
Recursive Deep Models for Semantic Compositionality

Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang,

Christopher D. Manning, Andrew Y. Ng and Christopher Potts

Stanford University, Stanford, CA 94305, USA

richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu

{jeaneis,manning,cgpotts}@stanford.edu

Abstract

Semantic word spaces have been very use-

ful but cannot express the meaning of longer

phrases in a principled way. Further progress

towards understanding compositionality in

tasks such as sentiment detection requires

richer supervised training and evaluation re-

sources and more powerful models of com-

position. To remedy this, we introduce a

Sentiment Treebank. It includes fine grained

sentiment labels for 215,154 phrases in the

parse trees of 11,855 sentences and presents

new challenges for sentiment composition-

ality. To address them, we introduce the

Recursive Neural Tensor Network. When

trained on the new treebank, this model out-

performs all previous methods on several met-

rics. It pushes the state of the art in single

sentence positive/negative classification from

80% up to 85.4%. The accuracy of predicting

fine-grained sentiment labels for all phrases

reaches 80.7%, an improvement of 9.7% over

bag of features baselines. Lastly, it is the only

model that can accurately capture the effects

of negation and its scope at various tree levels

for both positive and negative phrases.

1 Introduction

Semantic vector spaces for single words have been

widely used as features (Turney and Pantel, 2010).

Because they cannot capture the meaning of longer

phrases properly, compositionality in semantic vec-

tor spaces has recently received a lot of attention

(Mitchell and Lapata, 2010; Socher et al., 2010;

Zanzotto et al., 2010; Yessenalina and Cardie, 2011;

Socher et al., 2012; Grefenstette et al., 2013). How-

ever, progress is held back by the current lack of

large and labeled compositionality resources and

–

0

0

This

0

film

–

–

–

0

does

0

n’t

0

+

care

+

0

about

+

+

+

+

+

cleverness

0

,

0

wit

0

or

+

0

0

any
0

0

other

+

kind

+

0

of

+

+

intelligent

+ +

humor

0

.

Figure 1: Example of the Recursive Neural Tensor Net-

work accurately predicting 5 sentiment classes, very neg-

ative to very positive (– –, –, 0, +, + +), at every node of a

parse tree and capturing the negation and its scope in this

sentence.

models to accurately capture the underlying phe-

nomena presented in such data. To address this need,

we introduce the Stanford Sentiment Treebank and

a powerful Recursive Neural Tensor Network that

can accurately predict the compositional semantic

effects present in this new corpus.

The Stanford Sentiment Treebank is the first cor-

pus with fully labeled parse trees that allows for a

complete analysis of the compositional effects of

sentiment in language. The corpus is based on

the dataset introduced by Pang and Lee (2005) and

consists of 11,855 single sentences extracted from

movie reviews. It was parsed with the Stanford

parser (Klein and Manning, 2003) and includes a

total of 215,154 unique phrases from those parse

trees, each annotated by 3 human judges. This new

dataset allows us to analyze the intricacies of senti-

ment and to capture complex linguistic phenomena.

Fig. 1 shows one of the many examples with clear

compositional structure. The granularity and size of

this dataset will enable the community to train com-

positional models that are based on supervised and

structured machine learning techniques. While there

are several datasets with document and chunk labels

available, there is a need to better capture sentiment

from short comments, such as Twitter data, which

provide less overall signal per document.

In order to capture the compositional effects with

higher accuracy, we propose a new model called the

Recursive Neural Tensor Network (RNTN). Recur-

sive Neural Tensor Networks take as input phrases

of any length. They represent a phrase through word

vectors and a parse tree and then compute vectors for

higher nodes in the tree using the same tensor-based

composition function. We compare to several super-

vised, compositional models such as standard recur-

sive neural networks (RNN) (Socher et al., 2011b),

matrix-vector RNNs (Socher et al., 2012), and base-

lines such as neural networks that ignore word order,

Naive Bayes (NB), bi-gram NB and SVM. All mod-

els get a significant boost when trained with the new

dataset but the RNTN obtains the highest perfor-

mance with 80.7% accuracy when predicting fine-

grained sentiment for all nodes. Lastly, we use a test

set of positive and negative sentences and their re-

spective negations to show that, unlike bag of words

models, the RNTN accurately captures the sentiment

change and scope of negation. RNTNs also learn

that sentiment of phrases following the contrastive

conjunction ‘but’ dominates.

The complete training and testing code, a live

demo and the Stanford Sentiment Treebank dataset

are available at http://nlp.stanford.edu/

sentiment.

2 Related Work

This work is connected to five different areas of NLP

research, each with their own large amount of related

work to which we cannot do full justice given space

constraints.

