

Abstract- In this paper, a novel recursive data mining method
based on the simple but powerful model of cognition called a
conceptor is introduced and applied to computer security. The
method recursively mines a string of symbols by finding frequent
patterns, encoding them with unique symbols and rewriting the
string using this new coding. We apply this technique to two
related but important problems in computer security: (i)
masquerade detection to prevent a security attack in which an
intruder impersonates a legitimate user to gain access to the
resources, and (ii) author identification, in which anonymous or
disputed computer session needs to be attributed to one of a set of
potential authors. Many methods based on automata theory,
Hidden Markov Models, Bayesian models or even matching
algorithms from bioinformatics have been proposed to solve the
masquerading detection problem but less work has been done on
the author identification. We used recursive data mining to
characterize the structure and high-level symbols in user
signatures and the monitored sessions. We used one-class SVM to
measure the similarity of these two characterizations. We applied
weighting prediction scheme to author identification. On the SEA
dataset that we used in our experiments, the results were very
promising.

Keywords- Masquerade detection, author identification,
recursive data mining, one-class SVM, intrusion detection

I. INTRODUCTION

This paper focuses on two related and important topics in
system security: masquerade detection and author
identification.

Masquerade detection is often considered the most serious
and challenging problem in computer security. Masquerader
hides his/her identity by impersonating a legitimate user in a
computer system or network and may maliciously damage
the system. The typical ways in which masquerade attacks
succeed include: obtaining a legitimate user’s password,
accessing an unattended and unlocked workstation, forging
email address in messages, overtaking a computer via a
network access. Masquerade detection is challenging for the
following reasons: (i) masqueraders entering the system as
valid users cannot be detected by the existing access control
or authentication, (ii) by perfectly mimicking user’s behavior,

masqueraders are undetectable, and (iii) the legitimate user
may be detected as a masquerader if the user’s behavior
changes.
To enable masquerade detection, a string from a legitimate
user is collected and used to generate a signature containing
some attributes (features) of this user. This signature is then
compared to the attributes generated from the currently
monitored string of the potential masqueraders. If normal
and intrusion activities are sufficiently distinct, attributes
generated from the legitimate user activities will be more
similar to the user’s signature than those generated from the
masquerader’s session. Most previous research follows this
logic to distinguish the strings from legitimate users and
masqueraders.

A related problem to masquerade detection is identifying the
potential internal masqueraders, which can be generalized as
an author identification problem. This problem is relevant in
secured environments, in which only a small number of users
with known signatures can originate an attack. Other
examples of usefulness of the author identification problem
include finding equivalences between emails originated from
differently named accounts or detecting plagiarizing among
papers or programs. For author identification, a string from
each potential author is collected to generate a signature
(some attributes or features). Each signature will then be
compared to the attributes of the currently monitored string.
The author is then decided based on the degree of similarity
of the current session and the author signature.

In masquerade detection and author identification, the input
is a string of objects (commands, packets, system calls, lines
of program execution trace, etc.) produced by a source. The
task is to assess whether the monitored string confirms to the
“usual” behavior of this source, in case of intrusion detection,
or which of many possible sources is the most likely
producer of the monitored string, in the authorship
identification case. The assessment is based on the unique
signature of each source collected in the controlled
experiment in which the authorship of the signature can be
assured.

Boleslaw K. Szymanski, IEEE Fellow, and Yongqiang Zhang
Department of Computer Science, RPI, Troy, NY 12180, USA

Recursive Data Mining for Masquerade Detection
and Author Identification

Bolek
Text Box
 Proc. 5th IEEE System, Man and Cybernetics Information Assurance Workshop, West Point, NY, June, 2004, pp. 424-431

In this paper, we propose a novel recursive data mining
method originated in our simple yet powerful model of
cognition, called a conceptor [5]. In a conceptor, the first
level of abstraction of input is based on repeating patterns,
but the subsequent ones are based on repeating patterns of
lower level abstractions. In recursive data mining method,
the input is encoded into symbols and then mined for
dominant patterns. Dominant patterns, defined later, are then
assigned new codes that are then used to generate the data
representation of a higher level. The input is thus recursively
mined until no new dominant pattern exists. During the
recursive mining, we generate several features that will be
used to form the user’s signature profile and will be
compared to the features of monitored string. For
masquerade detection, one-class SVM is applied to predict
the intrusion. For author identification, a weighting
prediction scheme is proposed to predict the authorship.

