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Abstract: We consider the problem of constructing an on-line (recursive) algorithm for
tracking a conditional spatial median, a center of a multivariate distribution. In the
one-dimensional case we also track conditional quantiles of arbitrary level. We establish a
nonasymptotic upper bound for the Lp-risk of the algorithm, which is then minimized under
different assumptions on the magnitude of the variation of the spatial median or quantile.
We derive convergence rates for the examples we consider.
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1. INTRODUCTION

Often, in applications, one wishes to recover a functional dependence between
different parameters of the underlying distribution on the basis of observations
from that distribution. Nonparametric model regression is one common approach
to this problem. Strictly speaking, regression is the conditional expectation of
one random variable (vector) given another one. Thus, certain moment conditions
in regression models are unavoidable. Moreover, in additive regression stronger
structural conditions are usually imposed on the noises, for example, normality of
the errors and moment restrictions. However, sometimes it is desirable to minimize
the conditions on the moments (and the form) of the distribution of the noises. If,
for example, we only assume that the error at each moment has a zero quantile
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of certain fixed level (for identifiability purposes), we obtain the so-called quantile
regression model first introduced into the literature in Bassett and Koenker (1978);
see Koenker (2005) for a nice account on this topic.

The quantile regression model is quite important in fields such as econometrics,
social sciences, and ecology. In these areas, one often studies response variables
whose relation with its measured predictors is complex. In such cases, the
conditional expectation of the response variable might simply be insensitive to these
relations and will provide a poor description of the underlying phenomenon. Error
bounds on certain regression estimates can be viewed as crude quantile regressions
(cf. Takeuchi et al., 2006) but the levels of these quantilels can be estimated directly.
In such situations, we get a more comprehensive and robust description of the data
by estimating conditional quantiles of different levels, rather than the conditional
mean. This seems to be of particular relevance in applications—for example, in
ecology—where data often display heterogeneous variances; cf. Cade and Noon
(2003).

However, a notion of multivariate quantile is not straightforward. Several
attempts have been made to define a multidimensional analogue of the median, as
some form of center of a distribution. These are usually based on the notion of
depth of a point, first proposed by Tukey (1974a,b, 1975). Roughly speaking, given
a distribution � with support in �d, the depth of a point x ∈ �d with respect to
�—call it depth�x���—measures the centrality of x in �. Depth functions should
be chosen in such a way that they provide a center-outward ordering of the points
x ∈ �d via contours of the function x �→ depth�x���. Tukey’s depth, the half-space
depth, is introduced in the next section. In the one-dimensional case, points of
maximum half-space depth are medians, making this a consistent generalization of
the concept median for multidimensional distributions. Besides, the half-space depth
behaves well and has many attractive properties (cf. Zuo and Serfling, 2000); other
notions of depth function can also be found in the cited article. Points of center
defined based on the half-space depth function can also be shown to have high
breakdown points as shown by Donoho and Gasko (1992)—at least 1/�d + 1� in d
dimensions.

In this article, we work with distributions that have a natural notion of
center. These are half-space symmetric distributions—d-dimensional distributions �
for which there exists a point � ∈ �d such that any half-space H that contains �
verifies ��H� ≥ 1/2. This point � is the center of the distribution in that it has
maximal half-space depth. For absolutely continuous distributions, this point is
unique and we refer to it as the spatial median.

In this article, we are concerned with the problem of recovering a d-variate,
conditional, spatial median function. More precisely, suppose that at each time
moment k ∈ � we observe a random vector Xk and the problem is to recover its
spatial median by using observations available by this time moment. The spatial
median may evolve with time so that we are dealing with nonparametric situation.
Another important complicating factor is that we do not assume the traditional
independence of the observations. In fact, the observations can be arbitrarily
dependent and at time moment k+ 1 we would like to recover the conditional
spatial median of Xk+1 given X k = �X1� � � � � Xk�. This necessarily puts our problem
into the sequential estimation framework. It is desirable to design a sequential
estimation procedure such that the estimate of the evolving conditional spatial
median at the current time moment is based on the estimate of the conditional
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spatial median at the previous time moment and a small correction based on the
current observation. A procedure of such kind was first proposed by Robbins
and Monro (1951), which gave rise to the area of stochastic approximation
algorithms. There is an enormous body of literature on this topic by now. We
also propose a recursive procedure for estimating the evolving conditional spatial
median and derive a general upper bound for its quality in terms of Lp-risk.
Clearly, if the the underlying conditional spatial median oscillates uncontrollably,
no estimation procedure can provide good accuracy. However, if oscillations of
the time varying conditional spatial median can be controlled in one way or
other, estimation should be possible. Informally, one could say that some sort of
accumulation of information occurs. For example, either variation in values of
conditional spatial median is slowing down with time or observations are made
more frequently. We demonstrate that this leads to useful non-void upper bounds
by choosing appropriate settings. Depending on how accumulation of information
in time occurs, we derive different asymptotic regimes for estimation quality by
applying our general nonasymptotic upper bound. In the one-dimensional case we
can estimate sequentially time varying conditional quantiles of arbitrary level �k ∈
�0� 1�, k ∈ �, not only a drifting median. A related problem for independent one
dimensional observations was treated in Belitser and Serra (2013).

This article is structured as follows. In Section 2 we present some basic
definitions, explain the model in detail, specify our assumptions on the distribution
of the observations, and define the sequential estimation procedure. Section 3
contains some auxiliary lemmas and our main results. Different variational setups
for the drifting spatial median (quantiles of changing levels in one dimensional case)
are treated in Section 4, including estimation of a static median, a stabilizing spatial
median, and a spatial median that varies as a Lipschitz function. Finally, the proofs
of the main results from Section 3 are in Appendix A and auxiliary technical results
that are used in these proofs are in Appendix B.

2. PRELIMINARIES

Throughout, for d ∈ �, x� y ∈ �d (columns by default), �x�p is the lp norm (with
p ≥ 1) on �d; �x� = �x�2 and xTy are the usual Euclidean norm and inner product
in �d; I�A� is the indicator function of a set A. We use bold symbols (both
upper- and lowercase) to represent matrices and families of vectors. Denote xk =
�x1� � � � � xk�, xi ∈ �d, k ∈ �0, with the convention that x0 is an empty vector. For
a �d × d�-matrix M , let 	�i��M�, i = 1� � � � � d, denote the ith largest eigenvalue of
M . Denote by O the zero matrix and by I the identity matrix, whose dimensions
will be determined by the context. We adopt the convention that

∑
i∈� Ai = O and∏

i∈� Bi = I for matrices Ai and Bi of appropriate dimensions. When applied to
matrices, � · �p represents the matrix norm induced by the lp vector norm: �M�p =
max�x�p=1 �Mx�p. Given x ∈ �d and a unit vector w in �d, define

H�x�w� = �y ∈ �d 
 wTy ≥ wTx��

the closed half-space that contains the point x + w and is delimited by the
hyperplane containing x which is orthogonal to w.
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For any distribution � with support in �d, the half-space depth (cf. Tukey,
1974a,b, 1975) of x ∈ �d with respect to � is defined as

depth�x��� = inf
{
��H� 
 H is a closed half-space� x ∈ H

}
� (2.1)

The fundamental property of depth functions is that they induce an ordering of the
elements in the support of the distribution � from a “center”— a point of maximal
depth—outwards via the contours of the depth function. In case d = 1, the center
is a point � such that depth����� ≥ 1/2) and this is always a median of �. Besides,
for d = 1 the quantiles of level � and 1− �, � ∈ �0� 1/2�, can be associated with the
depth function as follows:

����= inf
{
x∈� 
 depth�x���≥ �

}
and ��1− ��= sup

{
x∈� 
 depth�x���≥ �

}
�

which are always well defined. Define ��1/2� = inf
{
x ∈ � 
 depth�x��� ≥ 1/2

}
.