Semantic Vector Spaces. The dominant ap-

proach in semantic vector spaces uses distributional

similarities of single words. Often, co-occurrence

statistics of a word and its context are used to de-

scribe each word (Turney and Pantel, 2010; Baroni

and Lenci, 2010), such as tf-idf. Variants of this idea

use more complex frequencies such as how often a

word appears in a certain syntactic context (Pado

and Lapata, 2007; Erk and Padó, 2008). However,

distributional vectors often do not properly capture

the differences in antonyms since those often have

similar contexts. One possibility to remedy this is to

use neural word vectors (Bengio et al., 2003). These

vectors can be trained in an unsupervised fashion

to capture distributional similarities (Collobert and

Weston, 2008; Huang et al., 2012) but then also be

fine-tuned and trained to specific tasks such as sen-

timent detection (Socher et al., 2011b). The models

in this paper can use purely supervised word repre-

sentations learned entirely on the new corpus.

Compositionality in Vector Spaces. Most of

the compositionality algorithms and related datasets

capture two word compositions. Mitchell and La-

pata (2010) use e.g. two-word phrases and analyze

similarities computed by vector addition, multiplica-

tion and others. Some related models such as holo-

graphic reduced representations (Plate, 1995), quan-

tum logic (Widdows, 2008), discrete-continuous

models (Clark and Pulman, 2007) and the recent

compositional matrix space model (Rudolph and

Giesbrecht, 2010) have not been experimentally val-

idated on larger corpora. Yessenalina and Cardie

(2011) compute matrix representations for longer

phrases and define composition as matrix multipli-

cation, and also evaluate on sentiment. Grefen-

stette and Sadrzadeh (2011) analyze subject-verb-

object triplets and find a matrix-based categorical

model to correlate well with human judgments. We

compare to the recent line of work on supervised

compositional models. In particular we will de-

scribe and experimentally compare our new RNTN

model to recursive neural networks (RNN) (Socher

et al., 2011b) and matrix-vector RNNs (Socher et

al., 2012) both of which have been applied to bag of

words sentiment corpora.

Logical Form. A related field that tackles com-

positionality from a very different angle is that of

trying to map sentences to logical form (Zettlemoyer

and Collins, 2005). While these models are highly

interesting and work well in closed domains and

on discrete sets, they could only capture sentiment

distributions using separate mechanisms beyond the

currently used logical forms.

Deep Learning. Apart from the above mentioned

work on RNNs, several compositionality ideas re-

lated to neural networks have been discussed by Bot-

tou (2011) and Hinton (1990) and first models such

as Recursive Auto-associative memories been exper-

imented with by Pollack (1990). The idea to relate

inputs through three way interactions, parameterized

by a tensor have been proposed for relation classifi-

cation (Sutskever et al., 2009; Jenatton et al., 2012),

extending Restricted Boltzmann machines (Ranzato

and Hinton, 2010) and as a special layer for speech

recognition (Yu et al., 2012).

Sentiment Analysis. Apart from the above-

mentioned work, most approaches in sentiment anal-

ysis use bag of words representations (Pang and Lee,

2008). Snyder and Barzilay (2007) analyzed larger

reviews in more detail by analyzing the sentiment

of multiple aspects of restaurants, such as food or

atmosphere. Several works have explored sentiment

compositionality through careful engineering of fea-

tures or polarity shifting rules on syntactic structures

(Polanyi and Zaenen, 2006; Moilanen and Pulman,

2007; Rentoumi et al., 2010; Nakagawa et al., 2010).

3 Stanford Sentiment Treebank

Bag of words classifiers can work well in longer

documents by relying on a few words with strong

sentiment like ‘awesome’ or ‘exhilarating.’ How-

ever, sentiment accuracies even for binary posi-

tive/negative classification for single sentences has

not exceeded 80% for several years. For the more

difficult multiclass case including a neutral class,

accuracy is often below 60% for short messages

on Twitter (Wang et al., 2012). From a linguistic

or cognitive standpoint, ignoring word order in the

treatment of a semantic task is not plausible, and, as

we will show, it cannot accurately classify hard ex-

amples of negation. Correctly predicting these hard

cases is necessary to further improve performance.

In this section we will introduce and provide some

analyses for the new Sentiment Treebank which in-

cludes labels for every syntactically plausible phrase

in thousands of sentences, allowing us to train and

evaluate compositional models.

We consider the corpus of movie review excerpts

from the rottentomatoes.com website orig-

inally collected and published by Pang and Lee

(2005). The original dataset includes 10,662 sen-

nerdy folks

|
Very

negative

|
Negative

|
Somewhat
negative

|
Neutral

|
Somewhat
positive

|
Positive

|
Very

positive

phenomenal fantasy best sellers

|
Very

negative

|
Negative

|
Somewhat
negative

|
Neutral

|
Somewhat
positive

|
Positive

|
Very

positive

Figure 3: The labeling interface. Random phrases were

shown and annotators had a slider for selecting the senti-

ment and its degree.

tences, half of which were considered positive and

the other half negative. Each label is extracted from

a longer movie review and reflects the writer’s over-

all intention for this review. The normalized, lower-

cased text is first used to recover, from the origi-

nal website, the text with capitalization. Remaining

HTML tags and sentences that are not in English

are deleted. The Stanford Parser (Klein and Man-

ning, 2003) is used to parses all 10,662 sentences.

In approximately 1,100 cases it splits the snippet

into multiple sentences. We then used Amazon Me-

chanical Turk to label the resulting 215,154 phrases.