This paper is structured as follows: first, we discuss the
recent works in Section II, and then illustrate in detail our
recursive data mining method in Section III. Section IV
describes the user identification algorithm. The results of the
experiments with masquerade detection and author
identification are presented in Section V. Section VI
concludes with a discussion of future work.

II. RECENT WORK

A. Data

Schonlau et al. [12] collected UNIX commands and built a
truncated command dataset, commonly called SEA dataset.
In SEA dataset, 15,000 sequential commands for each of 70
users are recorded. Among 70 users, 50 are randomly chosen
as victims and the remaining 20 as intruders. Each victim has
5,000 clean commands and 10,000 potentially contaminated
commands. For each user, the first 5,000 commands are
taken as the training data and used for signature generation.
The remaining 10,000 commands form the testing data. The
data is grouped into blocks of 100 commands. A testing
block is either contaminated completely or not at all.

Although widely used for masquerade detection, this dataset
has some limitations [12]. First, command arguments, which
may contain valuable information for intrusion detection and
authorship, were not collected because of privacy concerns.
Second, the 20 intruders are “other” users from a general
population similar to the legitimate users and not “ real”
masqueraders who may exhibit unusual patterns
distinguished more easily from normal patterns. Third,
mistyped commands may violate the signature profile built
for a user. Still, SEA data is a valuable set and we used it to
test our method for both masquerade detection and author
identification.

B. Methods

Many methods have been used for masquerade detection in
the SEA dataset. Schonlau et al [12] summarizes several
approaches based on pattern uniqueness, Bayes one-step
Markov model, hybrid multistep Markov model, text
compression, Incremental Probabilistic Action Modeling
(IPAM), and sequence matching (see Table 1, the method
names follow Schonlau [12]). Wang [17] used one-class
training based on data representative of only one user and
demonstrated that it worked as well as multi-class training.
Coull [3] applied bioinformatics matching algorithm for a
semi-global alignment to this problem. Finally, Lee [9] built
a data mining framework for constructing features and model
for intrusion detection.

Approaches False
Alarms

Hit Rates

Uniqueness 1.4% 39.4%
Bayes one-step Markov 6.7% 69.3%
Hybrid Multistep Markov 3.2% 49.3%
Compression 5.0% 34.2%
Sequence Matching 3.7% 36.8%
IPAM 2.7% 41.4%
Semi-Global Alignment 7.7% 75.8%

Table 1: Results from previous approaches to
masquerade detection

For author identification, Vel [15, 16] researched email
communications, Hill [6] built a vector space model for
author identification in a double-blinded review process by
using citation lists, and Krsul [8] employed programming
style characteristics to identify the author of a program. In
this paper, we solve the masquerader identification problem.

Marcken [10] developed an unsupervised learning algorithm
for speech segmentation that is also based on hierarchical
pattern recognition. Unlike our method in which reduction of
string length is based on the frequency and length of patterns,
his framework used minimum description length theory
(MDL) for grammar compression. Another big difference is
that we use fixed length of slide window that limits the
length of a pattern.
Data mining techniques have been successfully applied to
many business and scientific domains, including some that
are closely related to intrusion detection. Lee [9] builds data
mining framework for constructing features and model for
intrusion detection. In this paper, we propose a recursive data
mining method to solve the masquerade detection and author
identification problems.

III. RECURSIVE DATA MINING METHOD

Each user is prone to type commands which will create some
patterns. For example, a user is likely to type ls first, then cd,
then ls and so on, when searching for a file. The habit of
each user in typing the sequence of commands may reflect

his identity and thus can be used as his signature. In
recursive data mining, an input is first encoded into input
symbols and then recursively mined for frequent patterns.
The dominant patterns are the largest and most frequent
patterns in the string. The dominant patterns are encoded by
new unique symbols and the input is rewritten by replacing
each dominant pattern with its symbol. The input data are
considered the 1st level data representation, L-level data
representation, after dominant pattern substitution, becomes
L+1-level data representation. The process stops when no
new dominant patterns are present in the transformed input.
Since input is recursively mined for patterns, the pattern
search can be done in each step in a limited-size sliding
window, without changing the final representation of the
result. Using a window speeds up the process of pattern
recognition.

