
STICHTING

MATHEMATISCH CENTRU
2e BOERHAAVESTRAA T 49

AMSTERDAM

MR 79

Recursive De:f'inition of Syntax and Sem.ant:ics

A. van Wijnsae,rd.en

1966

REPRINTED FROM

FORMAL LANGUAGE

DESCRIPTION LANGUAGES

FOR COMPUTER PROGRAMMING

Proceedings of the

IFIP Working Conference on

Formal Language Description Languages

Edited by

T. B. STEEL, Jr.

RECURSIVE DEFINITION OF SYNTAX AND SEMANTICS

A. VAN WIJNGAARDEN
Netherlands

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM
1.:vw,·:.~·,, . .::~) -~:.-,j.>~_,-,;-;:h,-

RECURSIVE DEFINITION OF SYNTA~C AND SEMANTICS

A. VAN WIJNGAARDEN

Netherlands

1. INTRODUCTION

In a former paper [334] a mechanism was described which interprets a
text, called a program, and delivers another text, called the value of the

text so far read. Knowledge of the working of this machine enables the writ

er of the program not only to describe the process he wants to describe. but

also the language he is using. It acts, therefore, both as language and as
metalanguage. In [334] most of the emphasis was laid on showing how a lan

guage of the ALGOL type (but much more general) could be defined in th .s
way, using only few definitions. We shall now investigate in more detail

some metalinguistic properties, without concerning ourselves with the qual
ity of the language to be described.

The machine which interprets the text was considered to consist of two

parts, a preprocessor and a processor. The preprocessor was not formal
ized and may vary from case to case. The processor was formalized to a

high degree and does not vary.

2. THE PREPROCESSOR

Let us first turn our attention to the preprocessor. This rewrites the
text into an equivalent one in a more restricted language. Indeed, a lan

guage may contain many pseudoconcepts, l'iz. , concepts expressible in
other concepts of the language. It is therefore advantageous to split the def

inition of the language into two corresponding parts.
By way of example, we take ALGOL 60 and see which are pseudocon

cepts in its case.
The first pseudoconcept we find is the comment, which has no semantic

meaning at all. Hence, in any occurrence outside strings one may delete

certain sequences of basic symbols completely.
Similarly, outside strings the sequence ") (letter string) : (" may be

replaced by", fl. Or again, outside strings the basic symbol " array ", if
not preceded by "(local or own type)", may be replaced by fl real array ".

This might perhaps not seem a simplification, but it simplifies the descrip

tion of the language.
Our next victim is the for statement, which can be rewritten in its de

fining sequence of statements.

14 A.VAN WIJNGAARDEN

Next comes the function designator and the corresponding type proce
dure. Replace the type procedure by a nontype procedure with one more for
mal parameter, and replace the assignment to the procedure identifier by
an assignment to that formal parameter. Replace all primaries in expres
sions in an assignment statement by auxiliary variables; let the statement
be preceded by a sequence of statements assigning the required values to
these auxiliary variables, and let it be followed by one or more statements
assigning the value of the left-part auxiliary variable to the actual left-part

variable or variables.
This last precaution is required by the nature of formal parameters.

Inside a procedure body a formal parameter is either passed on, or one re
quires its value, or one wants to assign to it or execute a goto statement
leading to it. Replace the actual parameters in a procedure call, which also
may contain expressions, by the identifiers of procedures with two parame
ters. These procedures (depending on the value of the second parameter)
assign the value of the first one to the actual parameter (output), or the val
ue of the actual parameter to the first one (input), or execute a goto state
ment leading to the actual parameter, etc. In the procedure body the for
mal parameters are then replaced by the corresponding calls.

Conditional expressions that are not actual parameters can be removed
by text splitting, e.g., "a := if b then c else d" is replaced by "if b then

a := c else a := d". If such conditional expressions occur in actua\ \Param
eters, the corresponding formal parameters of which are called by name,
this text-splitting procedure will not work, but this case has already been
taken care of by the preceding measures.