Fig. 3 shows the interface annotators saw. The slider

has 25 different values and is initially set to neutral.

The phrases in each hit are randomly sampled from

the set of all phrases in order to prevent labels being

influenced by what follows. For more details on the

dataset collection, see supplementary material.

Fig. 2 shows the normalized label distributions at

each n-gram length. Starting at length 20, the ma-

jority are full sentences. One of the findings from

labeling sentences based on reader’s perception is

that many of them could be considered neutral. We

also notice that stronger sentiment often builds up

in longer phrases and the majority of the shorter

phrases are neutral. Another observation is that most

annotators moved the slider to one of the five po-

sitions: negative, somewhat negative, neutral, posi-

tive or somewhat positive. The extreme values were

rarely used and the slider was not often left in be-

tween the ticks. Hence, even a 5-class classification

into these categories captures the main variability

of the labels. We will name this fine-grained senti-

ment classification and our main experiment will be

to recover these five labels for phrases of all lengths.

5 10 15 20 25 30 35 40 45
N-Gram Length

0%

20%

40%

60%

80%

100%

%
 o

f S
en

tim
en

t V
al

ue
s

Neutral

Somewhat Positive

Positive

Very Positive

Somewhat Negative

Negative
Very Negative

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

Distributions of sentiment values for (a) unigrams,
(b) 10-grams, (c) 20-grams, and (d) full sentences.

Figure 2: Normalized histogram of sentiment annotations at each n-gram length. Many shorter n-grams are neutral;

longer phrases are well distributed. Few annotators used slider positions between ticks or the extreme values. Hence

the two strongest labels and intermediate tick positions are merged into 5 classes.

4 Recursive Neural Models

The models in this section compute compositional

vector representations for phrases of variable length

and syntactic type. These representations will then

be used as features to classify each phrase. Fig. 4

displays this approach. When an n-gram is given to

the compositional models, it is parsed into a binary

tree and each leaf node, corresponding to a word,

is represented as a vector. Recursive neural mod-

els will then compute parent vectors in a bottom

up fashion using different types of compositional-

ity functions g. The parent vectors are again given

as features to a classifier. For ease of exposition,

we will use the tri-gram in this figure to explain all

models.

We first describe the operations that the below re-

cursive neural models have in common: word vector

representations and classification. This is followed

by descriptions of two previous RNN models and

our RNTN.

Each word is represented as a d-dimensional vec-

tor. We initialize all word vectors by randomly

sampling each value from a uniform distribution:

U(−r, r), where r = 0.0001. All the word vec-

tors are stacked in the word embedding matrix L ∈
R
d×|V |, where |V | is the size of the vocabulary. Ini-

tially the word vectors will be random but the L ma-

trix is seen as a parameter that is trained jointly with

the compositionality models.

We can use the word vectors immediately as

parameters to optimize and as feature inputs to

a softmax classifier. For classification into five

classes, we compute the posterior probability over

 not very good ...

 a b c

p1 =g(b,c)

p2 = g(a,p1)

0 0 +

+ +

-

Figure 4: Approach of Recursive Neural Network mod-

els for sentiment: Compute parent vectors in a bottom up

fashion using a compositionality function g and use node

vectors as features for a classifier at that node. This func-

tion varies for the different models.

labels given the word vector via:

ya = softmax(Wsa), (1)

where Ws ∈ R
5×d is the sentiment classification

matrix. For the given tri-gram, this is repeated for

vectors b and c. The main task of and difference

between the models will be to compute the hidden

vectors pi ∈ R
d in a bottom up fashion.

4.1 RNN: Recursive Neural Network

The simplest member of this family of neural net-

work models is the standard recursive neural net-

work (Goller and Küchler, 1996; Socher et al.,

2011a). First, it is determined which parent already

has all its children computed. In the above tree ex-

ample, p1 has its two children’s vectors since both

are words. RNNs use the following equations to

compute the parent vectors:

p1 = f

(

W

[

b

c

])

, p2 = f

(

W

[

a

p1

])

,

where f = tanh is a standard element-wise nonlin-

earity, W ∈ R
d×2d is the main parameter to learn

and we omit the bias for simplicity. The bias can be

added as an extra column to W if an additional 1 is

added to the concatenation of the input vectors. The

parent vectors must be of the same dimensionality to

be recursively compatible and be used as input to the

next composition. Each parent vector pi, is given to

the same softmax classifier of Eq. 1 to compute its

label probabilities.

This model uses the same compositionality func-

tion as the recursive autoencoder (Socher et al.,

2011b) and recursive auto-associate memories (Pol-

lack, 1990). The only difference to the former model

is that we fix the tree structures and ignore the re-

construction loss. In initial experiments, we found

that with the additional amount of training data, the

reconstruction loss at each node is not necessary to

obtain high performance.