By recursive de-mining, a pattern in the L+1-level can be
extended to a longer pattern if we replace its L-level symbols
with their corresponding dominant patterns. In this way, we
can restore the patterns in any level to their first level
representations. We use the features on patterns in each level
as a user’s signature. So our method actually uses features
for both short patterns and long patterns in the first level
representation as a user’s signature.

In our applications, we use patterns of fixed length and
containing several commands and gaps. More formally, the
input data contains M records, each with values of l attributes.
Each attribute i has a domain Di of all possible values
associated with it (including a null value). Values are either
discrete (countable) or non-empty intervals over continuous
domains. The pattern of radius r anchored at record m is any
subset of a matrix Mi,l such that each row consists of values
of l attributes in a record m+i where ri <≤0 . For SEA
dataset, we only consider one attribute, a user command, so l
is 1. We also only consider patterns of radius of up to 6.

A. Encoding Phase

Each input command is assigned an integer as its code.
However, a group of related commands may be assigned an
identical integer, making them equivalent in recursive
mining. Such encoding granularity impacts the frequency of
patterns. In essence, coarse grain encoding “glues” together a
range of original input values into a single symbol.

Command Types Policy 1 Policy 2 Policy 3

Unix Commands 1~1000 1~1000
one symbol for
commands with
close semantics

Not Unix,
Frequently Used

1001~2000 1001 1001

Not Unix, Not
Frequently Used

2001~3000 2001 2001

Table 2: Different encoding of commands in SEA input

For SEA dataset, input contains user-typed commands. Most
of them are UNIX commands, but there are of course
mistyped commands too. We group the commands into three
types: UNIX commands, non-Unix but frequently used
commands, non-Unix and not frequently used commands.
We experimented with the encoding policies presented in
Table 2.

B. Training Phase

In training phase, the training data are recursively mined and
the dominant patterns are recorded in the training dictionary.
The procedure can be illustrated as follows:

First, we recognize the significant patterns in the input string.
We also count the frequency of each pattern p in the input
data, Ap. Then, we calculate the expected number of
occurrences of pattern p in the input string Ep:

∏

∏

∏

=

=

=

−
×−×+−=

+−×
−

−

=

h

i ii

i

q

i
i

q

i
ii

p

gf

f

N

kN
sN

f

N

sN

gf

kN

E

1

1

1

)!(

!

!

)!(
)1(

!

!

)1(

)!(

)!(

where fi denotes command i’s frequency in the string; gi
denotes command i ’s frequency in pattern p; k denotes the
number of commands in pattern p; h denotes the number of
distinct commands in pattern p; q denotes the total number of
distinct commands in the input string; s denotes the length of
a slide window; N denotes the length of the string. Let

∏∏
==

=+−×
−

−=
q

i
i

sq

i
ii

p

f

N
NsN

gf

kN
N

11

!

!
),1(

)!(

)!(

Then Np is the total number of strings in which pattern p may
appear. Ns is the total number of strings that can be created
by using the commands in the input string.

s

p

N

N is thus the

expected frequency of pattern p.

If Ap > m×max (Ep, 1), then pattern p is a significant pattern,
where m is a constant whose choice impacts the number of
dominant patterns recognized in the input.

Second, we recognize the dominant patterns by finding the
longest significant pattern; if there are several candidates, the
most compact one is selected. Each dominant pattern is
assigned a new code.

Third, we rewrite the current string into a new string
replacing each window with the code of the dominant pattern

followed by the commands in the gaps. The next
replacement window starts at the first gap of the previous
window in the current string. If the window contains no
significant patterns, the next one starts at the symbol next to
the start of the current window.