By such an intricate but still lexicographical process, one not only e
liminates the function designator but actually defines what it means. We
might note that the ALGOL 60 Report [244] contradicts itself on this point.

When one has performed the mentioned reductions of the text, it will
have a much simpler appearance. Procedure calls will no longer appear in
expressions and actual parameters, and conditional expressions will no
longer exist. This enables us to do away with switches, labels, and goto

statements. The switch declaration is replaced by a corresponding proce
dure declaration containing goto statements, and a goto statement refer
ring to a switch element is replaced by the corresponding procedure call.
For instance, "switch S := S1, S2, S3" is replaced by "procedure S(n) ;
value n ; integer n ; if n = 1 then goto S1 else if n = 2 then goto S2
else goto S3", and correspondingly " goto S[i]" is replaced by "S(i)". That
the switch list can be replaced by a statement in this way explains why the
difficulty of function designators and conditional expressions in a switch de
claration could be deliberately overlooked above.

Next remove all multiple labels, renaming references to the removed
ones. This obviously reduces the number of labels, though the steps I am
about to outline may not seem promising. Provide each procedure declara
tion with an extra formal parameter - specified label - and insert at the
end of its body a goto statement leading to that formal parameter. Corre
spondingly, label the statement following a procedure statement, if not la-

RECURSIVE DEFINITION OF SYNTAX AND SE:\IANTICS

beled already, and provide that label as the corresponding extra actual pa

rame.ter. Also, label each statement following a goto statement, if not la

beled already, and complete a conditional goto statement that is an i:f state

ment by "else goto L", where L stands for the label immediately following
the statement. Label each block, if not laheled already, except the outer

most one, and label the first statement of each block, if not labeled already.
If a label that is not the first inside a block is not preceded by a goto state

ment, then insert a goto statement leading to that label. Enclose each se
quence of statements between two successive labels in the brackets begin

end, if not already enclosed in that way.

The structure of the program obtained by this process is remarkable.
It consists, after the insertions corresponding to the performed procedure

calls, of a sequence of elements, 1iiz. , compound statements and blocks,
containing no goto statements except at each end to link the element to an

other. It is now completely harmless to insert at the end of each block an
unlabeled goto statement leading to the first statement of that block, since

this statement will never be executed. So far, we have only increased the
number of labels and goto statements. But now we can perform the follow
ing operations:

i) write before each label procedure ;

ii) replace the colon following it by a semicolon;
iii) strike each goto .

The program is then again syntactically correct, contains no labels or goto

statements, and defines exactly the same sequence of operations as before.

This sketch may suffice to show the power of preprocessing. ALGOL
60, reduced in this way, is seen to contain only a few concepts, such as:

i) some arithmetical and Boolean operations;
ii) assignment;

iii) the procedure with or without parameters, call by value, and call
by name;

iv) locality and "own" concept.

In [334] it is shown that, with some minor modifications of the language, the
concepts under ii) and iii) can be identified and expressed in some simple
rules of preprocessing and processing. The concepts under iv) need more

care, but concepts such as those under i) are simply dealt with by the proc

essor, as we shall show.
First, however, we want to be somewhat more specific about the pre

cise role of the preprocessor than we were in [334]. For a language like
ALGOL 60 in which a program is a fixed text, it suffices to separate the
preprocessor and processor completely, so that the processor can process

the preprocessed text without needing further assistance from the preproc

essor. However, for the description of languages that enable the genera
tion of pieces of program by the program itself, this does not hold. In this

case the preprocessor must continuously stand by to preprocess new pieces
of text that have been generated. If the preprocessing can be defined as i
dempotent, then any text, generated or not, can always be preprocessed be

fore being processed. If this is not the case, the preprocessed text must be

A. VAN WLJNUAARDEN

from unpreprocessed text. One might visualize the unpreproc

essed text as written in black ink, whereas the preprocessor turns out text

m red ink.

3. Tiff PROCESSOR

We now turn our attention to the processor, which by evaluating the

preprocessed text produces its value v, a dynamically varying text. This

text v, on the other hand. is recursively scanned by the processor for two

reasons. Either the processor wants to determine the value of a piece of

text. or it wants to ascertain whether a truth in v is applicable to the ques

tion it is concerned with. Apart from some loose remarks concerning local

i.tv. and so on. v consists of a sequence of truths, separated by commas.

