; �]

pY jX(yjxi) = 111fx 2
 (y)g(2�)
�k

:

Thus, the estimator (26) simplifies to

x̂
�
k(y) =

x1; if x1 2 
k(y)

x0; else.

Using Lemma 5

PrPrPr(x̂�k = x1jx0) =PrPrPr(x1 2 
k(y)jx0) = Pk(x1 � x0) (28)

PrPrPr(x̂�k = x0jx1) = 1� PrPrPr(x1 2 
k(y)jx1) (29)

=1� Pk(x1 � x1) = 0: (30)

Substituting (28) and (30) into (27) proves the result.

Now, using the above expression forPmin; k(x1; x0) in the
Ziv–Zakai bound, we obtain the following.

Lemma 7: If v 2 r andx̂k is any estimator

lim inf
k!1

k
2
EEEjv0(x� x̂k)j

2 � 2�2�(v)�2:

where�(v) is defined in (5).
Proof: Substituting (25) into the Ziv–Zakai bound (22) and per-

forming a change of variables gives

k
2
EEEjv0(x� x̂k)j

2 �
k2

2

1

0

max
w: w v=h

[hA(w)Pk(w)]dh

=
1

2

1

0

max
w: w v=1

hA
hw

k
Pk

hw

k
dh

(31)

whereA(w) is defined in (23). The lemma can now be proven by
simply taking the limits ask ! 1.

First consider the functionA(w). Using the Dominated Convergence
Theorem and the continuity ofpX(x)

lim
kwk!0

A(w) = lim
kwk!0

min(pX(x+ w); pX(w))dx

= pX(x)dx = 1: (32)

For the functionPk(w), we note that for smallw

Pk(w) = exp

k

j=0

log(1�
ja0jwj

2�
)

� exp �
1

2�

k

j=0

ja0jwj

where we have used the fact thatlog (1� x) � �x for smallx. Thus

lim inf
k!1

Pk
w

k
= lim inf

k!1
exp �

1

2�k

k

j=0

ja0jwj

= exp �
1

2�
�0(w) (33)

where

�0(w) = lim sup
k!1

1

k

k

j=0

ja0jwj:

Note that

�(v) = min
w: w v=1

�0(w): (34)

Using (31)–(34) and Fatou’s lemma

lim inf
k!1

k
2
EEEjv0(x� x̂k)j

2

�
1

2

1

0

lim inf
k!1

max
w: w v=1

hA
hw

k
Pk

hw

k
dh

�
1

2

1

0

max
w: w v=1

lim inf
k!1

hA
hw

k
Pk

hw

k
dh
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=
1

2

1

0

max
w: w v=1

h exp
�h�0(w)

2�
dh

=
1

2

1

0

h exp
�h�(v)

2�
dh

= 2�2�(v)�2

and the lemma is proven.

The theorem now follows as a straightforward consequence of
Lemma 7. Ifqi is theith standard unit vector, then

kx� x̂kk
2 =

r

i=1

jq0i(x� x̂k)j
2
:

Thus, Lemma 7 implies that

lim inf
k!1

k
2
EEEkx� x̂kk

2 � 2�2
r

i=1

�(qi)
�2

:
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Bounds for Sparse Planar and Volume Arrays

Yann Meurisse and Jean-Pierre Delmas, Member, IEEE

Abstract—This correspondence improves and extends bounds on the
numbers of sensors, redundancies, and holes for sparse linear arrays to
sparse planar and volume arrays. As an application, the efficiency of reg-
ular planar and volume arrays with redundancies but no holes is deduced.
Also, examples of new redundancy and hole square arrays, found by ex-
haustive computer search, are given.

Index Terms—Difference base, minimum hole array, minimum redun-
dancy array, sparse planar array, sparse volume array.

I. INTRODUCTION

When the number of antenna sensors available for an array is lim-
ited, the problem of optimum array geometry naturally arises. From the
beam width and the sidelobe level of the associated beam pattern [1]
or from the direction of arrival (DOA) estimation accuracy [2] point
of view, array configurations known as linear minimum-redundancy
(MR) arrays or linear minimum-hole (MH) arrays (also called optimum
nonredundant arrays) are often proposed. Linear MR arrays have been
extensively studied; see [3] and [4], and the references therein. In par-
ticular, much attention has been given to bounds on the ratioM2=A
[4], [5] whereM andA denote, respectively, the number of sensors
and the aperture of the linear array. Linear MH arrays were consid-
ered in [3] and [6]. Whereas specific structures were designed to op-
timize some performance criteria (e.g., [7] for DOA algorithms with
DOA prior information and [1] for beam patterns with various side-
lobe level/beamwidth tradeoffs); redundancy and hole concepts do not
embrace any such optimality criterion directly. Thus, the MR and MH
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