There are other choices for string rewriting that lead to
different information kept in the higher level and, thus, will
influence the training dictionary and the feature values that
we will get in the following detection phase.

Finally, we append all the dominant patterns in the current
level into the training dictionary. If there are no new
dominant patterns in the current level, the training stops;
otherwise, the rewritten string is used as an input for the next
iteration of the data mining.

C. Detection Phase

In this phase, we apply training dictionary to each unit in
testing data that are either a 100-command block (for
intrusion detection) or the whole string (for author
identification) and obtain features for each unit. We will also
compute features for training data for the later prediction.

First, we search the training dictionary for each pattern in a
unit and record the dominant patterns in this unit. Currently,
a perfect match is required between the domain pattern in a
dictionary and the substring in a unit. However, a similarity,
such as small number of mismatches in corresponding
position of the compared strings, or as measured by the
Needlman-Wunsch algorithm [13], can also be used.

Second, we record features for each unit. We experimented
with the following features: number of distinct patterns in
each unit; number of dominant patterns in each unit; number
of distinct dominant patterns in each unit; number of distinct
input symbols in each unit; number of users sharing a pattern
in each unit; length reduction in each step of the input
rewriting in each unit; weighted number of the distinct
dominant patterns in each unit (considering the frequency of
the dominant patterns in the training dictionary).

Finally, we rewrite the current string, as in training phase.

D. Prediction Phase

For masquerade detection, we apply Support Vector
Machine (SVM) [1, 4] to detect the intruded blocks. We train
on the features of training blocks and predict on the features
of testing blocks. Since for each user, we only have non-
intruded data in the training blocks, we take it as the negative
data and use one-class SVM [2, 14] to detect intrusion. We
can also take the data in the training blocks of the current
user as the negative data and the data in the training blocks
of other users as the positive data and apply more traditional
two-class SVM. However, as discussed by Wang [17], the
positive training data belongs to different users and the

positive testing data is from users other than the users in the
training data, so such an approach is not appropriate.

Before applying SVM, we need to normalize the data. We
apply two normalization methods. Suppose we have a dataset:
X = { x1, x2,…,xn} , then each element will be normalized by
the following two methods:

a.

nxx

xx
x

n

i
avgi

avgi
i

/)(

'

1

2∑
=

−

−
=

where xavg is the average of xi, i=1, 2,…, n

b.
minmax

min'
xx

xx
x i

i −
−= , where xmin and xmax are the minimum and

maximum elements in the set, respectively.

For author identification, we will describe an algorithm to
identify the authorship in section IV.

E. Analysis Phase

For masquerade detection, we compare the true value from
SEA dataset with the value predicted in Prediction Phase. For
any block, false positive rate is defined as the ratio of the
number of false positive blocks to the number of clean
blocks in the true value data; hit rate is defined as the ratio of
the number of true positive blocks to the number of intruded
blocks in the true value data.

For author identification, we will calculate the percentage of
the number of authors that are correctly predicted.

IV. WEIGHTING PREDICTION SCHEME

After detecting the masquerade, it is important to know the
identity of the masquerader. Masquerader identification can
be generalized to a much broader problem: author
identification. In the author identification problem, we
assume to have N users with known signatures. Then, a
sequence of symbols whose author is unknown is processed
with the signature profile of each user to obtain N sets of
feature values. The feature values are then weighted in each
feature set. Our author decision rule is simple and
straightforward: the user with the largest weighted feature
value is the author. The feature values are then compared to
decide the identity of the author of this unknown sequence of
symbols.

A. Obtaining Features

Features are obtained by using our recursive data mining
method and test it on SEA data but with all intrusion blocks
removed from testing data. The Training Phase is the same
as for masquerade detection. Detection Phase is different, as
for each set of testing data we apply the training dictionaries

of all users, obtaining an N by N matrix R. Each element R (I,
J) is a feature tuple which is obtained by applying user I’s
training dictionary to user J’ s testing data. The N feature sets
for user J’s testing data which are obtained by applying each
user’s training dictionary to user J’s testing data form
column J.