S~,me of them are of a syntactic nature such as, a in <letter>. which states

that a is one of the values that the metalinguistic variable (letter> may take.

Others are of a semantic nature. They contain the equality sign, = ,

and they may contain the metaoperator, value . which operates on the im

mediately following metaprimary. Any sequence of symbols, for that mat

ter. can be turned into a metaprimary by enclosing it in the metabrackets

{ }. Examples are:

value < name 1 · = , name 2),

10 - . digit 2) = 9 - value { (digit 2) -1 },

2 + 1 = 3

In the evaluation scan the processor is interested in the semantic truths,

but in order to know whether one applies, it has to undertake an applicabili

ty scan. Both scans are performed backwards, i.e., the truths in v are ex

amined one by one in order, starting with the last one contained in v. The

applicability scan may assert that a truth is applicable. This means that the

quantity, whose value must be determined, say, (name 1), or that value

itself, is identical with the left-hand side of the truth after permissible sub

stitutions. The evaluation scan then applies this fact by applying the same
substitutions to the right-hand side. If the truth takes the form

value , name n = (name 2),

then the required value is simply (name 2), and the evaluation scan is ended.
If the truth takes the form

.name li = :name 2),

then the required value is value (name 2). and a new evaluation scan is

started to find this value. Since (name 2) may itself contain the operator

value . this may be a complex affair, evaluation necessarily starting from
the ms1de and also from left to right.

In order to find out whether or not a substitution in accordance with the
truths in v will make the left-hand side of a truth identical with an entity

HECl'IlS!VE DEFINITION OF SYNTAX ANO SE:\lANTICS 17

under consideration. the applicability scan applies a systematic parsing

process to the left-hand side until lt has success. Which parsing process is

used is not relevant here. but it must be defined in order to guarantee un

ambiguous interpretation. If, for instance, the left-hand side of the truth

contains p primaries and the entity under consideration g primaries. p; , p,
then these g primaries can be parsed into Kl. g 2 , ... gp sequences of pri-

maries. R°l + g 2 + ... gp = g. The sequence g 1;;2 ... gp can be considered

as a number in the base![. Then a simple parsing scheme is to investigate

the parsings in increasing magnitude.

The applicability scan then compares each primary under consideration

with the corresponding primary in the truth under consideration to see wheth

er they are identical or. if the latter contains a metalinguistic variable.

whether they can be made identical by' permissible substitution that genera.,._

ates another independent applicability scan. If all parsings have been tried

without success. the next truth is investigated. If v is exhausted in this way.

this result defines nonapplicability. The applicability scan, therefore, al

ways yields its answer ir> a finite number of steps. The evaluation scan also

yields a definite answer. since at the bottom of v we presume that we will

find

value (name 1) =<name 1),

which always applies if nothing else has done so.

The descriptive power of our metalanguage can be increased considerab

ly by assuming that the machine understands the logical operators -. (not)

and -• implies). As an example. we define a row. say. as a sequence of let

ters, none of which are equal, by

{ (letter 1) el (row 1) } - { (letter 1) el (row 1) (letter) }.

(letter 1) el (row) (letter 1),

(letter 1) el (letter 1) .

(row) (letter) in (row).

{ (letter 1) el (row 1) } - -i { (row 1) (letter 1) in (row) },

(letter) in (row),

where. in passing, an auxiliary operator el is defined.
As a more complicated example, we conclude by giving a partial de

scription of decimal arithmetic, 21iz. , the addition and subtraction of two

integers. Since in a completely formalized description of a language the se

quences of letters chosen to represent metalinguistic variables may be cho

sen arbitrarily, we abbreviate "digit'' to "di", "unsigned integer" to "ui".

and so on, in order to save space. The definition is very slightly redundant

to increase efficiency and cleaner output.