When d ≥ 2, it is not automatic that a given distribution has a “natural” center
� in that there might not be a unique point that maximizes a given depth function. In
this article, we work with a particular family of distributions with a proper notion of
center, the so-called half-space symmetric distributions; cf. Zuo and Serfling (2000).
A distribution � is said to be half-space symmetric about some � in the support of
�, if ��X ∈ H� ≥ 1/2 for every closed half-space H containing �. Note that in one
dimension, all distributions are half-space symmetrical about their medians. In the
general, multidimensional case, this center is unique for absolutely continuous, half-
space symmetrical distributions and we will refer to it as the spatial median of �. It
is straightforward to check that for such distributions the half-space depth function
has a unique point of maximum at � and its maximal value is 1/2; that is, � = ��1/2�
as defined before.

Suppose then that at each time moment k ∈ � we observe a random vector
Xk, so that by time n we have n observations Xn = �X1� � � � � Xn�. Let �k�·�xk−1�
denote the conditional distribution of Xk given Xk−1 = xk−1; that is, �k�A�xk−1� =
��Xk ∈ A�Xk−1 = xk−1� for a measurable A ⊆ �d. Further, let � ⊂ �d represent the
(common) support of each observation so that ��Xk ∈ �k� = 1. We assume that
for each xk−1 ∈ �k−1, k ∈ �, the conditional distributions �k�·�xk−1� are absolutely
continuous (with respect to the Lebesgue measure) and half-space symmetrical
about some �k = �k�1/2� = �k�xk−1� 1/2�, which is the only point in � of maximal
depth satisfying

depth
(
�k�xk−1� 1/2���k�·�xk−1�

) ≥ 1/2� (2.2)

The goal is to sequentially estimate a predictable process ��k� k ∈ ��; that is,
at each time moment k ∈ �, �k = �k�Xk−1� is estimated by using the observations
Xk = �X1� � � � � Xk� available by that moment. When d = 1, �k = �k�Xk−1� �k� will be
a sequence of quantiles of level �k ∈ �0� 1�, k ∈ �, which are fixed in advance. When
d ≥ 2, �k = �k�Xk−1� = �k�Xk−1� 1/2� will be the spatial median as defined before.
Ideally, we want our procedure to approach �k as time progresses. If, however, this
is impossible, then the procedure should at least stay in proximity of �k as close as
possible. Until now we imposed few assumptions on the observations X1� X2� � � � .
In fact, the observations can be arbitrarily distributed and can have an arbitrary
dependence structure. Clearly, the stated problem in its full generality has no feasible
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solution. Thus, in order to come up with some nonvoid results, we need to impose
some assumptions on the conditional distributions of Xk given Xk−1 = xk−1, k ∈ �,
at the same time trying to keep these conditions as weak as possible. From now on,
we will call �k spatial median keeping in mind that the same notation is used for a
quantile of level �k ∈ �0� 1� in case d = 1.

We impose the following conditions on the conditional distributions �k�·�xk−1�,
k ∈ �.

(A) The distributions �k�·�xk−1� are absolutely continuous and half-space
symmetrical and for some positive b, B, �, the following inequalities hold for
any 
 ∈ �0� �� and any unit vectors v� w ∈ �d: almost surely


b�vTw� ≤ �vTw�
[
��Xk ∈ H��k − 
v� w��Xk−1�− 1/2

] ≤ 
B�vTw�� k ∈ ��

where �k = �k�Xk−1� 1/2� is the spatial median of �k�·�xk−1�.
(B) The support � is bounded so that supx∈� �x� ≤ C� and the spatial median �k

takes values in some compact subset � ⊆ � so that sup�∈� ��� ≤ C�, for some
0 ≤ C� ≤ C� .

Remark 2.1. The requirement of bounded support of observations seems to be
restrictive but it is reasonable from a practical perspective. One can think of Xk as
truncated versions of some Yk (with an unbounded support): Xk = YkI��Yk� ≤ C��+
Yk�C�/�Yk��I��Yk� > C��.

Note that under the assumption that the distributions �k�·�xk−1� are half-space
symmetrical, the fraction in (A) is trivially positive. This is because any half-space
containing �k will contain at least half of the mass of the distribution. Furthermore,
if such a hyperspace containing the conditional spatial median �k is moved along
a (fixed) direction −
v, then the mass captured by this hyperspace changes lineally
in 
.

When d = 1, condition (A) may be replaced with the following assumption:

(C) For some positive b, B, � and a sequence �k ∈ �0� 1�, k ∈ �, the following
inequalities hold for any 
 ∈ �−�� ��: almost surely


b ≤ ��Xk ∈ H��k + 
�−1��Xk−1�− �k ≤ 
B� k ∈ ��

where �k = ��Xk−1� �k� is the conditional quantile of level �k of �k�·�xk−1�.

Note that the probability in the previous display is simply ��Xk ≤ �k + 
�Xk−1�.
Condition (C) is appropriate in the case when we are interested in sequential
estimation of arbitrary quantiles of a one-dimensional distribution. When �k = 1/2,
k ∈ �, condition (C) reduces to condition (A) with d = 1.

Condition (A) (or (C)) is fulfilled if, for example, the conditional distributions
�k�·�xk−1� are absolutely continuous with conditional densities fk�·�xk−1� such that
for some positive b, B, �,

0 < b ≤ fk�x�xk−1� ≤ B < �� xk−1 ∈ �k−1� k ∈ ��

for almost all (with respect to the Lebesgue measure) x ∈ � such that �x − �k� ≤ �.
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Remark 2.2. Notice that, even under the above conditions, we deal with a
rather general framework: the observations can be dependent and not identically
distributed. Besides, our problem is stated in a robust setting in the sense that we do
not assume anything about the moments of the observations Xk, they simply may
not exist.

Condition (A) is rather natural for the important particular case of independent
observations Xk, k ∈ �. In this case, the conditional spatial median �k becomes
unconditional (�k does not depend on Xk−1) and bounded uniformly in k under our
assumption that � is a bounded set. The observations can then be expressed in the
form Xk = �k + �k, k ∈ �, with independent noises �k. Condition (A) means that
the noises �k have zero spatial median and their probability distribution behaves
regularly in the neighborhood of zero in the sense that they degenerate neither into
zero nor into delta function. This condition does not seem too restrictive for another
important case: when the observations come from a Markov model. In this case, the
conditional distributions �k depends only on two arguments, xk and xk−1.