B. Weighting Prediction Scheme

For the decision of authorship, different features make
different contributions. Assigning weight to each feature is
necessary to quantify the amount of its contribution in
deciding the author. Comparisons of features are performed
by the following weighting prediction scheme.

First, we assign weight to each feature. Since we know the
original author of each set of training data, we can use it to
obtain the weight for each feature. We first split each user’s
training data into two parts: t for training set and v for
validation set and then apply our recursive data mining
method. As a result, we obtain an N by N matrix T of feature
tuples.

To find the weight of each feature, for each column in T, we
count the number of users whose value for this feature is
bigger than or equal to that of the original user. According to
author decision rule, the user with the largest weighted
feature value is the author. Since we only consider one
feature each time, so the weighted feature value is just the
feature value itself. The users, who have the feature values
bigger than or equal to that of the original user, are called
candidate authors. We record two parameters: Ci, average
number of candidate authors among the validation sets, and
Ai, number of wrong authors (also the number of columns
having more than one candidate authors among the
validation sets). So if we attain a smaller number of wrong
authors or candidate authors for one feature than the other,
then this feature should be considered more relevant and is
given larger weight in the combination of multiple features
than the other one. We assign a weight Wi

c or Wi
w based on

these two parameters, respectively, to each feature Fi,
i=1,…,t according to the following formula [11]:

ti
AA

W
t

j ji

w
i ,...,1,

11

1

== ∑
=

or ti
CC

W
t

j ji

c
i ,...,1,

1

1

1

1

1

=
−−

= ∑
=

Hence, the larger the number of wrong authors or the
candidate authors, the smaller the weight. We use Ci -1 in the
second weight calculation to remove the original author from
consideration.
Second, for each feature Fi, i=1,…,t, if the element R (I, J)
has the biggest value in its column, we set the value of
predictor Pi to 1; otherwise, we set it to 0.

Third, we calculate the prediction value by linear
combination of the weights and features. Let P (I, J) denote
the weighted predictor value for each element R (I, J). Then
weighted predictor value can be calculated by the formula:

;,...,1;,...,1),(),(
1

NJNIPWJIP
t

i
ii ==×=∑

=

 Wi is either Wi
c or Wi

w

Finally, for each column, we find the element with the
highest weighted value. The corresponding row index in
matrix R is the author of the testing string. That is, for all P(I,
J) in column J, we find the maximum value of P(I, J) and the
corresponding I is the author number.

V. EXPERIMENT RESULTS

A. Masquerade Detection

In masquerade detection, recursive data mining generates
features for each block (including the training block and
testing block) that is used by a one-class SVM to classify the
blocks and predict the intrusion. We used LIBSVM2.4 [1]
for this purpose. For the first variant of our method, called
Individual Intrusion Detection, we selected four features for
each block: number of dominant patterns in level 1, number
of distinct dominant patterns in level 1, number of dominant
patterns in level 2, and number of distinct dominant patterns
in level 2. Changing the threshold in one-class SVM (a
variable in LIBSVM2.4 that defines the outliers) yields
different false positive and hit rates. Likewise, changing
parameter m in recursive data mining impacts these rates.
The best results are obtained by setting m to 6 for the first
level of processing and 5 for the subsequent levels.

We also introduce an additional variant of our method, called
Communal Intrusion Detection. Besides the features used in
Individual Intrusion Detection, it also uses the number of
users sharing each dominant pattern. That is, for each
dominant pattern in a block, we count the users who share it.

There are two problems that need to be addressed for
Communal Intrusion Detection. First, we train the training
data by each user, so we may assign different codes to the
same dominant pattern for different users. Thus, to compare
the dominant patterns containing the newly assigned codes
among the users, we need to transform the dominant patterns
into their first level representations containing only the input
symbols. Second, in one class SVM, we use fixed number of
features. However, each block contains different number of
dominant patterns and, thus, different number of potential
features. To fix the number of features, we group the
dominant patterns by the number of users who share them.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
False Positive Rate

H
it

R
at

e

Communal Intrusion Detection Individual Intrusion Detection

Figure 1: Comparison of Individual and Communal
 Intrusion Detection

For each dominant pattern p in a block, let up be the number
of users who share it. Then if 12 2i i

pu− ≤ < , we put p into

group i. Since we only have 50 users in SEA dataset, we have
at most log250 + 1< 7 groups. Then, the number of dominant
patterns in each group is a feature. We use these features in
the first two levels and thus have 18 features in Communal
Intrusion Detection.