0 in (di), 1 in (di), 2 in (di), 3 in (di). 4 in (di),

5 in (di), 6 in (di), 7 in (di), 8 in (di;, 9 in (di),

18
A. VAN WIJNGAARDEN

(di) in (ui), (ui) (di) in (ui),

+ in (pm), _ in (pm), (pm) (ui) in (in), (ui) in (in),

0 in (ze), (ze) o in (ze), (ze) in (ui),

+ (ui l) (pm 1) (ui 2) = (ui 1) (pm 1) (ui 2),

_ (ui 1) + (ui 2) = (ui 2) - (ui 1),

_ (ui 1) _ (ui 2) = - value { (ui 1) + (ui 2) },

(ui 1) + _ (ui 2) = (ui 1) - (ui 2),

(ui 1) (di 1) (pm 1) (ui 2) (di 2) = value { (ui 1) (pm 1) (ui 2)} 0

+ value { (di 1) (pm 1) (di 2) },

(ui 1) (di 1) (pm 1) (di 2) = (ui 1) 0 + value { (di 1) (pm 1) (di 2)},

(di 1) (pm 1) (ui 2) (di 2) = (pro 1) (ui 2) 0 + value { (di 1) (pm 1) (di 2) },

(ui 1) 0 + (di 2) = (ui 1) (di 2),

(di 1) + (ui 2) 0 = (ui 2) (di 1),

(ui 1) 0 - (di 2) = value { (ui 1) - 1} 0 + value { 10 - (di 2) },

10 - (di 2) -= 9 - value { (di 2) - 1 },

(di 1) (pm 1) (di 2) = value { (di 1) (pm 1) 1} (pm 1) value { (di 2) - 1 },

(in 1) (pm) (ze) = (in 1), (ze) + (ui 1) = (ui 1), (ze) - (ui 1) = - (ui 1),

(ze) (pm) (ze) = 0,

0+1 = 1, 1+1 = 2, 2+1 = 3, 3+1 = 4, 4+1 = 5,

5+1 = 6, 6+1 = 7, 7+1 = 8, 8+1 = 9, 9+1 = 10,

{ (di 1) + 1 = (di 2)} - { (di 2) - 1 = (di 1) }.

DISCUSSION

GORN
You're analyzing a number of the concepts in ALGOL in terms of what you feel are
more basic concepts, and you feel that there is a preprocessor that eliminates the
less basic ones and replaces them by bigger expressions - perhaps, by more basic
ones. Am I to understand that you feel it would actually be done this way in the pro
gram? All at once, before the processor gets to work?

VAN WIJNGAARDEN

Yes and no. You remember that we actually had two machines here. Here is a pre
processor; that is a processor. Here comes the original text written by a man who
writes, let us suppose, in ALGOL 60, which is quite a language. If I look at the
[ALGOL] Report, I say to myself, must I define all this by the processor - all
these rules? This is far too much for me! So I say, let's first take all the
1onessential things out of ALGOL. Now, this is a task for the preprocessor - to look

lU:CURSI\"E DEFINITION OF SYNTAX AND SEMANTICS

at this text and say, "I'll translate this text into i-educt•d ALGOL and then define
only reduced ALGOL". By the way, I have to define this preprocessor, and this
preprocessor depends upon a specific language.

GORN

19

You're saying that even if it isn't efficient, the preprocessor could do all the elimi
nation before the processor would have to work - without any loss of meaning.

VAN WLJNGAARDEN

Sure. You see, I do not change any identifier.

GORN
The first things you eliminate are things like comments, I noticed. The implication
is that what follows the symbol comment, as far as the processor is concernerl, has
no meaning. Is that right'?

VAN W1JNGAARDEN

If I read the ALGOL book, it says that elimination of this piece of text does not
influence the computation in any way. If I took a procedure, for instance, that
counts the number of basic symbols in the p1·ogram, then it could not be affected
by the elimination of this piece of text. What you want to mean by this. I don't know.