4.2 MV-RNN: Matrix-Vector RNN

The MV-RNN is linguistically motivated in that

most of the parameters are associated with words

and each composition function that computes vec-

tors for longer phrases depends on the actual words

being combined. The main idea of the MV-RNN

(Socher et al., 2012) is to represent every word and

longer phrase in a parse tree as both a vector and

a matrix. When two constituents are combined the

matrix of one is multiplied with the vector of the

other and vice versa. Hence, the compositional func-

tion is parameterized by the words that participate in

it.

Each word’s matrix is initialized as a d×d identity

matrix, plus a small amount of Gaussian noise. Sim-

ilar to the random word vectors, the parameters of

these matrices will be trained to minimize the clas-

sification error at each node. For this model, each n-

gram is represented as a list of (vector,matrix) pairs,

together with the parse tree. For the tree with (vec-

tor,matrix) nodes:

(p2,P2)

(a,A) (p1,P1)

(b,B) (c,C)

the MV-RNN computes the first parent vector and its

matrix via two equations:

p1 = f

(

W

[

Cb

Bc

])

, P1 = f

(

WM

[

B

C

])

,

where WM ∈ R
d×2d and the result is again a d × d

matrix. Similarly, the second parent node is com-

puted using the previously computed (vector,matrix)

pair (p1, P1) as well as (a,A). The vectors are used

for classifying each phrase using the same softmax
classifier as in Eq. 1.

4.3 RNTN:Recursive Neural Tensor Network

One problem with the MV-RNN is that the number

of parameters becomes very large and depends on

the size of the vocabulary. It would be cognitively

more plausible if there was a single powerful com-

position function with a fixed number of parameters.

The standard RNN is a good candidate for such a

function. However, in the standard RNN, the input

vectors only implicitly interact through the nonlin-

earity (squashing) function. A more direct, possibly

multiplicative, interaction would allow the model to

have greater interactions between the input vectors.

Motivated by these ideas we ask the question: Can

a single, more powerful composition function per-

form better and compose aggregate meaning from

smaller constituents more accurately than many in-

put specific ones? In order to answer this question,

we propose a new model called the Recursive Neu-

ral Tensor Network (RNTN). The main idea is to use

the same, tensor-based composition function for all

nodes.

Fig. 5 shows a single tensor layer. We define the

output of a tensor product h ∈ R
d via the follow-

ing vectorized notation and the equivalent but more

detailed notation for each slice V [i] ∈ R
d×d:

h =

[

b

c

]T

V [1:d]

[

b

c

]

;hi =

[

b

c

]T

V [i]

[

b

c

]

.

where V [1:d] ∈ R
2d×2d×d is the tensor that defines

multiple bilinear forms.

 Slices of Standard

 Tensor Layer Layer

p = f V
[1:2]

 + W

Neural Tensor Layer

b

c

b

c

b

c

T

p = f +

Figure 5: A single layer of the Recursive Neural Ten-

sor Network. Each dashed box represents one of d-many

slices and can capture a type of influence a child can have

on its parent.

The RNTN uses this definition for computing p1:

p1 = f

(

[

b

c

]T

V [1:d]

[

b

c

]

+W

[

b

c

]

)

,

where W is as defined in the previous models. The

next parent vector p2 in the tri-gram will be com-

puted with the same weights:

p2 = f

(

[

a

p1

]T

V [1:d]

[

a

p1

]

+W

[

a

p1

]

)

.

The main advantage over the previous RNN

model, which is a special case of the RNTN when

V is set to 0, is that the tensor can directly relate in-

put vectors. Intuitively, we can interpret each slice

of the tensor as capturing a specific type of compo-

sition.

An alternative to RNTNs would be to make the

compositional function more powerful by adding a

second neural network layer. However, initial exper-

iments showed that it is hard to optimize this model

and vector interactions are still more implicit than in

the RNTN.

4.4 Tensor Backprop through Structure

We describe in this section how to train the RNTN

model. As mentioned above, each node has a

softmax classifier trained on its vector representa-

tion to predict a given ground truth or target vector

t. We assume the target distribution vector at each

node has a 0-1 encoding. If there are C classes, then

it has length C and a 1 at the correct label. All other

entries are 0.

We want to maximize the probability of the cor-

rect prediction, or minimize the cross-entropy error

between the predicted distribution yi ∈ R
C×1 at

node i and the target distribution ti ∈ R
C×1 at that

node. This is equivalent (up to a constant) to mini-

mizing the KL-divergence between the two distribu-

tions. The error as a function of the RNTN parame-

ters θ = (V,W,Ws, L) for a sentence is:

E(θ) =
∑

i

∑

j

tij log y
i
j + λ‖θ‖2 (2)

The derivative for the weights of the softmax clas-

sifier are standard and simply sum up from each

node’s error. We define xi to be the vector at node

i (in the example trigram, the xi ∈ R
d×1’s are

(a, b, c, p1, p2)). We skip the standard derivative for

Ws. Each node backpropagates its error through to

the recursively used weights V,W . Let δi,s ∈ R
d×1

be the softmax error vector at node i:

δi,s =
(

W T
s (yi − ti)

)

⊗ f ′(xi),

where ⊗ is the Hadamard product between the two

vectors and f ′ is the element-wise derivative of f

which in the standard case of using f = tanh can

be computed using only f(xi).
The remaining derivatives can only be computed

in a top-down fashion from the top node through the

tree and into the leaf nodes. The full derivative for

V and W is the sum of the derivatives at each of

the nodes. We define the complete incoming error

messages for a node i as δi,com. The top node, in

our case p2, only received errors from the top node’s

softmax. Hence, δp2,com = δp2,s which we can

use to obtain the standard backprop derivative for

W (Goller and Küchler, 1996; Socher et al., 2010).

