
 
Abstract- In this paper, a novel recursive data mining method 
based on the simple but powerful model of cognition called a 
conceptor is introduced and applied to computer security. The 
method recursively mines a string of symbols by finding frequent 
patterns, encoding them with unique symbols and rewriting the 
string using this new coding. We apply this technique to two 
related but important problems in computer security: (i) 
masquerade detection to prevent a security attack in which an 
intruder impersonates a legitimate user to gain access to the 
resources, and (ii) author identification, in which anonymous or 
disputed computer session needs to be attributed to one of a set of 
potential authors. Many methods based on automata theory, 
Hidden Markov Models, Bayesian models or even matching 
algorithms from bioinformatics have been proposed to solve the 
masquerading detection problem but less work has been done on 
the author identification.  We used recursive data mining to 
characterize the structure and high-level symbols in user 
signatures and the monitored sessions. We used one-class SVM to 
measure the similarity of these two characterizations. We applied 
weighting prediction scheme to author identification. On the SEA 
dataset that we used in our experiments, the results were very 
promising.      
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I. INTRODUCTION 

This paper focuses on two related and important topics in 
system security: masquerade detection and author 
identification. 
 
Masquerade detection is often considered the most serious 
and challenging problem in computer security. Masquerader 
hides his/her identity by impersonating a legitimate user in a 
computer system or network and may maliciously damage 
the system. The typical ways in which masquerade attacks 
succeed include:  obtaining a legitimate user’s password, 
accessing an unattended and unlocked workstation, forging 
email address in messages, overtaking a computer via a 
network access. Masquerade detection is challenging for the 
following reasons: (i) masqueraders entering the system as 
valid users cannot be detected by the existing access control 
or authentication, (ii) by perfectly mimicking user’s behavior, 

masqueraders are undetectable, and (iii) the legitimate user 
may be detected as a masquerader if the user’s behavior 
changes. 
To enable masquerade detection, a string from a legitimate 
user is collected and used to generate a signature containing 
some attributes (features) of this user. This signature is then 
compared to the attributes generated from the currently 
monitored string of the potential masqueraders. If normal 
and intrusion activities are sufficiently distinct, attributes 
generated from the legitimate user activities will be more 
similar to the user’s signature than those generated from the 
masquerader’s session. Most previous research follows this 
logic to distinguish the strings from legitimate users and 
masqueraders. 
 
A related problem to masquerade detection is identifying the 
potential internal masqueraders, which can be generalized as 
an author identification problem. This problem is relevant in 
secured environments, in which only a small number of users 
with known signatures can originate an attack. Other 
examples of usefulness of the author identification problem 
include finding equivalences between emails originated from 
differently named accounts or detecting plagiarizing among 
papers or programs. For author identification, a string from 
each potential author is collected to generate a signature 
(some attributes or features). Each signature will then be 
compared to the attributes of the currently monitored string.  
The author is then decided based on the degree of similarity 
of the current session and the author signature. 
 
In masquerade detection and author identification, the input 
is a string of objects (commands, packets, system calls, lines 
of program execution trace, etc.) produced by a source. The 
task is to assess whether the monitored string confirms to the 
“usual”  behavior of this source, in case of intrusion detection, 
or which of many possible sources is the most likely 
producer of the monitored string, in the authorship 
identification case.  The assessment is based on the unique 
signature of each source collected in the controlled 
experiment in which the authorship of the signature can be 
assured.  
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In this paper, we propose a novel recursive data mining 
method originated in our simple yet powerful model of 
cognition, called a conceptor [5]. In a conceptor, the first 
level of abstraction of input is based on repeating patterns, 
but the subsequent ones are based on repeating patterns of 
lower level abstractions. In recursive data mining method, 
the input is encoded into symbols and then mined for 
dominant patterns. Dominant patterns, defined later, are then 
assigned new codes that are then used to generate the data 
representation of a higher level. The input is thus recursively 
mined until no new dominant pattern exists. During the 
recursive mining, we generate several features that will be 
used to form the user’s signature profile and will be 
compared to the features of monitored string. For 
masquerade detection, one-class SVM is applied to predict 
the intrusion. For author identification, a weighting 
prediction scheme is proposed to predict the authorship.      
 