Now let b = �b1� � � � � bd� be any orthonormal basis for �d, which will be fixed
through the remainder of this article. Consider a random vector D such that ��D =
bi� = 1/d, i = 1� � � � � d. We call such a random vector a random direction in �d.

Introduce the shift function

S�u� v� w� = (
I�u ∈ H�v�w��− 1/2

)
w� u ∈ � ⊂ �d� v ∈ �d� (2.3)

where w is a unit vector in �d. Note that this vector valued function takes the
values w/2 or −w/2 depending on whether the argument u belongs to the half-space
H�v�w� or not. For estimating arbitrary quantiles of level � in the case d = 1, we
use a different shift function, namely,

R�u� v� �� = �− I�u ≤ v�� u ∈ � ⊂ �� v ∈ �� (2.4)

where � ∈ �0� 1�. This shift function only takes the values �− 1 and � depending
respectively on whether u ≤ v or not. Note that this is simply the shift function (2.3)
with d = 1, w = −1 and with 1/2 replaced with �.

Let ��k� k ∈ �� be a nonnegative sequence bounded by some constant � :

0 ≤ �k ≤ �� k ∈ �� (2.5)

Define the recursive algorithm for estimating a conditional spatial median in
� ⊂ �d, d ≥ 2:

�̂k+1 = �̂k + �kS�Xk� �̂k� Dk�� k ∈ �� (2.6)

where Dk is an independent sequence of random directions. An algorithm for
sequential estimating an �k-level quantiles in � ⊂ � is as follows:

�̂k+1 = �̂k + �kR�Xk� �̂k� �k�� k ∈ �� (2.7)

where �k ∈ �0� 1�, k ∈ �. In both cases the sequence of step sizes ��k� k ∈ �� satisfies
(2.5) and �̂1 ∈ � is some fixed initial value from �.
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3. MAIN RESULTS

In this section we formulate the main results of this article. We start with two
technical lemmas that are needed in the proofs of the main theorems. All proofs can
be found in Appendix A. For the sake of brevity, we denote by �k the parameter
value to be estimated at the time moment k: for d ≥ 2 this will be a spatial median
�k = �k�Xk−1� = �k�Xk−1� 1/2� and for d = 1 an �k-level quantile �k = �k�Xk−1� �k�. It
will be clear from the context which case we are referring to. Introduce �k = ��Xk�,
k ∈ �, the �-algebra generated by Xk = �X1� � � � � Xk�, and let �0 be the trivial �-
algebra.

Lemma 3.1. Let ��̂k� k ∈ �� be defined by (2.6). Then ��̂k� ≤ √
d�C� + �/2�, k ∈ �.

This implies that ��̂k − �k� ≤ C = C� +√
d�C� + �/2�, k ∈ �.

Lemma 3.2. For a fixed sequence �k ∈ �0� 1�, k ∈ �, let ��̂k� k ∈ �� be defined by
(2.7). Then ��̂k� ≤ C� + � , k ∈ �. This implies that ��̂k − �k� ≤ c = C� + C� + � ,
k ∈ �.

These lemmas are used in the proof of Lemma 3.3 and of Lemma 3.4,
respectively, and can be seen as preliminary rough versions of our main theorems
(Theorems 3.1 and 3.2 below), stating that the approximations given by algorithms
(2.6) and (2.7) do not stray to infinity and live on a compact set. The following
lemmas give information about the average behavior of the shift functions (2.3)
and (2.4).

Lemma 3.3. Let the function S�u� v� w� be defined by (2.3) and the sequence ��̂k� k ∈
�� be defined by (2.6). Then �S�u� v� w�� ≤ 1/2 uniformly over u ∈ � , v ∈ �d and over
all unit vectors w in �d. Moreover, if conditions (A) and (B) are fulfilled, then

�
[
S�Xk� �̂k� Dk���k−1

] = −Mk��̂k − �k�� k ∈ ��

for some sequence of �k−1-measurable random matrices Mk = Mk�Xk−1� such that
almost surely 	1 ≤ 	�1��Mk� ≤ 	�d��Mk� ≤ 	2, k ∈ �, for constants 0 < 	1 ≤ 	2 < �.
(The constants 	1 and 	2 depend on b� B� � from (A), and on C� and C� from (B) via
C from Lemma 3.1.)

Lemma 3.4. Let the function R�u� v� �� be defined by (2.4), the sequence ��̂k� k ∈ ��
be defined by (2.7) and �k ∈ �0� 1�. Then �R�u� v� ��� ≤ max��� 1− �� uniformly over
u ∈ � , v ∈ � and � ∈ �0� 1�. Moreover, if conditions (C) and (B) are fulfilled, then

�
[
R�Xk� �̂k� �k�

∣∣�k−1

] = −Mk��̂k − �k�� k ∈ ��

for some sequence of �k−1-measurable random variables Mk = Mk�Xk−1� such that
almost surely 	1 ≤ Mk ≤ 	2, k ∈ �, for constants 0 < 	1 ≤ 	2 < �. (The constants 	1
and 	2 depend on b� B� � from (C), and on C� and C� from (B) via c from Lemma 3.2.)

An informal interpretation of Lemma 3.3 is as follows. Firstly, since the
matrices Mk are almost surely positive definite, then the shift function S�Xk� �̂k� Dk�
gives the “right average direction” from �̂k toward the conditional spatial median



526 Belitser and Serra

�k. Secondly, since the eigenvalues of Mk are bounded from zero and from infinity,
the “average length” of the shift S�Xk� �̂k� Dk� is a controlled multiple of the distance
between �̂k and the conditional spatial median �k. The same interpretation can be
given for Lemma 3.4.

We are ready to state our main results. Theorem 3.1 makes a statement about
algorithm (2.6) as a sequential estimation procedure for conditional spatial medians
in the case where d ≥ 2 and Theorem 3.2 makes a statement about algorithm (2.7)
as a sequential estimation procedure for conditional quantiles of level �k in the one-
dimensional case d = 1.

Theorem 3.1. Let assumptions (A) and (B) hold, the sequence �̂k be defined by (2.6),
�k = �k�Xk−1� = �̂k − �k, k ∈ �. Then for any k0� k ∈ �, k0 ≤ k, a sequence ��k� k ∈
�� as in (2.5) such that �i	2 ≤ 1 (	2 as in Lemma 3.3) for all i ∈ �k0� � � � � k� and any
p ≥ 1, the following relation holds:

���k+1�pp ≤ C1 exp

{
−p	1

k∑
i=k0

�i

}
+ C2

[
k∑

i=k0

�2i

]p/2

+ C3 max
k0≤i≤k

���i+1 − �k0�pp� (3.1)

where C1 = 3p−1dp/2Kp
pC

p, C2 = 3p−1dBp

(
1+ K2

p	2/	1
)p
, C3 = 3p−1

(
1+ K2

p	2/	1
)p
,

where C is the constant from Lemma 3.1, 	1 and 	2 from Lemma 3.3, and Kp is the
constant from Lemma B.2.