For the derivative of each slice k = 1, . . . , d, we get:

∂Ep2

∂V [k]
= δ

p2,com
k

[

a

p1

] [

a

p1

]T

,

where δ
p2,com
k is just the k’th element of this vector.

Now, we can compute the error message for the two

children of p2:

δp2,down =

(

W T δp2,com + S

)

⊗ f ′

([

a

p1

])

,

where we define

S =
d
∑

k=1

δ
p2,com
k

(

V [k] +
(

V [k]
)T
)[

a

p1

]

The children of p2, will then each take half of this

vector and add their own softmax error message for

the complete δ. In particular, we have

δp1,com = δp1,s + δp2,down[d+ 1 : 2d],

where δp2,down[d + 1 : 2d] indicates that p1 is the

right child of p2 and hence takes the 2nd half of the

error, for the final word vector derivative for a, it

will be δp2,down[1 : d].

The full derivative for slice V [k] for this trigram

tree then is the sum at each node:

∂E

∂V [k]
=

Ep2

∂V [k]
+ δ

p1,com
k

[

b

c

] [

b

c

]T

,

and similarly for W . For this nonconvex optimiza-

tion we use AdaGrad (Duchi et al., 2011) which con-

verges in less than 3 hours to a local optimum.

5 Experiments

We include two types of analyses. The first type in-

cludes several large quantitative evaluations on the

test set. The second type focuses on two linguistic

phenomena that are important in sentiment.

For all models, we use the dev set and cross-

validate over regularization of the weights, word

vector size as well as learning rate and minibatch

size for AdaGrad. Optimal performance for all mod-

els was achieved at word vector sizes between 25

and 35 dimensions and batch sizes between 20 and

30. Performance decreased at larger or smaller vec-

tor and batch sizes. This indicates that the RNTN

does not outperform the standard RNN due to sim-

ply having more parameters. The MV-RNN has or-

ders of magnitudes more parameters than any other

model due to the word matrices. The RNTN would

usually achieve its best performance on the dev set

after training for 3 - 5 hours. Initial experiments

Model
Fine-grained Positive/Negative

All Root All Root

NB 67.2 41.0 82.6 81.8

SVM 64.3 40.7 84.6 79.4

BiNB 71.0 41.9 82.7 83.1

VecAvg 73.3 32.7 85.1 80.1

RNN 79.0 43.2 86.1 82.4

MV-RNN 78.7 44.4 86.8 82.9

RNTN 80.7 45.7 87.6 85.4

Table 1: Accuracy for fine grained (5-class) and binary

predictions at the sentence level (root) and for all nodes.

showed that the recursive models worked signifi-

cantly worse (over 5% drop in accuracy) when no

nonlinearity was used. We use f = tanh in all ex-

periments.

We compare to commonly used methods that use

bag of words features with Naive Bayes and SVMs,

as well as Naive Bayes with bag of bigram features.

We abbreviate these with NB, SVM and biNB. We

also compare to a model that averages neural word

vectors and ignores word order (VecAvg).

The sentences in the treebank were split into a

train (8544), dev (1101) and test splits (2210) and

these splits are made available with the data release.

We also analyze performance on only positive and

negative sentences, ignoring the neutral class. This

filters about 20% of the data with the three sets hav-

ing 6920/872/1821 sentences.

5.1 Fine-grained Sentiment For All Phrases

The main novel experiment and evaluation metric

analyze the accuracy of fine-grained sentiment clas-

sification for all phrases. Fig. 2 showed that a fine

grained classification into 5 classes is a reasonable

approximation to capture most of the data variation.

Fig. 6 shows the result on this new corpus. The

RNTN gets the highest performance, followed by

the MV-RNN and RNN. The recursive models work

very well on shorter phrases, where negation and

composition are important, while bag of features

baselines perform well only with longer sentences.

The RNTN accuracy upper bounds other models at

most n-gram lengths.

Table 1 (left) shows the overall accuracy numbers

for fine grained prediction at all phrase lengths and

full sentences.

Figure 6: Accuracy curves for fine grained sentiment classification at each n-gram lengths. Left: Accuracy separately

for each set of n-grams. Right: Cumulative accuracy of all ≤ n-grams.

5.2 Full Sentence Binary Sentiment

This setup is comparable to previous work on the

original rotten tomatoes dataset which only used

full sentence labels and binary classification of pos-

itive/negative. Hence, these experiments show the

improvement even baseline methods can achieve

with the sentiment treebank. Table 1 shows results

of this binary classification for both all phrases and

for only full sentences. The previous state of the

art was below 80% (Socher et al., 2012). With the

coarse bag of words annotation for training, many of

the more complex phenomena could not be captured,

even by more powerful models. The combination of

the new sentiment treebank and the RNTN pushes

the state of the art on short phrases up to 85.4%.

