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Abstract—This paper presents a streaming approach to solve
the truth estimation problem in crowdsourcing applications.
We consider a category of crowdsourcing applications where
a group of individuals volunteer (or are recruited to) share
certain observations or measurements about the physical world.
Examples include reporting locations of gas stations that remain
operational after a natural disaster or reporting locations of
potholes on city streets. We call such applications social sensing.
Ascertaining the correctness of reported observations is a key
challenge in such applications, referred to as the truth estimation
problem. This problem is made difficult by the fact that the
reliability of individual sources is usually unknown a priori, since
any concerned citizen may, in principle, participate. Moreover,
the timescales of crowdsourcing campaigns of interest can be
as small as a few hours or days, which does not offer enough
history for a reputation system to converge. Instead, recent prior
work, including our own, developed fact-finding algorithms to
solve this problem by iteratively assessing the credibility of
sources and their claims in the absence of reputation scores. Such
algorithms, however, operate on the entire dataset of reported
observations in a batch fashion, which makes them less suited
to applications where new observations arrive continually. In
this paper, we describe a streaming fact-finder that recursively
updates previous estimates based on new data. The recursive
algorithm solves an expectation maximization (EM) problem to
determine the odds of correctness of different observations. We
compare the performance of our recursive EM algorithm to a
batch EM algorithm, as well as to several state-of-art fact-finders
through extensive simulations. We also demonstrate convergence
of the recursive algorithm to the results of the batch version
through a real social sensing experiment. Our evaluation shows
that the proposed approach can process data streams much more
efficiently while keeping the truth estimation accuracy close to
that of the (much slower) batch algorithm. Ours is therefore
the first fact-finder developed with explicit consideration to the
continuous update needs of crowd-sourcing applications.

Index Terms—real-time, truth discovery, recursive expectation
maximization, streaming data, social sensing

I. INTRODUCTION

This paper presents a recursive fact-finding solution to the
truth estimation problem in social sensing. We refer by social
sensing to a broad set of crowdsourcing applications, where
individuals volunteer or are recruited to collect data about the
physical environment. For example, they may report events
of mutual interest or download a cell-phone application to
perform specific sensor data collection and sharing tasks. Due
to the potentially unreliable nature of such unvetted human

sources (and the potential problems with their sensors, if used),
a key challenge in social sensing applications is to assess the
likelihood of correctness of reported data. We call it the truth
estimation problem.

Reputation systems [16] have been successful at assessing
quality of providers (e.g., the reliability of data sources) when
the same providers repeatedly execute transactions that can
be scored by others. In contrast to such scenarios, we are
specifically interested in short-lived crowdsourcing campaigns
(e.g., to support post-disaster recovery and rescue missions,
which may last for only a few days), where anyone can
volunteer and where there is not enough history to accu-
mulate meaningful reputations. For example, consider the
recent severe gas shortage around New York City in the
aftermath of hurricane Sandy. Social networks, such as Twitter
carried tens of thousands of tweets on the availability of gas
at different stations, but the reliability of the corresponding
tweeters remained unknown.

Fact-finder algorithms [25], [27], [36] have been proposed
that use unsupervised machine learning techniques to assess
data reliability directly from multitudes of unreliable claims,
whose sources may not have a known history in advance.
The problem was also explored in data mining literature [12],
[18], [37], with intuitions tracing back to Google’s original
PageRank [3], [23]. These solutions iteratively rank claims
and sources to jointly assess the reliability of both, without
requiring sources to explicitly comment on each other’s per-
formance. Unfortunately, they use batch algorithms, designed
to run on a static dataset. As such, they are not well-suited to
processing streaming data for applications such as crowdsourc-
ing, where new observations continue to arrive over time. The
batch algorithms will either need to operate on a growing data
set as new data arrive (which does not scale), or ignore some
previously computed results and run from scratch on a sliding
recent data window (which does not exploit all available data).

In contrast, the main contribution of this paper is to develop
a recursive fact-finder, based on expectation maximization
(EM) that operates on new data only, as it arrives, updating
previous truth estimates (i.e., estimates of correctness of re-
ported data) in a manner that approximates running an optimal
batch algorithm on the entire augmented dataset. To the best of
our knowledge, the streaming EM scheme proposed in this pa-



per is the first on-line fact-finding approach designed to solve
the truth estimation problem in social sensing applications,
where there is no prior knowledge on source reliability and
no immediate way to verify the correctness of the collected
data. The streaming EM scheme is derived by formulating
an optimization problem (in the sense of maximum-likelihood
estimation) and approximating the optimal solution using
results from estimation theory.

In our evaluation, we study the performance of the new re-
cursive EM scheme by comparing it to a previously-proposed
batch EM-based fact-finder [36] and several other state-of-
art fact-finders [18], [25], [37] through extensive simulations.
The recursive algorithm is shown to have a better performance
trade-off between estimation accuracy and algorithm execution
time than all baselines. We also evaluate the performance
of the recursive EM scheme through a real social sensing
application. The results demonstrate convergence of the re-
cursive algorithm in quality to results of the corresponding
(optimal but much slower) batch EM algorithm if run on the
entire data set. The results of this paper are important because
they allow social sensing applications to estimate data quality
and participant reliability from streaming data on the fly,
even in short-lived crowd-sourcing campaigns with no prior
information on participants.