Theorem 3.2. Let assumptions (C) and (B) hold and the sequence �̂k be defined (for
a fixed sequence �k ∈ �0� 1�, k ∈ �), by (2.7). Define �k = �k�Xk−1� = �̂k − �k, k ∈ �.
Then for any k0� k ∈ �, k0 ≤ k, a sequence ��k� k ∈ �� as in (2.5) such that �i	2 ≤ 1
(	2 as in Lemma 3.4) for all i ∈ �k0� � � � � k� and any p ≥ 1, the following relation holds:

���k+1�p ≤ C1 exp

{
−p	1

k∑
i=k0

�i

}
+ C2

[
k∑

i=k0

�2i

]p/2

+ C3 max
k0≤i≤k

���i+1 − �k0 �p� (3.2)

where C1 = 3p−1Dp, C2 = 3p−12pBp

(
1+ 	2/	1

)p
, C3 = 3p−1

(
1+ 	2/	1

)p
, where D is

the constant from Lemma 3.2, 	1 and 	2 from Lemma 3.4, and Kp is the constant form
Lemma B.2.

Remark 3.1. The right-hand side of (3.2) depends on the quantile levels �k, k ∈ �,
via the constants b and � from (C). Also, the closer �k it to one (resp. zero), the
larger (resp. smaller) the value ��k�, and therefore the constant C� becomes larger
and then also D from Lemma 3.2. Besides, there is too little probability mass in the
neighborhood of extreme quantiles, so that condition (C) is more difficult to fulfill
as �k gets closer to one (or zero). This makes constants � and b smaller, which in
turn makes constant 	1 smaller and constant 	2 bigger. All of these changes lead to
an increase of the constants C1, C2, and C3 featured in inequality (3.2).

4. VARIATIONAL SETUPS FOR THE DRIFTING QUANTILES

Theorem 3.1 and Theorem 3.2 deliver (up to the values of the proportionality
constants) the same explicit, nonasymptotic bound for the Lp-risk of the estimating



Recursive Estimation 527

recursive procedures (2.6) and (2.7). This bound depends mainly on three quantities:
k0, the sequence ��k� k ∈ �� and the variation of the spatial median �k.

Since the algorithms (2.6) and (2.7) are initiated with an arbitrary value �̂1 and
the shift functions (2.3) and (2.4) are a.s. bounded, there is a minimal number of
iterations which are needed for the estimating sequence to reach a neighborhood of
the drifting quantile of interest—this is the so-called burn-in period of the algorithm.
The length of the burn-in period is controlled by making an appropriate choice
for k0.

The step size sequence ��k� k ∈ �� induces averaging of the iterates of the
algorithms (2.6) and (2.7), and its influence on the bound given by the theorems is
explicit. If we are to minimize the right-hand side of (3.1) and (3.2), it should be
clear that ��k� k ∈ �� must be chosen such that

∑k
i=1 �i diverges as k → � and such

that
∑k

i=1 �
2
i converges as k → �. These are the classical conditions for the step sizes

of Robbins-Monro type procedures and well known in the literature. Intuitively, if
the sum

∑k
i=k0

�2i is small, then the algorithm can “approach” �k arbitrarily close,
and if the sum

∑k
i=k0

�i is large, then algorithm can “reach” any point � ∈ �.
The variation of the drifting conditional spatial median also has a nonnegligible

contribution to the accuracy of the sequential estimating procedures (2.6) and (2.7).
This is reasonable since, if the median changes arbitrarily in-between observations,
we should not expect it to the “estimable”. In the following subsections we specify,
for different assumptions on the variation of the spatial median, an appropriate
value for k0 and an appropriate sequence �k that minimizes the bound in (3.1)
and (3.2).

4.1. Static Parameter

We assume in this section that �k = �0, k ∈ �, a.s., for some unknown �0 ∈ �, this
corresponds to a parametric setup. Clearly, in this case the third term on the right-
hand side of (3.1) and (3.2) vanishes.

Take �j = C�j
−1 log j and for q ∈ �0� 1�, n0 = �qn�, where �a� is the whole part

of a ∈ �. Let n ≥ 2/q = Nq such that n0 ≥ 2. For large enough C� and all n ≥ Nq

we have

n∑
j=n0

�j ≥ c� log n0

n∑
j=n0

1
k
≥ log n

2	1
�

from where for all p ≥ 1,

exp

{
−p	1

n∑
j=n0

�j

}
≤ n−p/2�

Using the fact that
∑n

j=n0
�2j ≤ c�log n�2n−1 for some constant c > 0 we have

(
n∑

j=n0

�2j

)p/2

≤ �n−1/2 log n�p�
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We conclude that we can rewrite (3.1) as

max
n≥Nq

�
( √

n

log n
��n�p

)p

≤ C� (4.1)

and (3.2) as

max
n≥Nq

�
( √

n

log n
��n�

)p

≤ C� (4.2)

both representations holding for all p ≥ 1. The logarithmic term in the rate cannot
be avoided and is a consequence of the recursiveness of the algorithm.

Note that by taking p > 
−1, using Markov’s inequality and (4.1), we derive that
�∑
n=1

P
(
n1/2−
��̂n − �0�1 > c

) ≤ �∑
n=1

P
(
d

p−1
p n1/2−
��̂n − �0�p > c

)
≤

�∑
n=0

dp−1np/2−p
���n�pp
cp

≤ C
�∑
n=1

�d log n�p

np

< �� (4.3)

By application of the Borel-Cantelli Lemma, we conclude that ��̂n − �0�1 → 0 as
n → 0 with probability 1 at a rate n1/2−
 for all 
 > 0. The same can be shown to
be true in the one-dimensional case for algorithm (2.7) using (4.2).

The particular setup presented in this section, where the parameter is fixed,
might seem atypical since we are, mainly concerned with estimating drifting
parameters. The algorithms (2.6) and (2.7) are however recursive and easy to
implement, whereas direct estimation might be more involved. Note that we
only require the spatial median being estimated to remain fixed; the conditional
distribution of the observations is allowed to change.