5.3 Model Analysis: Contrastive Conjunction

In this section, we use a subset of the test set which

includes only sentences with an ‘X but Y ’ structure:

A phrase X being followed by but which is followed

by a phrase Y . The conjunction is interpreted as

an argument for the second conjunct, with the first

functioning concessively (Lakoff, 1971; Blakemore,

1989; Merin, 1999). Fig. 7 contains an example. We

analyze a strict setting, where X and Y are phrases

of different sentiment (including neutral). The ex-

ample is counted as correct, if the classifications for

both phrases X and Y are correct. Furthermore,

the lowest node that dominates both of the word

but and the node that spans Y also have to have the

same correct sentiment. For the resulting 131 cases,

the RNTN obtains an accuracy of 41% compared to

MV-RNN (37), RNN (36) and biNB (27).

5.4 Model Analysis: High Level Negation

We investigate two types of negation. For each type,

we use a separate dataset for evaluation.

+

+

–

–

–

0

There

–

0

are

–

–

0

–

slow

0

and

–

repetitive

0

parts

0

,

0

but

+

0

it

+

0

0

has

0

0

just

0

enough

+

+

spice

+

0

to

+

0

keep

+

0

it

+

interesting

0

.

Figure 7: Example of correct prediction for contrastive

conjunction X but Y .

Set 1: Negating Positive Sentences. The first set

contains positive sentences and their negation. In

this set, the negation changes the overall sentiment

of a sentence from positive to negative. Hence, we

compute accuracy in terms of correct sentiment re-

versal from positive to negative. Fig. 9 shows two

examples of positive negation the RNTN correctly

classified, even if negation is less obvious in the case

of ‘least’. Table 2 (left) gives the accuracies over 21

positive sentences and their negation for all models.

The RNTN has the highest reversal accuracy, show-

ing its ability to structurally learn negation of posi-

tive sentences. But what if the model simply makes

phrases very negative when negation is in the sen-

tence? The next experiments show that the model

captures more than such a simplistic negation rule.

Set 2: Negating Negative Sentences. The sec-

ond set contains negative sentences and their nega-

tion. When negative sentences are negated, the sen-

timent treebank shows that overall sentiment should

become less negative, but not necessarily positive.

For instance, ‘The movie was terrible’ is negative

but the ‘The movie was not terrible’ says only that it

was less bad than a terrible one, not that it was good

(Horn, 1989; Israel, 2001). Hence, we evaluate ac-

+ +

0

0

Roger

0

Dodger

+

+

0

is

+

0

one

+

0

of

+

+

0

the

+

+

0

most

+

compelling

0

variations

0

0

on

0

0

this

0

theme

0

.

–

0

0

Roger

0

Dodger

–

–

0

is

–

0

one

–

0

of

–

–

0

the

–

–

–

least

+

compelling

0

variations

0

0

on

0

0

this

0

theme

0

.

+

0

I

+

+

+

liked

0

0

0

every

0

0

single

0

minute

0

0

of

0

0

this

0

film

0

.

–

0

I

–

–

0

0

did

0

n’t

0

0

like

0

0

0

a

0

0

single

0

minute

0

0

of

0

0

this

0

film

0

.

–

0

It

–

–

0

0

’s

0

just

–

+

incredibly

– –

dull

0

.

0

0

It

0

0

0

0

0

’s

+

definitely

–

not

– –

dull

0

.

Figure 9: RNTN prediction of positive and negative (bottom right) sentences and their negation.

Model
Accuracy

Negated Positive Negated Negative

biNB 19.0 27.3

RNN 33.3 45.5

MV-RNN 52.4 54.6

RNTN 71.4 81.8

Table 2: Accuracy of negation detection. Negated posi-

tive is measured as correct sentiment inversions. Negated

negative is measured as increases in positive activations.

curacy in terms of how often each model was able

to increase non-negative activation in the sentiment

of the sentence. Table 2 (right) shows the accuracy.

In over 81% of cases, the RNTN correctly increases

the positive activations. Fig. 9 (bottom right) shows

a typical case in which sentiment was made more

positive by switching the main class from negative

to neutral even though both not and dull were nega-

tive. Fig. 8 shows the changes in activation for both

sets. Negative values indicate a decrease in aver-

Figure 8: Change in activations for negations. Only the

RNTN correctly captures both types. It decreases positive

sentiment more when it is negated and learns that negat-

ing negative phrases (such as not terrible) should increase

neutral and positive activations.

age positive activation (for set 1) and positive values

mean an increase in average positive activation (set

2). The RNTN has the largest shifts in the correct di-

rections. Therefore we can conclude that the RNTN

is best able to identify the effect of negations upon

both positive and negative sentiment sentences.

n Most positive n-grams Most negative n-grams

1 engaging; best; powerful; love; beautiful bad; dull; boring; fails; worst; stupid; painfully