Figure 1 gives a comparison of Individual Intrusion
Detection and Communal Intrusion Detection. The plot
indicates that Communal Intrusion Detection works better
than Individual one when large hit rate is desired. Individual
Intrusion Detection uses fewer parameters, so it appears
more stable.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
False Positive Rate

H
it

R
at

e

Recursive Data Mining (communal) Compression

Sequence Matching Uniqueness
IPAM Hybrid Markov

Bayes 1-Step Markov Semi-Global Alignment
Recursive Data Mining (Individual)

Figure 2: Comparison of Masquerade Detection Methods

Figure 2 compares different masquerade detection methods.
Recursive Data Mining plots show both the Individual and
Communal Intrusion Detection results.

The plot indicates that the recursive data mining works better
than or matches Compression, Sequence Matching, IPAM,
Hybrid Markov, Semi-Global Alignment, Bayes 1-Step
Markov and Uniqueness methods (for details on those
methods, see [12])..

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
False Positive Rate

H
it

R
at

e
Normalization Policy b Normalization Policy a

Figure 3: Comparison of two Normalization Policies

2. Comparison of Normalization Policies

Normalization of input for SVM is important for the SVM
performance [4], so in Figure 3, we compare the two polices
for normalizing the features for intrusion detection. The plots
shows that normalization policy b works slightly better than
policy a in most cases. However, the differences are very
small.

3. Comparison of Encoding Policies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
False Positive Rate

H
it

R
at

e

Encoding Policy 1 Encoding Policy 2
Encoding Policy 3

Figure 4: Comparison of two Encoding Policies

Figure 4 demonstrates that Policy 1 outperforms Policies 2
and 3. We hypothesize that a policy in which UNIX
semantically similar commands are grouped together should
work even better. So far, we have not found such a scheme
for command grouping.

B. Author Identification

Individual Intrusion Detection was used to obtain features.
Thus, we used the following four features: F1: number of
dominant patterns in level 1; F2: number of distinct dominant
patterns in level 1; F3: number of dominant patterns in level
2; F4: number of distinct dominant patterns in level 2. In
recursive data mining processing, we choose m=3 for the
first level and m=2 for the second level.

We used SEA dataset and split training data of each user into
two sets: 2500 commands for training set and other 2500
commands for validation set. Then, we calculated the
weights Wi

c and Wi
w as shown in Table 3.

 F1 F2 F3 F4
Average number of
candidate authors(Ci) 1.18 1.04 4.1 1.28
Weight (Wi

c) for
candidate authors 0.161 0.726 0.009 0.104
Wrong authors (Ai) 3 2 31 7
Weight (Wi

w) for
wrong authors 0.330 0.496 0.032 0.142

Table 3: Weights for different features

Based on the Wi

c, we can achieve 88% accuracy rate. That is,
for 50 test strings, we correctly find their 44 authors. Based
on Wi

w, we can achieve 94% accuracy rate. That is, for 50
test strings, we correctly find their 47 authors.

By using the same dataset, roughly implemented
bioinformatics method by Coull [3] gets only 40% accuracy
rate, which means only 20 authors are correctly found among
50 users.

In the similar work, yet applied to the totally different
domains, so direct comparison of the results is difficult,
Krsul [8] reports 98% accuracy rate by using Multi-layer
Perceptron and 100% accuracy rate by using Gaussian
Classifier in deciding computer program authorship. Vel [15]
achieves 84% accuracy rate in email authorship mining.

VI. CONCLUSION

Recursive data mining is a new technique for solving
computer security problems. In this paper, we show how to
apply recursive data mining to solve the masquerade
intrusion detection and author identification problems.
Compared to the results from other researchers, our results
are very promising. In the future, we will attempt to extend
our method to other authorship problems, such as email,
papers or programs, or to problems in other domains, such as
DNA identification and text mining problems.