4.2. Stabilizing Parameter

Suppose now that the spatial median is stabilizing. Such a situation arises if, for
example, the expectation of the oscillations of the median converges to zero with a
certain rate. More specifically, assume that ��i = �i�Xi−1�− �i+1�Xi� verifies

����i�pp ≤ �
p
i � i ∈ ��

for p ≥ 1 and some decreasing sequence �i. Assume then that we have �i = c�i
−�

for some constants c� > 0 and � ≥ 0.
Consider first the case � ≥ 3/2. In this case the variation of the parameter

vanishes so quickly that we are essentially in the setup of the previous section.
Indeed, take �i and n0 as in the previous section. The first and second terms on the
right-hand side of (3.1) can be bounded in the same way as in the previous section.
As for the third term, by using the Hölder inequality,

�

(
n∑

i=n0

���i�p
)p

≤ �n− n0�
p−1

n∑
i=n0

����i�pp ≤ C�n− n0�
p�p

n0

≤ c
(
�n− n0�n

−�
0

)p ≤ Cn−��−1�p ≤ Cn−p/2� (4.4)

leading to the same bounds as in the previous section.
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Consider now the case 0 < � < 3/2. Let �i = C��log i�
1/3i−2�/3, n0 = n−

n2�/3�log n�2/3. By using the elementary inequality �1+ x�� ≤ 1+ �x for 0 < � < 1
and x ≥ −1, we obtain that for sufficiently large n (that is, n ≥ N1 = N1���) and
sufficiently large constant C�

n∑
i=n0

�i ≥ C��log n0�
1/3

n∑
i=n0

1
i2�/3

≥ C��log n0�
1/3
∫ n

n0

dx

x2�/3

= C��log n0�
1/3

1− 2�/3

[
n1−2�/3 − n1−2�/3

(
1− n2�/3−1�log n�2/3

)1−2�/3
]

≥ C��log n0�
1/3

1− 2�/3

[
n1−2�/3 − n1−2�/3

(
1− n2�/3−1�log n�2/3�1− 2�/3�

)]
= C��log n0�

1/3�log n�2/3 ≥ log n
2h

�

This yields the same bound for the first term on the right-hand side of (3.1): for
n ≥ N1 and sufficiently large constant C�,

exp

{
−ph

n∑
i=n0

�i

}
≤ n−p/2�

Now we bound the second term on the right-hand side of (3.1): for n ≥ N2 = N2���,(
n∑

i=n0

�2i

)p/2

≤ C
(
�log n�2/3n−4�/3

0 �n− n0�
)p/2 ≤ c

(
�log n�2/3n−�/3

)p
�

Similarly to (4.4), the third term on the right-hand side of (3.1) is bounded by

�

(
n∑

i=n0

���i�p
)p

≤ c
(
�n− n0�n

−�
0

)p ≤ C
(
�log n�2/3n−�/3

)p
�

for sufficiently large n (that is, n ≥ N3 = N3���). Finally we obtain that for 0 < � <
3/2 and sufficiently large constant C� in the algorithm step �i = C��log i�

1/3i−2�/3,
(3.1) implies that

max
n≥N�

�
(

n�/3

�log n�2/3
��n�p

)p

≤ C�

where N� = max�N1� N2� N3� is the burn-in period of the algorithm.

Remark 4.1. If we choose �i = C��log i�
�1 i−� and n0 = n− n��log n��2 , 0 < � < 1,

�1� �2 ≥ 0, �1 + �2 ≥ 1 in case 0 < � < 3/2, then we get the following bound of the
convergence rate: for sufficiently large n and sufficiently large constant C�

���n�pp ≤ C
(
n−min��−���/2��log n�max��2��1+�2/2�

)p
�

Thus, the choice � = 2�/3, �1 = 1/3, �2 = 2/3 is optimal in the sense of the
minimum of the right-hand side of the above inequality.
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Remark 4.2. Much in the same way as for (4.3), we can establish that for any 
 > 0,

lim
n→� n�/3−
��n�1 = 0 with probability 1�

Finally, consider the case � = 0; that is, we assume the following weak
requirement: ����i�pp ≤ c, i ∈ �, for some uniform constant c. Take n− n0 = N ,
�i = � for some N ∈ �, � > 0. Then Theorem 3.1 implies that

max
n≥N

���n�pp ≤ C1e
−phN� + C2N

p/2�p + C3N
pc = D�

We thus have that the algorithm will track the spatial median in the proximity of
size D, which we can try to minimize by choosing appropriate constants N and �.

The exact same computations will give the respective bounds for the right-hand
side of (3.2) as for (3.1) by simply replacing everywhere � · �p with � · �.

4.3. Lipschitz Varying Median with Asymptotics in the Sampling Frequency

We consider now a slightly different setup where we assume that the spatial median
is changing, on average, like a Lipschitz function. In this setup we assume that the
data are sampled from a continuous-time process Xt, t ∈ �0� 1�, which we observe
with frequency n. This means that for each n ∈ � we have a different model,
namely,

Xn
0 ∼ Pn

0 � Xn
k �X n

k−1 ∼ Pn
k �·�X n

k−1�� k ≤ n ∈ �� (4.5)

where the spatial median �nk = �nk�X
n
k−1� verifies, for some p ∈ �, � = ��d� p� < �

���nk�X n
k−1�− �nk0�X

n
k ��pp ≤ �p

(k− k0
n

)�p
�

We could have, for example, that �nk�X
n
k−1� = ��k/n�, almost surely, where

��·� ∈ ��L� �� = �g�·� 
 �g�t1�− g�t2��1 ≤ L�t1 − t2��� t1� t2 ∈ �0� 1�� for some 0 <
� ≤ 1 and L > 0, a space of vector valued Lipschitz functions. The nonparametric
median estimation problem (d = 1, �k = 1/2, k ∈ �) has been studied in Belitser
and Korostelev (1992) and Belitser and van de Geer (2000) for such an asymptotic
regime.

Let �k ≡ C��log n�
�2�−1�/�2�+1�n−2�/�2�+1�, (constant in k) for k = 1� � � � � n, and

k0 = k0�n� = k− �log n�2/�2�+1�n2�/�2�+1��

for k ≥ Kn = �log n�2/�2�+1�n2�/�2�+1�. Note that for Kn/n → 0 as n → � for any 0 <
� ≤ 1.

For sufficiently large C�,

k∑
i=k0

�i = C��log n�
�2�−1�/�2�+1�n2�/�2�+1��k− k0� ≥ C� log n ≥ log n

3	1
�



Recursive Estimation 531

leading to

exp

{
−p	1

k∑
i=k0

�i

}
≤ cn−p/3�

In much the same way, we have(
k∑

i=k0

�2i

)p/2

≤ C
(
�log n�

2�−1
2�+1 n− 2�

2�+1 �k− k0�
1/2
)p = C

(
�log n�

2�
2�+1 n− �

2�+1

)p
�

From our assumption on the variation of the parameter, we have

max
i=k0�����k

���ni+1 − �nk0�pp ≤ c

(
k− k0

n

)−p�

≤ C
(
�log n�

2�
2�+1 n− �

2�+1

)p
�

Finally, combining the three bounds with Theorem 3.1, we obtain

sup
�∈��L���

max
i≥Kn

���i�pp ≤ C
(
�log n�

2�
2�+1 n− �

2�+1

)p
�

The exact same computations hold in case d = 1 and give the same bound for
the right-hand side of (3.2) as for (3.1) by simply replacing everywhere � · �p with
� · �.

APPENDIX A: PROOFS OF THE RESULTS FROM SECTION 3

In this appendix we present the proofs to our main results from Section 3. The
technical lemmas used here are collected in Appendix B. If index k is involved in
one of the relation below, then the corresponding relation holds for all k ∈ �.