2 excellent performances; A masterpiece; masterful

film; wonderful movie; marvelous performances

worst movie; very bad; shapeless mess; worst

thing; instantly forgettable; complete failure

3 an amazing performance; wonderful all-ages tri-

umph; a wonderful movie; most visually stunning

for worst movie; A lousy movie; a complete fail-

ure; most painfully marginal; very bad sign

5 nicely acted and beautifully shot; gorgeous im-

agery, effective performances; the best of the

year; a terrific American sports movie; refresh-

ingly honest and ultimately touching

silliest and most incoherent movie; completely

crass and forgettable movie; just another bad

movie. A cumbersome and cliche-ridden movie;

a humorless, disjointed mess

8 one of the best films of the year; A love for films

shines through each frame; created a masterful

piece of artistry right here; A masterful film from

a master filmmaker,

A trashy, exploitative, thoroughly unpleasant ex-

perience ; this sloppy drama is an empty ves-

sel.; quickly drags on becoming boring and pre-

dictable.; be the worst special-effects creation of

the year

Table 3: Examples of n-grams for which the RNTN predicted the most positive and most negative responses.

Figure 10: Average ground truth sentiment of top 10 most

positive n-grams at various n. The RNTN correctly picks

the more negative and positive examples.

5.5 Model Analysis: Most Positive and

Negative Phrases

We queried the model for its predictions on what

the most positive or negative n-grams are, measured

as the highest activation of the most negative and

most positive classes. Table 3 shows some phrases

from the dev set which the RNTN selected for their

strongest sentiment.

Due to lack of space we cannot compare top

phrases of the other models but Fig. 10 shows that

the RNTN selects more strongly positive phrases at

most n-gram lengths compared to other models.

For this and the previous experiment, please find

additional examples and descriptions in the supple-

mentary material.

6 Conclusion

We introduced Recursive Neural Tensor Networks

and the Stanford Sentiment Treebank. The combi-

nation of new model and data results in a system

for single sentence sentiment detection that pushes

state of the art by 5.4% for positive/negative sen-

tence classification. Apart from this standard set-

ting, the dataset also poses important new challenges

and allows for new evaluation metrics. For instance,

the RNTN obtains 80.7% accuracy on fine-grained

sentiment prediction across all phrases and captures

negation of different sentiments and scope more ac-

curately than previous models.

Acknowledgments

We thank Rukmani Ravisundaram and Tayyab

Tariq for the first version of the online demo.

Richard is partly supported by a Microsoft Re-

search PhD fellowship. The authors gratefully ac-

knowledge the support of the Defense Advanced Re-

search Projects Agency (DARPA) Deep Exploration

and Filtering of Text (DEFT) Program under Air

Force Research Laboratory (AFRL) prime contract

no. FA8750-13-2-0040, the DARPA Deep Learning

program under contract number FA8650-10-C-7020

and NSF IIS-1159679. Any opinions, findings, and

conclusions or recommendations expressed in this

material are those of the authors and do not neces-

sarily reflect the view of DARPA, AFRL, or the US

government.

References

M. Baroni and A. Lenci. 2010. Distributional mem-

ory: A general framework for corpus-based semantics.

Computational Linguistics, 36(4):673–721.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin.

2003. A neural probabilistic language model. J.

Mach. Learn. Res., 3, March.

D. Blakemore. 1989. Denial and contrast: A relevance

theoretic analysis of ‘but’. Linguistics and Philoso-

phy, 12:15–37.

L. Bottou. 2011. From machine learning to machine

reasoning. CoRR, abs/1102.1808.

S. Clark and S. Pulman. 2007. Combining symbolic and

distributional models of meaning. In Proceedings of

the AAAI Spring Symposium on Quantum Interaction,

pages 52–55.

R. Collobert and J. Weston. 2008. A unified architecture

for natural language processing: deep neural networks

with multitask learning. In ICML.

J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive sub-

gradient methods for online learning and stochastic op-

timization. JMLR, 12, July.

K. Erk and S. Padó. 2008. A structured vector space

model for word meaning in context. In EMNLP.

C. Goller and A. Küchler. 1996. Learning task-

dependent distributed representations by backpropaga-

tion through structure. In Proceedings of the Interna-

tional Conference on Neural Networks (ICNN-96).

E. Grefenstette and M. Sadrzadeh. 2011. Experimental

support for a categorical compositional distributional

model of meaning. In EMNLP.

E. Grefenstette, G. Dinu, Y.-Z. Zhang, M. Sadrzadeh, and

M. Baroni. 2013. Multi-step regression learning for

compositional distributional semantics. In IWCS.

G. E. Hinton. 1990. Mapping part-whole hierarchies into

connectionist networks. Artificial Intelligence, 46(1-

2).

L. R. Horn. 1989. A natural history of negation, volume

960. University of Chicago Press Chicago.

E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng.

2012. Improving Word Representations via Global

Context and Multiple Word Prototypes. In ACL.

M. Israel. 2001. Minimizers, maximizers, and the

rhetoric of scalar reasoning. Journal of Semantics,

18(4):297–331.