GORN
All right then, the implication is that raw data - especially what follows comments - is
in itself meaningless. And I feel there is an important meaning that is very basic;
the meaning of raw data, including what follows comments, is the demand that it be
allocated lo storage to be properly retrievable. For instance, what follows the
comment? You might want to print il uut at the end of a prncess - you don't just
want to throw it away.

VAN WLJNGAARDEN

The preprocesso1· can do all this kind of stuff. But this has nothing to do with
anything.

GORN
That's what bothers me. You have to decide where to start, even if it's the waste
basket, and this might have to go on while the process is going on. Now let me give
you some more examples ...

VAN W1JNGA.r\RDEN

Excuse me, I do not agree with this thing. ALGOL 60 describes the computational
processes, and it does not describe the process to be done with this process.

GORN
You brought up the question that an array declaration, for instance, is one of the
difficult parts of ALGOL, and I say - for some people with some machines - one of
tho most difficult parts. The problem there is precisely this question of properly
allocated storage.

VAN W1JNGAARDEN

Have you heard of the 5-10 procedure?

GORN

Well, that is also allocation of storag·e. Now, the next things you eliminate are
things like goto 's, switches, labels. You make a remark that multiple labels are
superfluous and tend to be eliminated at this stage. Is this correct?

VAN W1JNGAARDEN

Yes.

GORN
This means that the processor will never see again (after the preprocessor has
worked) the multiplicity of labels that you might have. Now suppose that I have a

.\, \'.\', WLJNG:\AHDEN

in which l usp labels Ll, L2, I~l. and another on(' in which 1
to be the same as NI but the others a rt' not. Now, t lie

am,iunt of cycling among labels in lhe first g1'uup uf thn·,·
Jabds ln tlw second grnup of three, and if yuu diminatv tlw

VAN Wi,l:S:Gil\RDE)l
g

y,m have lost ihP cycling that you wankd in the prucessur,

,,ow stat('Ill('llt nwans, then tlwre is nu thing between th(•

stalcmC'nt anu whel'l' it lC'alls. It just says that its sucet•ssuf

llUH:-i
Thl~ hare; ,kine by a modul~ r counter. You've lust that.

\' A;,; WLJNCAAHDE:-1

is that?.,\ mutiula r cuunter, what is that?

GOHN
It ; 1.2~:t; J .2,~1: 1,2,:3~

VAN WlJNGAAHDEN
"l'h:il's uu1sidc ,\LGOL It's a mdaconcept I don't untkrstand.

GOHN
b:i gt•iwrnl I'm wurricd about the prPprocessor doing aII the dimination first bccaust:
it ;m1y part of the efficienvy of the processu1· that the original pr,,grnm

indkate huv,. you want to do it, and the prcprnccssor would lose that.

\'AN WlJNGAARDEN
:-,:,,-,rio-nu ! Wl'll. at least, I did my best to makt> all these chan,ws into labels f;<l

1hr:1U;1;h the same sequenc(• of operations that was performed by the m,,dilied

p:·1><'ess. l my best, at least, tu du that.

l;lJ.HN
What about t:anslatiug dynamieally?

\'.\N WLJNGAAHDE~
ln like ALGOL'? Because the text is a fixed piece of information y,)u

thing.

DlJKSTRA
l :un som{·\i\hat baffled. I might say, in many ways. You describe an algorithm for

a preprocessllr that says that it does something. Can you prove its eorrectness '?

Ht•(·ause I c·1m't St'<' ho11 it works under all circumstances.

\' AN WIJC'IGAARDEN
I did my best. I c:rnnot take this expression out; but on the call side I do
!hl! knuw, in whether an actual parameter is, at least, the preprocessor

th;a! luoks at step and docsn 't understand the meanin;s of it - dot'S not know

1,hether it will °'" used as input or as output or as both. Be careful even in the case
that 11 is an expn•ssim1. There is no guarantee that in sonv: other ease it cuuldn 't be

us(•d as an output. In the case of a procedure - in the case of, say, "x > 0" - then

H; otherwise take its value. You do it in the inside of the body, of course.

of eours,·, you don't know what's on the outside. Therefore, instead of
th,· aetual pamrneters, you give a set of procedure identifiers, which have two

p:,rameters. The second parameter tells how the thing should react, and the first