Proof of Lemma 3.1. Recall that b = �b1� � � � � bd� is an orthonormal basis where
random directions Dk take their values. Introduce a hypercube of size h > 0 with
respect to this basis:

C�h� = {
v ∈ �d 
 �bTi v� ≤ h� i = 1� � � � � d

}
�

We will prove a slightly stronger assertion, namely, that �̂k ∈ C�C� + �/2� for all
k ∈ �, which, of course, implies the claim of the lemma. Recall that �̂1 ∈ � ⊆ �
so that �̂1 ∈ C�C�� ⊂ C�C� + �/2�. By induction, it is enough to show that if �̂k ∈
C�C� + �/2�, then �̂k+1 ∈ C�C� + �/2�.

Assume that �̂k ∈ C�C� + �/2� and suppose Dk+1 = b ∈ b. Then �̂k+1 = �̂k ±
�kb/2 depending on whether Xk ∈ H��̂k� b� or not. As compared with �̂k, the only
change in �̂k+1 is the lth coordinate bT �̂k+1 with respect to the basis b. Thus, we only
need to show that �bT �̂k+1� ≤ C� + �/2.

Consider the case Xk ∈ H��̂k� b�, then bTXk ≥ bT �̂k and �̂k+1 = �̂k + �kb/2. Recall
also that Xk ∈� , which implies that �bTXk� ≤C� . If b

T �̂k ≥ 0, then bTXk ≥ bT �̂k ≥ 0
and �bT �̂k+1� = bT �̂k + �k/2 ≤ bTXk + �k/2 ≤ C� + �/2. If bT �̂k ≤ 0, then again
�bT �̂k+1� = �bT �̂k + �k/2� ≤ �bT �̂k� ≤ C� + �/2 since �̂k ∈ C�C� + �/2�.
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Similarly, consider the case Xk �∈ H��̂k� b�. Then bTXk < bT �̂k and �̂k+1 = �̂k −
�kb/2. If bT �̂k ≤ 0, then bTXk < bT �̂k ≤ 0 and �bT �̂k+1� = �bT �̂k� + �k/2 ≤ �bTXk� +
�k/2 ≤ C� + �/2. If bT �̂k > 0, then �bT �̂k+1� = �bT �̂k − �k/2� ≤ �bT �̂k� ≤ C� + �/2.

We established that �bT �̂k+1� ≤ C� + �/2 and this completes the proof of the
lemma. �

Proof of Lemma 3.2. As compared to the proof of the previous lemma, we now
have �̂k+1 = �̂k + �k�k if Xk ≥ �̂k, and �̂k+1 = �̂k − �k�1− �k� if Xk < �̂k. We repeat
the same arguments as in the proof of Lemma 3.1 with � instead of �/2 (since �k ∈
�0� 1�) and b = 1. �

Proof of Lemma 3.3. It is easily seen that by construction �S�u� v� w�� ≤ 1/2
uniformly over u ∈ � , v ∈ �d and over all unit vectors w in �d. For a random
variable Y , let �Y represent expectation with respect to the law of Y . Recall that
�k = �k�Xk−1� is a predictable process with respect to the filtration �0 ∪ ��k� k ∈ ��.
Clearly, the lemma holds true if ��̂k − �k� = 0 with, for example, Mk = I . Assume
therefore that ��̂k − �k� > 0.

Denote for brevity 
k = ��k − �̂k� and ek = ��k − �̂k�/
k, the unit vector in the
direction of �̂k − �k. First note that, since Dk is independent of �k−1,

eTk��S�Xk� �̂k� Dk���k−1� = eTk�
[
Dk

(
I
{
Xk ∈ H��̂k�Dk�

}− 1/2
)��k−1

]
= �Dk

[
�eTk Dk�

(
��Xk ∈ H��̂k�Dk��Xk−1�− 1/2

)]
� (A.1)

Since the conditional distributions �k�·�xk−1� are half-space symmetrical about �k,

eTk��S�Xk� �̂k� Dk���k−1� = �eTk Dk�
(
�
(
Xk ∈ H��̂k�Dk��Xk−1

)− 1/2
) ≥ 0 a.s.� (A.2)

so that (A.1) is almost surely positive. By Lemma 3.1, 
k = ��̂k − �k� ≤ C, with C as
defined in this lemma. We consider two cases depending on the value of 
k ∈ �0� C�.

First consider the case 0 < 
k < �, with � defined in assumption (A). Note that
we can write

�̂k = �k − 
kek� (A.3)

so that, by using representation (A.1) and assumption (A),


kb�Dk

[
eTk Dk

]2 ≤ eTk�
[
S�Xk� �̂k� Dk�

∣∣�k−1

] ≤ 
kB�Dk

[
eTk Dk

]2
�

Since Dk takes values in an orthonormal basis, ��vTDk�
2 = 1/d for any unit vector

v in �d. The last two relations imply that almost surely

�bd−1�
k ≤ eTk�
[
S�Xk� �̂k� Dk�

∣∣�k−1

] ≤ �Bd−1�
k�

Consider now the case � ≤ 
k ≤ C. Using this assumption, the Cauchy-Schwarz
inequality, and (A.2), it follows from (A.1) that

eTk�
[
S�Xk� �̂k� Dk�

∣∣�k−1

] ≤ 1
2
≤ 
k

2�
�
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To derive a lower bound for the last display note that for 
 ∈ �0� �� and any unit
vectors v� w ∈ �d,


b�vTw� ≤ �vTw�
[
��Xk ∈ H��k − 
v� w��Xk−1�− 1/2

]
�

by assumption (A). Note also that since the distributions �k�·�xk−1� are half-
space symmetric about �k, then the right-hand side of the previous display is
monotonically increasing in 
. We then obtain that for any two unit vectors v� w ∈
�d and any 
 ≥ �,

�b�vTw� ≤ �vTw�
[
��Xk ∈ H��k − 
v� w��Xk−1�− 1/2

]
�

Since Dk ∈ b (an orthonormal basis in �d), then, for any unit vector v, with
probability at least 1/d we must have that vTDk ≥ 1/

√
d. From this fact and (A.1)

a lower bound follows for the case � ≤ 
k ≤ C:

eTk�
[
S�Xk� �̂k� Dk�

∣∣�k−1

] ≥ �b

d3/2
≥ 
k�b

Cd3/2
�

Summarizing, we established that almost surely

C1��k − �̂k�2 ≤ ��k − �̂k�
T�
[
S�Xk� �̂k� Dk�

∣∣�k−1

] ≤ C2��k − �̂k�2� (A.4)

where C1 = min
{
b/d� b�/�Cd3/2�

}
and C2 = max

{
B/d� 1/�2��

}
.

From assumption (A) we have that, for any unit vectors v� w in �d and 
 ∈
�0� ��,∥∥w(��Xk ∈ H��k − 
v� w��Xk−1�− 1/2

)∥∥ ≤ ∣∣��Xk ∈ H��k − 
v� w��Xk−1�− 1/2
∣∣ ≤ B
�

by the Cauchy-Schwarz inequality. Thus, if ��̂k − �k� < �, then, by using the
previous display and (A.3),∥∥��S�Xk� �̂k� Dk���k−1�

∥∥ = ∥∥�Dk

[
Dk�

(
Xk ∈ H��̂k�Dk�

∣∣Xk−1

)− 1/2
]∥∥ ≤ B��k − �̂k��

In case ��̂k − �k� ≥ �, we trivially have

∥∥�[S�Xk� �̂k� Dk�
∣∣�k−1

]∥∥ ≤ 1
2
≤ ��k − �̂k�

2�
�

We conclude that almost surely∥∥�[S�Xk� �̂k� Dk�
∣∣�k−1

]∥∥ ≤ C3��k − �̂k�� (A.5)

with C3 = max
{
B� 1/�2��

}
.