This paper is structured as follows: first, we discuss the 
recent works in Section II, and then illustrate in detail our 
recursive data mining method in Section III. Section IV 
describes the user identification algorithm. The results of the 
experiments with masquerade detection and author 
identification are presented in Section V. Section VI 
concludes with a discussion of future work.  

II. RECENT WORK 

A.  Data 

Schonlau et al. [12] collected UNIX commands and built a 
truncated command dataset, commonly called SEA dataset. 
In SEA dataset, 15,000 sequential commands for each of 70 
users are recorded. Among 70 users, 50 are randomly chosen 
as victims and the remaining 20 as intruders. Each victim has 
5,000 clean commands and 10,000 potentially contaminated 
commands. For each user, the first 5,000 commands are 
taken as the training data and used for signature generation. 
The remaining 10,000 commands form the testing data. The 
data is grouped into blocks of 100 commands. A testing 
block is either contaminated completely or not at all.  
 
Although widely used for masquerade detection, this dataset 
has some limitations [12]. First, command arguments, which 
may contain valuable information for intrusion detection and 
authorship, were not collected because of privacy concerns. 
Second, the 20 intruders are “other”  users from a general 
population similar to the legitimate users and not “ real”  
masqueraders who may exhibit unusual patterns 
distinguished more easily from normal patterns. Third, 
mistyped commands may violate the signature profile built 
for a user. Still, SEA data is a valuable set and we used it to 
test our method for both masquerade detection and author 
identification.  

 

 

B.  Methods 

Many methods have been used for masquerade detection in 
the SEA dataset. Schonlau et al [12] summarizes several 
approaches based on pattern uniqueness, Bayes one-step 
Markov model, hybrid multistep Markov model, text 
compression, Incremental Probabilistic Action Modeling 
(IPAM), and sequence matching (see Table 1, the method 
names follow Schonlau [12]). Wang [17] used one-class 
training based on data representative of only one user and 
demonstrated that it worked as well as multi-class training. 
Coull [3] applied bioinformatics matching algorithm for a 
semi-global alignment to this problem. Finally, Lee [9] built 
a data mining framework for constructing features and model 
for intrusion detection. 
 

Approaches False 
Alarms 

Hit Rates 

Uniqueness 1.4% 39.4% 
Bayes one-step Markov 6.7% 69.3% 
Hybrid Multistep Markov 3.2% 49.3% 
Compression 5.0% 34.2% 
Sequence Matching 3.7% 36.8% 
IPAM 2.7% 41.4% 
Semi-Global Alignment 7.7% 75.8% 

Table 1: Results from previous approaches to 
masquerade detection 

 
For author identification, Vel [15, 16] researched email 
communications, Hill [6] built a vector space model for 
author identification in a double-blinded review process by 
using citation lists, and Krsul [8] employed programming 
style characteristics to identify the author of a program. In 
this paper, we solve the masquerader identification problem.  
 
Marcken [10] developed an unsupervised learning algorithm 
for speech segmentation that is also based on hierarchical 
pattern recognition. Unlike our method in which reduction of 
string length is based on the frequency and length of patterns, 
his framework used minimum description length theory 
(MDL) for grammar compression. Another big difference is 
that we use fixed length of slide window that limits the 
length of a pattern. 
Data mining techniques have been successfully applied to 
many business and scientific domains, including some that 
are closely related to intrusion detection. Lee [9] builds data 
mining framework for constructing features and model for 
intrusion detection. In this paper, we propose a recursive data 
mining method to solve the masquerade detection and author 
identification problems.  

III. RECURSIVE DATA MINING METHOD 

Each user is prone to type commands which will create some 
patterns. For example, a user is likely to type ls first, then cd, 
then ls and so on, when searching for a file. The habit of 
each user in typing the sequence of commands may reflect 



his identity and thus can be used as his signature. In 
recursive data mining, an input is first encoded into input 
symbols and then recursively mined for frequent patterns. 
The dominant patterns are the largest and most frequent 
patterns in the string. The dominant patterns are encoded by 
new unique symbols and the input is rewritten by replacing 
each dominant pattern with its symbol. The input data are 
considered the 1st level data representation, L-level data 
representation, after dominant pattern substitution, becomes 
L+1-level data representation. The process stops when no 
new dominant patterns are present in the transformed input. 
Since input is recursively mined for patterns, the pattern 
search can be done in each step in a limited-size sliding 
window, without changing the final representation of the 
result. Using a window speeds up the process of pattern 
recognition.  
 