<'JIU:' is the formal paranH•ter, In case l assign the formal value to the actual; in ease

'.! assign thl• al'lual value to the formal; in case 3 transfer control to the actual. In
side, you know, ymi can follow the procedure and then you can tell which case actual-

ly , You may simply pass it on, If you really use it, you can tell which case
and you e~.n pmvide th,• proper second parameter. If it's the left-hand side or

:m assig"imwnt statement, for instanee, you do it in the assig11 state. And then, that
1,1ay, I 1-;C'! ,,ut all exprc•ssiuns for the adual parameter. OK?

RECURSIVE DEFINITION OF SYNTAX AND SEMANTICS

D1JKSTRA

Yes. The next question consists, after the insertion corresponding to the procedure
calls, of a sequence of statements. ·

VAN W1JNGAARDEN

If you have performed the procedure call, this is equivalent to insertion of a
sequence of stalements.

DYKSTRA
I thought we were talking about preprocessors.

VAN W1JNGAARDEN

Now look! The preprocessed text will be such that, after the execution, the program
will consist of these elements.

D1JKSTRA

I just don't understand. You have your text. You make another text that remains
without procedure calls. Now, you say that somewhere or another you make the
insertions; so that we do without procedure calls. Now we have only goto's.

VAN WIJNGAARDEN
What! What? What? You have only statements - sequences of statements. You
have no goto 's whatsoever! You have only sequences of statements, and these
sequences of statements are exactly the same sequences of statements that would
have been there in the other case.

HOARE

It seems to me your method of describing the processor is sufficiently powerful to
give a complete, precise, and even elegant description of the preprocessor as well,
which, of coursp, is an important part of the semantic definition of a language.
If this is true, it becomes attractive to put the preprocessing rules into the bottom
of the processor itself, and thereby eliminate a somewhat arbitrary distinction
between "pre" and "pro." Furthermore, we avoid the slight difficulty involved in
calling in the preprocessor again to deal with programs generated at one time.

VAN WLJNGAARDEN
I fully ag·ree, or partially fully agree, with you. [Laughter] I only meant to disagree
for psychological reasons. It's difficult for me to describe all the possible things
that people might introduce in languages. I only want to be restricted to not too wild
ideas. You see what I mean?

GARWICK
I agree with Dijkstra. I have great difficulty in understanding your replacement of
type procedures to ordinary procedures. I can't see that, if you have a function with
side effects. It's important to know where you start from - left or right, or whatever
you do. I can't see how this comes into it.

VAN WIJNGAARDEN
The evaluation of the primary is exactly what the (ALGOL) Report says. Of course,
you have to evaluate the primaries. And then, you have to evaluate the expression,
using those primaries. Listen to my words! The preprocessor rule says in which
order you have to put these statements. In front of it is your rule saying in which
order you want them evaluated. I cannot say, of course, because I do not know whether
your order depends on the temperature or what. It is not up to me, you see.
[Laughter) This question of order comes up as a preprocessing rule. This is one of
the most difficult things, you see, this question of undefinedness in the language. I
try to put the burden of it on the preprocessor, rather than on the processor. The
only thing I could do is wr·ite the truth in the language so ;llegibly that you couldn't
read it. [Laughter)

A. \'AN WIJNGAARDEN

GAHW!CK
I have a second question. I n•ally admire the way you get rid of the goto statements,
11.0d thus really simplify things. Do you think that similar simplifications are
1~1ssible Jn all n•asonable programming languages? This is a very vague question

and it really only requires a vague answer.

\'AN WJJNGAAHDEN
Mr. Garw1ck, if I answered "Yes" to that I would be admitting that there are
reasonable programming languages other than ALGOL. [Laughter] This was not
made as a po!itkal statement. [Laughter] In a language like COBOL there are
supt•rflu1ties that t•an be preprocessed out. There's nothing wrong with this. You
ean use this sym'wl instead of that symbol. or another way of describing things.
You t•an map all different ways of describing something into one way. Perhaps,
tomorrow, you can add another one. I don't know. That's not my affair, You put it

to the preprocessor. That was the idea.