The statement of the lemma follows from (A.4) and (A.5) by applying
Lemma B.1 below. �

Proof of Lemma 3.4. The proof of Lemma 3.4 is the same as that of Lemma 3.3 by
making some minor modifications for the quantities involved in the proof. We take
d = 1, replace everywhere 1/2 with �k (which is then bounded by 1), set Dk = −1,
replace the constant C from Lemma 3.1 with the constant c from Lemma 3.2, �k =
�k�Xk−1� �k� = is the conditional �k-level quantile of �k�·�xk−1�, take constants b� B,
and � from assumption (C), and replace � · � with � · �. �
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Proof of Theorem 3.1. For the sake of brevity, denote �k = �k�Xk−1�, Sk =
S�Xk� �̂k� Dk�, sk = ��S�Xk� �̂k� Dk���k−1� and Tk = Sk − sk, k ∈ �. We have

��Tk��k−1� = ��Sk − sk��k−1� = sk − sk = 0� k ∈ ��

It follows that �Tk� k ∈ ��, is a (vector) martingale difference sequence with respect
to the filtration �0 ∪ ��k�k∈�.

Rewrite the algorithm equation (2.6) as

�k+1 = �k + ��k + �kTk + �ksk� k ∈ ��

In view of (A) and Lemma 3.3 the decomposition sk = −Mk�k holds almost surely
for an �k−1-measurable, symmetric, positive definite matrix Mk such that 0 < 	1 ≤
	�1��Mk� ≤ 	�d��Mk� ≤ 	2 ≤ � almost surely. We have

�k+1 = ��k + �kTk + �I − �kMk��k� k ∈ ��

By iterating the relation from above, we obtain that for any k0 = 1� � � � � k

�k+1 = �I − �kMk��I − �k−1Mk−1��k−1 + ��k + �kTk

+ �I − �kMk����k−1 + �k−1Tk−1�

=
[

k∏
i=k0

�I − �iMi�

]
�k0 +

k∑
i=k0

[
k∏

j=i+1

�I − �jMj�

]
���i + �iTi�� (A.6)

Denote Ai =
∑i

j=k0
�jTj , Bi =

∑i
j=k0

��j and Hi = Ai + Bi. Applying the Abel
transformation (Lemma B.3) to the second term of the right-hand side of (A.6)
yields

k∑
i=k0

[
k∏

j=i+1

�I − �jMj�

]
���i + �iTi� = Hk −

k−1∑
i=k0

�i+1Mi+1

[
k∏

j=i+2

�I − �jMj�

]
Hi� (A.7)

In particular, note that if we take d = 1, Mj = 	1, ��j = 0 for j = k0� � � � � k, Tk0
= 1,

Tj = 0 for j = k0 + 1� � � � � k, we have that (since 0 ≤ �j	1 ≤ 1 for j = k0� � � � � k)

k−1∑
i=k0

	1�i+1

k∏
j=i+2

�1− �j	1� = 1−
k∏

j=k0+1

�1− �j	1� ≤ 1� (A.8)

which we will use later.
Using (A.7), we can rewrite our expansion of �k+1 in (A.6) as follows:

�k+1 =
[

k∏
i=k0

�I − �iMi�

]
�k0 +Hk −

k−1∑
i=k0

�i+1Mi+1

[
k∏

j=i+2

�I − �jMj�

]
Hi�

The previous display, the Minkowski inequality, and the submultiplicative
property of the operator norm (�AB�p ≤ �A�p�B�p) imply that

��k+1�p ≤ ��k0�p
∥∥∥∥∥ k∏
i=k0

�I − �iMi�

∥∥∥∥∥
p

+ �Hk�p

+
k−1∑
i=k0

�i+1�Mi+1�p�Hi�p
∥∥∥∥∥ k∏
j=i+2

�I − �jMj�

∥∥∥∥∥
p

� (A.9)
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By using Lemma 3.3, LemmaB.2, (A.8), and the elementary inequality 1− x≤ e−x,

��k+1�p ≤ Kp��k0�p
k∏

i=k0

�1− �i	1�+ max
k0≤i≤k

�Hi�p
[
1+ K2

p

k−1∑
i=k0

�i+1	2

k∏
j=i+2

�1− �i	1�

]

≤ Kp��k0�p exp
{
−	1

k∑
i=k0

�i

}
+
(
1+ K2

p	2

	1

)(
max
k0≤i≤k

�Ai�p + max
k0≤i≤k

�Bi�p
)

almost surely, where the constant Kp = Kp�d� is from Lemma B.2.
Take now the pth power of both sides of the last relation and apply the Hölder

inequality �∑m
i=1 ai�p ≤ mp−1∑m

i=1 �ai�p for m = 3 to get

��k+1�pp ≤ 3p−1Kp
p��k0�pp exp

{
−p	1

k∑
i=k0

�i

}

+ 3p−1

(
1+ K2

p	2

	1

)p (
max
k0≤i≤k

�Ai�pp + max
k0≤i≤k

�Bi�pp
)
�

Recall that the sequence
{∑i

j=k0
�jTj� i ≥ k0

}
is a martingale with respect to the

filtration ��i� i ≥ k0� and that the coordinates of Tj verify �Tjl� ≤ 2�Sj� ≤ 1 almost
surely, l = 1� � � � � d, j = k0� � � � � k. Applying the maximal Burkholder inequality for
p > 1 and the Davis inequality for p = 1 (cf. Shiryaev, 1996) yields

� max
k0≤i≤k

�Ai�pp = � max
k0≤i≤k

d∑
l=1

∣∣∣∣∣ i∑
j=k0

�jTjl

∣∣∣∣∣
p

≤
d∑

l=1

� max
k0≤i≤k

∣∣∣∣∣ i∑
j=k0

�jTjl

∣∣∣∣∣
p

≤ Bp

d∑
l=1

�

[
k∑

j=k0

�2j T
2
jl

]p/2

≤ dBp

[
k∑

j=k0

�2j

]p/2

� (A.10)

for some constant Bp. One can take Bp = ��18p5/2�/�p− 1�3/2�p for p > 1;
cf. Shiryaev (1996). The statement of the theorem now follows by taking
expectations on both sides of the bound on ��k+1�pp above and by using the last
inequality. Note that for p ≥ 1, ��k0�p ≤ d1/2��k0�2 ≤ C almost surely by Lemma 3.1
so that ���k0�p ≤ dp/2Cp. �

Proof of Theorem 3.2. The proof of Theorem 3.2 is the same as that of Theorem 3.1
by making some particular choices for the quantities involved in the proof. We
take d = 1, replace Kp with 1, replace everywhere the matrices Mk with the random
variables Mk, replace the constant C from Lemma 3.1 with the constant c from
Lemma 3.2, let �k = �k�Xk−1� �k� be the �k-level quantile of �k�·�xk−1�, invoke
assumption (C) instead of assumption (A), replace � · �p with � · �, and use the
triangle inequality instead of the Minkowski inequality.