By recursive de-mining, a pattern in the L+1-level can be 
extended to a longer pattern if we replace its L-level symbols 
with their corresponding dominant patterns. In this way, we 
can restore the patterns in any level to their first level 
representations. We use the features on patterns in each level 
as a user’s signature. So our method actually uses features 
for both short patterns and long patterns in the first level 
representation as a user’s signature.  
 
In our applications, we use patterns of fixed length and 
containing several commands and gaps. More formally, the 
input data contains M records, each with values of l attributes. 
Each attribute i has a domain Di of all possible values 
associated with it (including a null value). Values are either 
discrete (countable) or non-empty intervals over continuous 
domains. The pattern of radius r anchored at record m is any 
subset of a matrix Mi,l such that each row consists of values 
of l attributes in a record m+i where ri <≤0 . For SEA 
dataset, we only consider one attribute, a user command, so l 
is 1. We also only consider patterns of radius of up to 6. 

A. Encoding Phase 

Each input command is assigned an integer as its code. 
However, a group of related commands may be assigned an 
identical integer, making them equivalent in recursive 
mining. Such encoding granularity impacts the frequency of 
patterns. In essence, coarse grain encoding “glues”  together a 
range of original input values into a single symbol.   
 
 

Command Types Policy 1 Policy 2 Policy 3 

Unix Commands 1~1000 1~1000 
one symbol for 
commands with 
close semantics 

Not Unix, 
Frequently Used 

1001~2000 1001 1001 

Not Unix, Not 
Frequently Used 

2001~3000 2001 2001 

Table 2: Different encoding of commands in SEA input 
 

For SEA dataset, input contains user-typed commands. Most 
of them are UNIX commands, but there are of course 
mistyped commands too. We group the commands into three 
types: UNIX commands, non-Unix but frequently used 
commands, non-Unix and not frequently used commands. 
We experimented with the encoding policies presented in 
Table 2. 

B. Training Phase 

In training phase, the training data are recursively mined and 
the dominant patterns are recorded in the training dictionary. 
The procedure can be illustrated as follows: 
  
First, we recognize the significant patterns in the input string. 
We also count the frequency of each pattern p in the input 
data, Ap. Then, we calculate the expected number of 
occurrences of pattern p in the input string Ep:   
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where fi denotes command i’s frequency in the string; gi 
denotes command i ’s frequency in pattern p; k denotes the 
number of commands in pattern p; h denotes the number of 
distinct commands in pattern p; q denotes the total number of 
distinct commands in the input string; s denotes the length of 
a slide window; N denotes the length of the string. Let  
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Then Np is the total number of strings in which pattern p may 
appear. Ns is the total number of strings that can be created 
by using the commands in the input string. 

s

p

N

N  is thus the 

expected frequency of pattern p. 

If Ap > m×max (Ep, 1), then pattern p is a significant pattern, 
where m is a constant whose choice impacts the number of 
dominant patterns recognized in the input. 
 
Second, we recognize the dominant patterns by finding the 
longest significant pattern; if there are several candidates, the 
most compact one is selected. Each dominant pattern is 
assigned a new code. 
 
Third, we rewrite the current string into a new string 
replacing each window with the code of the dominant pattern 



followed by the commands in the gaps. The next 
replacement window starts at the first gap of the previous 
window in the current string. If the window contains no 
significant patterns, the next one starts at the symbol next to 
the start of the current window. 
 
There are other choices for string rewriting that lead to 
different information kept in the higher level and, thus, will 
influence the training dictionary and the feature values that 
we will get in the following detection phase. 
 
Finally, we append all the dominant patterns in the current 
level into the training dictionary. If there are no new 
dominant patterns in the current level, the training stops; 
otherwise, the rewritten string is used as an input for the next 
iteration of the data mining. 