VANDERPOEL
I have two questions. Where can I find the syntax and semantics of the (letter>for an un
specified letter:and you even assume that(letter 1/ is the notation for designating a par·
ticular !t,tter that is different from, say, (letter 2). Can you first answer that question'?

VAN WlJNGAARDEN
As a matter of fact, in the presentation given here, some things have not been
defined, although explicitly used, on the assumption that either the reader would
accept that a proper definition could be given, or that he would give intuitively the
desi n:,>d interpretation, or that he would not recognize the difficulty. [Laughter]

VA..\' DER POEL
My second question is: You assume that a parsing scheme is given that is unambiguous.
I am not convinced that this can be done unless you tell exactly how you do it. You
have been so speclflc in describing the better part of It. Why not then describe the
preprocessor parsing, for reading, scanning backwards in its own metalanguage.
You have assumed that an idempotent preprocessor exists. Why not assume also
that an idempotent processor exists as well?

VA~ WIJNGMRDEN
Here are surely some misunderstandings, and they are probably caused by my short
way of writing and my poor way of talking. First of all, if there is such a thing as
an idempotent processor then I just give you an example where it ls not so. A not
idempotent processor might, for example, double the number of periods in a program.
Then, ii you applied it another time the number of periods would grow another level.
I don't know what kind of language somebody wants to describe, and which pre
pwcesi.ing rules he wants to give. Now, about this other question, this parsing
scheme. I tried to define it, but this parsing scheme is actually part of the machine,
I eannut describe the machine itself in this language because the dest·ription of the
machine is everything I cannot express, you see, by definition. I could, of course,
des<: ribe it a little bit in some other logical language, and if you do not trust that, I
could gu a little bit deeper, but in the end I must stop. That was the idea. Now, I
tried tu describe exactly how I did the parsing. I gave one possible parsing scheme;
I'm nut interested in whether you take this one or have one of your O\\,n. You have to
give one.

SAM ELSON

I would like some more specific information, Apparently the processor works in the
same way that th~· preprocessor does. Does it share truth tables'? Does it have a
common one'! Does it have its own'! And how is the division between processing rules
and preprocessing rules achieved'? Wno does it?

VAN WIJNGAARDEN

My idea was the following. I want to separate them. If somebody wants to describe

RECURSIVE DEFINITION OF SYNTAX AND SEMANTICS 23

a language this way, it's up to him to take his choice. And if he says "no preproces
sor - just a processor", fine. Let him go along and define his own language that way.
If he wants to say some things before, however, if he wants to define a reduced lan
guage, and over that, define a set of rules - "Instead of a period, you write this;
instead of a comma, you write that" - he adds some rules to a preprocessor. It's up
to him. The preprocessor belongs to the language, and I have nothing to do with it.
That's why I can't formalize the preprocessor. I have nothing to do with it.

SAMELSON

I want to ask another question, You replaced goto's by procedures. I would have
thought that a goto was a much more basic concept than a procedure. I want to know
why you chose a procedure as a basic concept.

VAN WIJNGAARDEN
Well, because I cannot miss the procedure as a basic concept, and I didn't know how
to explain the goto in my language. So I asked, ''What's wrong with the goto?" I didn't
know how to deal with it, so the only thing to do was simply declare it not there. OK?

MCCARTHY
I would like to contrast the approach you have taken and the approach I have taken.
Specifically, ALGOL contains some strings of symbols, and then it contains some
data that is not defined as strings of symbols; for example, the real numbers, and so
forth. Now, I don't like strings of symbols, and you do like them, and so we have
gone at ALGOL in opposite directions, almost. Namely, I have gotten rid of strings
of symbols by talking about abstract syntax, while you have put strings of symbols
into the data by asking for explicit representations of real numbers as strings of
symbols. I think time is too short to contrast these approaches by asking which ap
proach is better for which purpose. But I just wonder if I got the contrast straight'?