What is different from previous work is that we use
information about recursive patterns, instead of symbols or
direct patterns, as features of input. The inputs are

recursively mined and lower-level patterns are coded and
then used for higher-level pattern recognition. The higher-
level patterns seem to better capture the subconscious user’s
behavior than the symbols of the direct pattern do.

In this paper, we did not discuss feature selection. In our
experiments, we manually select some features and use those
that can lead to the best results. Sensitivity analysis and cross
validation technique [7] will be our next step to improve
those selections.

Finally, the experiments described in this paper all use
perfect match when comparing two dominant patterns. We
will compare the results with the processing in which
matching will allow for small differences in the compared
strings.

 REFERENCES

[1] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: a
library for support vector machines” , 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[2] Yunqiang Chen, Xiang Zhou and Thomas Huang, “One-
class SVM for Learning in Image Retrieval” , Proc. IEEE
Int'l Conf. on Image Processing (ICIP'01 Oral), Thessaloniki,
Greece, October, 2001.

[3] Scott Coull, Joel Branch and Boleslaw Szymanski et al.,
“ Intrusion Detection: A Bioinformatics Approach” , 19th
Annual Computer Security Applications Conference, Las
Vegas, Nevada, December 08-12, 2003.

[4] Nello Cristianini and John Shawe-Taylor. An
introduction to Support Vector Machines and other kernel-
based learning methods. Cambridge University Press, 2000.

[5] Konrad R. Fiakowski & Boleslaw K Szymanski, “A
CONCEPTOR: the Network of Neurally Connected Concept
Nests for Knowledge Representation” , Technical Report,
RPI 1996.

[6] Shawndra Hill and Foster Provost, “The Myth of the
Double-Blind Review? Author Identification Using Only
Citations” , SIGKDD Explorations, Volume 5, Issue 2
P179~184.

[7] Robert H. Kewley, Mark J. Embrechts, et al. “Data Strip
Mining for the Virtual Design of Pharmaceuticals with
Neural Networks” , IEEE Transactions on Neural Networks,
Volume 11, Issue 3, May 2000.

[8] Ivan Krsul, Eugene H. Spafford, “Authorship Analysis:
Identifying the Author of a Program”, Submitted to
Computers and Security.

[9] Wenke Lee, “A Data Mining Framework for
Constructing Features and Models for Intrusion Detection
Systems” , PhD Thesis, Columbia University, 1999.

[10] Carl de Marcken, “The Unsupervised Acquisition of a
Lexicon from Continuous Speech” , Technical Report A.I.
Memo No. 1558, AI Lab., MIT. Cambridge, Massachusetts.
1995.

[11] Fang Qian, Mingjing Li and Hong-Jiang Zhang et al.,
“SVM Based Feature Weighting Method for Image
Retrieval” , Fourth International Workshop On Multimedia
Information Retrieval, Juan-les-Pins on the French Riviera,
December, 2002.

[12] Matthias Schonlau, W. Dumouchel, Wen-Hua Ju et al.
“Computer Intrusion: Detecting Masquerades” , Statistical
Science, 16(1):58-74, February 2001.

[13] Needleman, S. and Wunsch, C. “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins” , Journal of Molecular Biology, 48:
444-453, 1970.

[14] Runar Unnborsson, "Model Selection in One-Class � -
SVMs Using RBF Kernels", 2003, paper available at
http://www.hi.is/~runson/svm/paper.pdf.

[15] Oliver De Vel, “Mining E-mail Authorship” , KDD-
2000 Workshop on Text Mining, Boston, August, 2000.

[16] Oliver De Vel, A. Anderson and M. Corney, et al.
“Mining Email Content for Author Identification Forensics” ,
SIGMOD: Special Section on Data Mining for Intrusion
Detection and Threat Analysis, December 2001.

[17] Ke Wang and Salvatore J. Stolfo, “One-Class Training
for Masquerade Detection” , 3rd IEEE Conference Data
Mining Workshop on Data Mining for Computer Security,
Florida, November 19, 2003.