C. Detection Phase 

In this phase, we apply training dictionary to each unit in 
testing data that are either a 100-command block (for 
intrusion detection) or the whole string (for author 
identification) and obtain features for each unit. We will also 
compute features for training data for the later prediction.  
 
First, we search the training dictionary for each pattern in a 
unit and record the dominant patterns in this unit. Currently, 
a perfect match is required between the domain pattern in a 
dictionary and the substring in a unit. However, a similarity, 
such as small number of mismatches in corresponding 
position of the compared strings, or as measured by the 
Needlman-Wunsch algorithm [13], can also be used. 
 
Second, we record features for each unit.  We experimented 
with the following features: number of distinct patterns in 
each unit; number of dominant patterns in each unit; number 
of distinct dominant patterns in each unit; number of distinct 
input symbols in each unit; number of users sharing a pattern 
in each unit; length reduction in each step of the input 
rewriting in each unit; weighted number of the distinct 
dominant patterns in each unit (considering the frequency of 
the dominant patterns in the training dictionary). 
 
Finally, we rewrite the current string, as in training phase.  

D. Prediction Phase 

For masquerade detection, we apply Support Vector 
Machine (SVM) [1, 4] to detect the intruded blocks. We train 
on the features of training blocks and predict on the features 
of testing blocks. Since for each user, we only have non-
intruded data in the training blocks, we take it as the negative 
data and use one-class SVM [2, 14] to detect intrusion. We 
can also take the data in the training blocks of the current 
user as the negative data and the data in the training blocks 
of other users as the positive data and apply more traditional 
two-class SVM. However, as discussed by Wang [17], the 
positive training data belongs to different users and the 

positive testing data is from users other than the users in the 
training data, so such an approach is not appropriate. 
 
Before applying SVM, we need to normalize the data. We 
apply two normalization methods. Suppose we have a dataset: 
X = { x1, x2,…,xn} , then each element will be normalized by 
the following two methods: 
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For author identification, we will describe an algorithm to 
identify the authorship in section IV.  

E. Analysis Phase 

For masquerade detection, we compare the true value from 
SEA dataset with the value predicted in Prediction Phase. For 
any block, false positive rate is defined as the ratio of the 
number of false positive blocks to the number of clean 
blocks in the true value data; hit rate is defined as the ratio of 
the number of true positive blocks to the number of intruded 
blocks in the true value data.  
 
For author identification, we will calculate the percentage of 
the number of authors that are correctly predicted.  

IV. WEIGHTING PREDICTION SCHEME 

After detecting the masquerade, it is important to know the 
identity of the masquerader. Masquerader identification can 
be generalized to a much broader problem: author 
identification. In the author identification problem, we 
assume to have N users with known signatures. Then, a 
sequence of symbols whose author is unknown is processed 
with the signature profile of each user to obtain N sets of 
feature values. The feature values are then weighted in each 
feature set. Our author decision rule is simple and 
straightforward: the user with the largest weighted feature 
value is the author. The feature values are then compared to 
decide the identity of the author of this unknown sequence of 
symbols.  

A. Obtaining Features 

Features are obtained by using our recursive data mining 
method and test it on SEA data but with all intrusion blocks 
removed from testing data. The Training Phase is the same 
as for masquerade detection. Detection Phase is different, as 
for each set of testing data we apply the training dictionaries 



of all users, obtaining an N by N matrix R. Each element R (I, 
J) is a feature tuple which is obtained by applying user I’s 
training dictionary to user J’ s testing data. The N feature sets 
for user J’s testing data which are obtained by applying each 
user’s training dictionary to user J’s testing data form 
column J. 

B. Weighting Prediction Scheme 

For the decision of authorship, different features make 
different contributions. Assigning weight to each feature is 
necessary to quantify the amount of its contribution in 
deciding the author. Comparisons of features are performed 
by the following weighting prediction scheme. 
    
First, we assign weight to each feature. Since we know the 
original author of each set of training data, we can use it to 
obtain the weight for each feature. We first split each user’s 
training data into two parts: t for training set and v for 
validation set and then apply our recursive data mining 
method. As a result, we obtain an N by N matrix T of feature 
tuples. 
 