R. Jenatton, N. Le Roux, A. Bordes, and G. Obozinski.

2012. A latent factor model for highly multi-relational

data. In NIPS.

D. Klein and C. D. Manning. 2003. Accurate unlexical-

ized parsing. In ACL.

R. Lakoff. 1971. If’s, and’s, and but’s about conjunction.

In Charles J. Fillmore and D. Terence Langendoen, ed-

itors, Studies in Linguistic Semantics, pages 114–149.

Holt, Rinehart, and Winston, New York.

A. Merin. 1999. Information, relevance, and social deci-

sionmaking: Some principles and results of decision-

theoretic semantics. In Lawrence S. Moss, Jonathan

Ginzburg, and Maarten de Rijke, editors, Logic, Lan-

guage, and Information, volume 2. CSLI, Stanford,

CA.

J. Mitchell and M. Lapata. 2010. Composition in dis-

tributional models of semantics. Cognitive Science,

34(8):1388–1429.

K. Moilanen and S. Pulman. 2007. Sentiment composi-

tion. In In Proceedings of Recent Advances in Natural

Language Processing.

T. Nakagawa, K. Inui, and S. Kurohashi. 2010. Depen-

dency tree-based sentiment classification using CRFs

with hidden variables. In NAACL, HLT.

S. Pado and M. Lapata. 2007. Dependency-based con-

struction of semantic space models. Computational

Linguistics, 33(2):161–199.

B. Pang and L. Lee. 2005. Seeing stars: Exploiting class

relationships for sentiment categorization with respect

to rating scales. In ACL, pages 115–124.

B. Pang and L. Lee. 2008. Opinion mining and senti-

ment analysis. Foundations and Trends in Information

Retrieval, 2(1-2):1–135.

T. A. Plate. 1995. Holographic reduced representations.

IEEE Transactions on Neural Networks, 6(3):623–

641.

L. Polanyi and A. Zaenen. 2006. Contextual valence

shifters. In W. Bruce Croft, James Shanahan, Yan Qu,

and Janyce Wiebe, editors, Computing Attitude and Af-

fect in Text: Theory and Applications, volume 20 of

The Information Retrieval Series, chapter 1.

J. B. Pollack. 1990. Recursive distributed representa-

tions. Artificial Intelligence, 46, November.

M. Ranzato and A. Krizhevsky G. E. Hinton. 2010.

Factored 3-Way Restricted Boltzmann Machines For

Modeling Natural Images. AISTATS.

V. Rentoumi, S. Petrakis, M. Klenner, G. A. Vouros, and

V. Karkaletsis. 2010. United we stand: Improving

sentiment analysis by joining machine learning and

rule based methods. In Proceedings of the Seventh

conference on International Language Resources and

Evaluation (LREC’10), Valletta, Malta.

S. Rudolph and E. Giesbrecht. 2010. Compositional

matrix-space models of language. In ACL.

B. Snyder and R. Barzilay. 2007. Multiple aspect rank-

ing using the Good Grief algorithm. In HLT-NAACL.

R. Socher, C. D. Manning, and A. Y. Ng. 2010. Learning

continuous phrase representations and syntactic pars-

ing with recursive neural networks. In Proceedings of

the NIPS-2010 Deep Learning and Unsupervised Fea-

ture Learning Workshop.

R. Socher, C. Lin, A. Y. Ng, and C.D. Manning. 2011a.

Parsing Natural Scenes and Natural Language with

Recursive Neural Networks. In ICML.

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and

C. D. Manning. 2011b. Semi-Supervised Recursive

Autoencoders for Predicting Sentiment Distributions.

In EMNLP.

R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. 2012.

Semantic compositionality through recursive matrix-

vector spaces. In EMNLP.

I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum.

2009. Modelling relational data using Bayesian clus-

tered tensor factorization. In NIPS.

P. D. Turney and P. Pantel. 2010. From frequency to

meaning: Vector space models of semantics. Journal

of Artificial Intelligence Research, 37:141–188.

H. Wang, D. Can, A. Kazemzadeh, F. Bar, and

S. Narayanan. 2012. A system for real-time twit-

ter sentiment analysis of 2012 u.s. presidential elec-

tion cycle. In Proceedings of the ACL 2012 System

Demonstrations.

D. Widdows. 2008. Semantic vector products: Some ini-

tial investigations. In Proceedings of the Second AAAI

Symposium on Quantum Interaction.

A. Yessenalina and C. Cardie. 2011. Composi-

tional matrix-space models for sentiment analysis. In

EMNLP.

D. Yu, L. Deng, and F. Seide. 2012. Large vocabulary

speech recognition using deep tensor neural networks.

In INTERSPEECH.

F.M. Zanzotto, I. Korkontzelos, F. Fallucchi, and S. Man-

andhar. 2010. Estimating linear models for composi-

tional distributional semantics. In COLING.

L. Zettlemoyer and M. Collins. 2005. Learning to

map sentences to logical form: Structured classifica-

tion with probabilistic categorial grammars. In UAI.