VAN WIJNGAARDEN
I have two answers to this. First of all, you refer to the metaconcept "strings of
symbols" and not to what we mean in ALGOL by "strings". You use "strings of sym
bols" to mean "sequences of symbols". This, by the way, has caused a lot of trouble,
because people use the human term "string" in place of the ALGOL technical term.
There is nothing wrong with this, of course. We could use the word "quotation". I
think it would be wise to introduce into ALGOL this word "quotation" instead of
"string". Then, in our discussions we could use the word "string" for just what we
mean it to be, namely, a sequence. Now, you say that numbers are not strings in
that sense. Now, I know exactly what a number is; it is a string of digits. It may be
preceded by a plus or minus sign, and it may be preceded by a decimal point. There
is no other thing in ALGOL that is a metaconcept called "number" of which this is
the number. To me the number 13 is just the sequence of symbols 1, 3. I have never
seen a "number".

MCCARTHY
Numbers are mathematical objects that are represented. It appears to me that the
way definitions are given in the ALGOL Report, "numbers" are just the way that_
constants are to be presented in the language. At least, many people have taken it_
that way, rather than that the entities on which calculations are made have subscript

"tens" on them.

VAN WIJNGAARDEN
It doesn't say so. It doesn't say so.

STRACHEY
Two short points: One is that I think you have introduced an extra way to call formal
parameters, and that is that you call a type procedure an actual parameter.

VAN WIJNGAARDEN
I have no "type" procedures.

24 A.VAN Wl,JNGAAIWEN

STRACHEY
I know, but if there is one in the source language, it must be eliminated by a different
thing. You must have to do something different inside.

VAN WIJNGAARDEN
Excuse me, I'm so sorry, let's get this thing straight. I described, as an example,
a preprocessor to a language you all know - ALGOL 60. I showed how, by a set of
successive reductions, you could get a reduced language. I don't say that you could
do this for any language, but for ALGOL 60 I have shown that you can do this. Of
course, I was very careful first to take the function designator out, and so this
trouble would never occur.

STRACHEY
Sorry. That's not a very important point and I don't want to stress it. Now, the other
point is, your technique has been to take all the things that people think are important
in languages and replace them by all the features that everybody left out. [Laughter]
That is to say, you remove things and replace them by procedures that are not func
tion designators. I would much prefer to move in exactly the opposite direction. The
last thing I would want to do is remove a function (or, at least, what I call a function)
because it seems a much better-understood mathematical entity than a procedure -
which I call a routine - which is a complicated command. This is the direction we
would like to go in - looking at the basic ideas that underly programs. I don't like the
idea that your processor does not include functions, and I would very much like it to
do so.

VAN WIJNGMRDEN

Of course, this is a matter of taste. I took this direction because the concept of
"procedure" I can combine with all formality concepts, and the assignment into one
or, I think, three lines of truth. It is so simple; it's a much more basic concept to
me, than a thing like a function. This was a cheap way of doing it.

MCILROY
The idea of a preprocessor that reduces, preserving the computational and structural
aspects of everything as much as possible, is very appealing to me, especially to a
compiler writer. My only objection is how far you went, and I'm afraid you went a bit
too far in the elimination of the goto, because this actually changes the temporal

existence of values. If every goto is replaced by a procedure call, then this means
that the entire history of the computation must be maintained. I'm a bit concerned
about this limitation.

VAN WLJNGMRDEN

I suppose you have a certain implementation of a procedure call in mind when you
say that. But this implementation is only so difficult because you have to take care
of the goto statement. However, if you do this trick I devised, then you will find that
the actual execution of the prog-ram is equivalent to a set of statements; no procedure
ever returns because it always calls for another one before it ends, and all of the
ends of all the procedures will be at the end of the program: one mi.Ilion or two mil
lion ends. IT one procedure gets to the end, that is the end of all; therefore, you can
stop. That means you can make the procedure implementation so that it does not
bother lo enable the procedure to return. That is the whole difficulty with pro-
cedure implementation. That's why this is so simple; it's exactly the same as a g·oto,
only called in other words.