To find the weight of each feature, for each column in T, we 
count the number of users whose value for this feature is 
bigger than or equal to that of the original user. According to 
author decision rule, the user with the largest weighted 
feature value is the author. Since we only consider one 
feature each time, so the weighted feature value is just the 
feature value itself. The users, who have the feature values 
bigger than or equal to that of the original user, are called 
candidate authors. We record two parameters: Ci, average 
number of candidate authors among the validation sets, and 
Ai, number of wrong authors (also the number of columns 
having more than one candidate authors among the 
validation sets). So if we attain a smaller number of wrong 
authors or candidate authors for one feature than the other, 
then this feature should be considered more relevant and is 
given larger weight in the combination of multiple features 
than the other one. We assign a weight Wi

c or Wi
w based on 

these two parameters, respectively, to each feature Fi, 
i=1,…,t according to the following formula [11]:   
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Hence, the larger the number of wrong authors or the 
candidate authors, the smaller the weight. We use Ci -1 in the 
second weight calculation to remove the original author from 
consideration.  
Second, for each feature Fi, i=1,…,t, if the element R (I, J) 
has the biggest value in its column, we set the value of 
predictor Pi to 1; otherwise, we set it to 0. 
 

Third, we calculate the prediction value by linear 
combination of the weights and features. Let P (I, J) denote 
the weighted predictor value for each element R (I, J). Then 
weighted predictor value can be calculated by the formula:   
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Finally, for each column, we find the element with the 
highest weighted value. The corresponding row index in 
matrix R is the author of the testing string. That is, for all P(I, 
J) in column J, we find the maximum value of P(I, J) and the 
corresponding I is the author number. 

V. EXPERIMENT RESULTS 

A. Masquerade Detection 

In masquerade detection, recursive data mining generates 
features for each block (including the training block and 
testing block) that is used by a one-class SVM to classify the 
blocks and predict the intrusion. We used LIBSVM2.4 [1] 
for this purpose. For the first variant of our method, called 
Individual Intrusion Detection, we selected four features for 
each block: number of dominant patterns in level 1, number 
of distinct dominant patterns in level 1, number of dominant 
patterns in level 2, and number of distinct dominant patterns 
in level 2. Changing the threshold in one-class SVM (a 
variable in LIBSVM2.4 that defines the outliers) yields 
different false positive and hit rates. Likewise, changing 
parameter m in recursive data mining impacts these rates. 
The best results are obtained by setting m to 6 for the first 
level of processing and 5 for the subsequent levels.   
 

We also introduce an additional variant of our method, called 
Communal Intrusion Detection. Besides the features used in 
Individual Intrusion Detection, it also uses the number of 
users sharing each dominant pattern. That is, for each 
dominant pattern in a block, we count the users who share it. 
  
There are two problems that need to be addressed for 
Communal Intrusion Detection. First, we train the training 
data by each user, so we may assign different codes to the 
same dominant pattern for different users. Thus, to compare 
the dominant patterns containing the newly assigned codes 
among the users, we need to transform the dominant patterns 
into their first level representations containing only the input 
symbols. Second, in one class SVM, we use fixed number of 
features. However, each block contains different number of 
dominant patterns and, thus, different number of potential 
features. To fix the number of features, we group the 
dominant patterns by the number of users who share them. 
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Figure 1: Comparison of Individual and Communal   
                               Intrusion Detection 
 
For each dominant pattern p in a block, let up be the number 
of users who share it. Then if 12 2i i

pu− ≤ < , we put p into 

group i. Since we only have 50 users in SEA dataset, we have 
at most log250 + 1< 7 groups. Then, the number of dominant 
patterns in each group is a feature. We use these features in 
the first two levels and thus have 18 features in Communal 
Intrusion Detection.  
 
Figure 1 gives a comparison of Individual Intrusion 
Detection and Communal Intrusion Detection. The plot 
indicates that Communal Intrusion Detection works better 
than Individual one when large hit rate is desired. Individual 
Intrusion Detection uses fewer parameters, so it appears 
more stable.  
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Figure 2: Comparison of Masquerade Detection Methods 

 

Figure 2 compares different masquerade detection methods. 
Recursive Data Mining plots show both the Individual and 
Communal Intrusion Detection results. 