Further, in (A.10) we have that �Tjl� = �Tj� ≤ 2, which leads to an extra
multiplicative factor 2p in the bound. �

APPENDIX B: TECHNICAL RESULTS

In this appendix we have some technical lemmas used in the proofs of the results
from Appendix A.
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Lemma B.1. Let x� y ∈ �d. If 0 < 	′1�x�2 ≤ xTy ≤ 	′2�x�2 < � and �y� ≤ L�x� for
some 	′1� 	

′
2� L ∈ � such that 0 < 	′1 ≤ 	′2 < � and L > 0, then there exists a symmetric

positive definite matrix M such that y = Mx and 0 < 	1 ≤ 	�1��M� ≤ 	�d��M� ≤ 	2 <
� for some constants 	1� 	2 ∈ � depending only on 	′1� 	

′
2 and L.

Proof. Suppose 0 < 	′1�x�2 ≤ xTy ≤ 	′2�x�2 < � for some 	′1� 	
′
2 ∈ � such that 0 <

	′1 ≤ 	′2 < � and �y� ≤ L�x�. Let V = �v = ax + by 
 a� b ∈ �� be the linear space
spanned by x and y. First consider the case dim�V� = 1; that is, y = �x for some
� ∈ �. Then xTy = ��x�2 so that 0 < 	′1 ≤ � ≤ 	′2 < �. Thus, y = �x = Mx with
symmetric and positive M = �I so that 0 < 	′1 ≤ � = 	�1��M� = 	�d��M� ≤ 	′2 < �.

Now consider the case dim�V� = 2. Let e1 = x/�x� and �e1� e2� be an
orthonormal basis of V . Then

x = �x�e1 and y = �e1 + �e2�

The conditions 	′1�x�2 ≤ xTy = ��x� ≤ 	′2�x�2 and �y� = √
�2 + �2 ≤ L�x� imply

that

	′1�x� ≤ � ≤ min�	′2� L��x�� ��� ≤ L�x��
Let e2 be chosen in such a way that � > 0 (which is always possible). We change

the basis of V as follows:

e′1 = cos���e1 − sin���e2�

e′2 = sin���e1 + cos���e2�

We thus rotate the basis �e1� e2� by the angle �. In these new basis we have

x = �x� cos���e′1 + �x� sin���e′2 = �xe
′
1 + �xe

′
2�

y = �� cos���− � sin����e′1 + �� sin���+ � cos����e′2 = �ye
′
1 + �ye

′
2�

Recall that �� � > 0. Take � ∈ �0� �/2� such that � cos���− � sin��� = 1
2� cos���;

that is, tan��� = �
2� . Then we have that

	′1
2

≤ �

2�x� = �y

�x
≤ min�	′2� L�

2
� 	′1 ≤

�

�x� ≤ �y

�x

≤ �

�x� + 2�2

��x� ≤ min�	′2� L�+
2L2

	′1
�

Take then 	1 = 	′1/2 and 	2 = min�	′2� L�+ 2L2/	′1.
Let �e′3� � � � � e

′
d� be the orthonormal basis of V⊥, so that B = �e′1� e

′
2� e

′
3� � � � � e

′
d�

is an orthonormal basis of �d. Take

where the Os indicate null matrices of the appropriate dimensions. We then have
y = M̃x in the basis B and 	1 ≤ 	�1��M̃� ≤ 	�d��M̃� ≤ 	2. We can finally obtain M
by using the orthogonal matrix T to change the basis B to the canonical basis of
�d as M = T−1M̃T = TTM̃T . Clearly, M has the same eigenvalues as M̃ and is
symmetric. �
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Lemma B.2. Let M be a symmetric positive definite (d × d)-matrix, p ≥ 1 and a
constant � > 0 be such that �	�d��M� < 1. Then �I − �M� = 1− �	�1��M� and

0 < 1− �	�d��M� = 	�1��I − �M� ≤ 	�d��I − �M� = 1− �	�1��M� < 1�

Besides, �M�p ≤ Kp�M� = Kp	�d��M� for some constant Kp = Kp�d� > 0.

Proof. Let 	is be the eigenvalues of M , so that the matrix I − �M has eigenvalues
1− �	i, i = 1� � � � � d. Since �	�d��M� < 1, then, for all i = 1� � � � � d, 0 < �	�1��M� ≤
�	i ≤ �	�d��M� < 1, implying 1 > 1− �	�1��M� ≥ 1− �	i ≥ 1− �	�d��M� > 0, so
that �I − �M� = maxi �1− �	i� = 1− �	�1��M� < 1. The first two assertions follow.

It remains to prove the last assertion. For x ∈ �d, let R
p
2 = R

p
2�d� =

maxx �=0 �x�p/�x�2 and R2
p = R2

p�d� = maxx �=0 �x�2/�x�p. According to Theorem
5.6.18 from Horn and Johnson (1988),

max
M �=O

�M�p
�M�2

= R
p
2R

2
p = Kp�

Recall that �M�2 = �M� = 	�d��M� and �x�s ≤ �x�r ≤ d1/r−1/s�x�s for any x ∈ �d

and s ≥ r ≥ 1. From the last relation it is easy to get the following bounds: Rp
2 ≤ 1

if p ≥ 2, Rp
2 ≤ d�2−p�/�2p� if 1 ≤ p < 2; R2

p ≤ d�p−2�/�2p� if p ≥ 2, R2
p ≤ 1 if 1 ≤ p < 2.

These bounds imply that Kp ≤ d�p−2�/�2p� if p ≥ 2 and Kp ≤ d�2−p�/�2p� ≤ d1/2 if 1 ≤
p < 2. This completes the proof of the lemma. �

Lemma B.3 (Abel tranformation). Suppose d1� d� k0� k ∈ � and k0 ≤ k. Let Bi be
�d1 × d�-matrices, Ai ∈ �d and Ai =

∑i
j=k0

aj , i = k0� � � � � k. Then

k∑
i=k0

BiAi =
k−1∑
i=k0

�Bi − Bi+1�Ai + BkAk�

Proof. We prove this by induction in k. For k = k0 we simply have Bk0
Ak0

=
Bk0

Ak0
= Bk0

Ak0
and the assertion holds true. Assume that the equality holds for

k = n and let us prove the result for k = n+ 1. We have

n+1∑
i=k0

BiAi =
n∑

i=k0

BiAi + Bn+1An+1 =
n−1∑
i=k0

�Bi − Bi+1�Ai + BnAn + Bn+1An+1

=
n∑

i=k0

�Bi − Bi+1�Ai − �Bn − Bn+1�An + BnAn + Bn+1An+1

=
n∑

i=k0

�Bi − Bi+1�Ai + Bn+1An+1� �
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