The plot indicates that the recursive data mining works better 
than or matches Compression, Sequence Matching, IPAM, 
Hybrid Markov, Semi-Global Alignment, Bayes 1-Step 
Markov and Uniqueness methods (for details on those 
methods, see [12])..   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
False Positive Rate

H
it 

R
at

e
Normalization Policy b Normalization Policy a

 
Figure 3: Comparison of two Normalization Policies 

2. Comparison of Normalization Policies  

Normalization of input for SVM is important for the SVM 
performance [4], so in Figure 3, we compare the two polices 
for normalizing the features for intrusion detection. The plots 
shows that normalization policy b works slightly better than 
policy a in most cases.  However, the differences are very 
small. 

3. Comparison of Encoding Policies 
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Figure 4: Comparison of two Encoding Policies 

 

Figure 4 demonstrates that Policy 1 outperforms Policies 2 
and 3. We hypothesize that a policy in which UNIX 
semantically similar commands are grouped together should 
work even better. So far, we have not found such a scheme 
for command grouping.  



B.  Author Identification 

Individual Intrusion Detection was used to obtain features. 
Thus, we used the following four features: F1: number of 
dominant patterns in level 1; F2: number of distinct dominant 
patterns in level 1; F3: number of dominant patterns in level 
2; F4: number of distinct dominant patterns in level 2.  In 
recursive data mining processing, we choose m=3 for the 
first level and m=2 for the second level.  
 
We used SEA dataset and split training data of each user into 
two sets: 2500 commands for training set and other 2500 
commands for validation set. Then, we calculated the 
weights Wi

c and Wi
w as shown in Table 3. 

 
 F1 F2 F3 F4 
Average number of 
candidate authors(Ci) 1.18 1.04 4.1 1.28 
Weight (Wi

c) for 
candidate authors 0.161 0.726 0.009 0.104 
Wrong authors (Ai) 3 2 31 7 
Weight (Wi

w) for 
wrong authors 0.330 0.496 0.032 0.142 

Table 3: Weights for different features 
 
Based on the Wi

c, we can achieve 88% accuracy rate. That is, 
for 50 test strings, we correctly find their 44 authors. Based 
on Wi

w, we can achieve 94% accuracy rate. That is, for 50 
test strings, we correctly find their 47 authors. 
 
By using the same dataset, roughly implemented 
bioinformatics method by Coull [3] gets only 40% accuracy 
rate, which means only 20 authors are correctly found among 
50 users.    
 
In the similar work, yet applied to the totally different 
domains, so direct comparison of the results is difficult, 
Krsul [8] reports 98% accuracy rate by using Multi-layer 
Perceptron and 100% accuracy rate by using Gaussian 
Classifier in deciding computer program authorship. Vel [15] 
achieves 84% accuracy rate in email authorship mining.   

VI. CONCLUSION 

Recursive data mining is a new technique for solving 
computer security problems. In this paper, we show how to 
apply recursive data mining to solve the masquerade 
intrusion detection and author identification problems. 
Compared to the results from other researchers, our results 
are very promising. In the future, we will attempt to extend 
our method to other authorship problems, such as email, 
papers or programs, or to problems in other domains, such as 
DNA identification and text mining problems.  
 
What is different from previous work is that we use 
information about recursive patterns, instead of symbols or 
direct patterns, as features of input. The inputs are 

recursively mined and lower-level patterns are coded and 
then used for higher-level pattern recognition. The higher-
level patterns seem to better capture the subconscious user’s 
behavior than the symbols of the direct pattern do.  
 
In this paper, we did not discuss feature selection. In our 
experiments, we manually select some features and use those 
that can lead to the best results. Sensitivity analysis and cross 
validation technique [7] will be our next step to improve 
those selections.    
 
Finally, the experiments described in this paper all use 
perfect match when comparing two dominant patterns. We 
will compare the results with the processing in which 
matching will allow for small differences in the compared 
strings.  
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