Finally, it is pertinent to note components that fall out-
side the scope of this work. First, we restrict this work to
improving the data processing algorithm on the back-end.
The mechanisms used on the front-end for data collection
from participants are outside scope. For example, a cell-phone
application might be used to report participants’ observations.
We also do not address security as part of this work and
do not claim the system to be attack-proof. Instead, we
simply contend ourselves with assuming that mechanisms
are in place to increase the cost of identity, sybil and other
attacks, and that the volunteer participants in our applications
(e.g., post-disaster rescue) are generally well-meaning and
have no incentive to disrupt operation. For example, phone
companies already keep track of identities of individual phones
(e.g., for billing purposes), which we can leverage to identify
unique sources. Finally, we assume that campaign participants
operate individually. Hence, to a first degree of approximation,
reports from different sources may be considered conditionally
independent.

With these caveats, the rest of the paper is organized as
follows: We briefly go over the model of the truth estimation
problem in Section II and propose the recursive EM algorithm
in Section III. Evaluation results are presented in Section IV.
We then review the related work in Section V and conclude
the paper in Section VII.

II. TRUTH ESTIMATION IN SOCIAL SENSING

Social sensing addresses the challenge of estimating some
pertinent “state of the world” from reports by human sources.
In this paper, we model the state of the world by a set of
true/false statements (e.g., “The Golden Gate bridge is on
fire”, “The 435 Main Street gas station is out of power”, or

“The 5th Avenue and 34th Street intersection is flooded”).
Such a binary approach, while simple, is a powerful tool
to articulate arbitrarily complex conditions. It is also well-
suited to geotagging campaigns that mark locations of some
conditions of interest (e.g., locations of street flooding after a
thunderstrom). For example, each location may be associated
with a number of Booleans indicating the presence or absence
of different types of damage. A report from a source conveys
one or more claims, each presenting the value of one of these
Booleans. The “ground truth” state is unknown and needs
to be reconstructed as accurately as possible from claims by
different sources, whose reliability is unknown.

More formally, consider a social sensing application model,
where a group of M participants (sources), S1, ..., SM , col-
lectively make observations about N measured Boolean vari-
ables, C1, ..., CN , which are of interest to the application.
We assume, without loss of generality, that the “normal”
state of each (Boolean) variable is negative (e.g., a place
is not damaged). Hence, participants only report when the
positive state of the measured variable (repair is needed) is
encountered. Each source generally reports only a subset of
the variables (e.g., those at the places they have been to).
The goal of truth estimation in social sensing is to jointly
calculate the reliability of participants (i.e., the probability that
a participant reports correct observations) and the correctness
of observations, given only who reported what.

Importantly, in crowdsourcing applications, the observations
from participants don’t come all at once. Instead, updates are
reported over the course of the campaign, lending themselves
better to the abstraction of a data stream arriving from the
community of sources. In our previous work, we developed
a batch EM (expectation maximization) algorithm to solve
the truth estimation problem based on a maximum likelihood
estimation hypothesis [36]. As its name suggests, the batch
EM scheme is designed to run in a batch mode, which is not
suitable for continuously arriving data. This is because, every
time a new report arrives, the batch EM algorithm needs to be
re-run on the whole data set from scratch. Considering such
inefficiency, this paper designs a new fact-finding approach
based on a recursive EM algorithm to update estimation results
on the fly in view of newly arriving data.

Following the terminology of previous work [33]–[36], let
us define a few notations we will use in the following sections.
Let Si denote the ith source and Cj denote the jth measured
variable. Let Xi,j denote whether source Si reports measured
variable Cj . The matrix representing who reported what is
called the observation matrix X , where Xi,j = 1 when source
Si reports that Cj is true, and Xi,j = 0 otherwise. Let Tj
represent the ground truth value of Cj (i.e., Tj is 1 if Cj is
true and 0 otherwise). Participant reliability ti is defined as the
probability that the participant is right in a randomly chosen
measured variable he/she reported. Formally, ti is defined as :

ti = P (Tj = 1|Xi,j = 1) (1)

Let us also define two more important conditional proba-
bilities: ai is the (unknown) probability that source Si reports



a variable to be true when it is indeed true, and bi is the
(unknown) probability that source Si reports a variable to be
true when it is in reality false. Formally, ai and bi are defined
as follows:

ai = P (Xi,j = 1|Tj = 1) bi = P (Xi,j = 1|Tj = 0) (2)

The relationship between ti, ai and bi can be derived by
the Bayes’ theorem:

ai =
ti × si
d

bi =
(1− ti)× si

1− d
(3)

where d is the overall background prior that a randomly
chosen measured variable is true. Note that, this value does
not indicate, however, whether any particular report about a
specific measured variable is true or not. d can be either chosen
from the prior knowledge or jointly estimated in the EM
scheme [36]. Finally, si denotes the probability that participant
Si reports an observation.

Starting with a log-likelihood function that describes the
likelihood of the observed data (i.e., who said what) given
the estimation parameter defined in Equation (2), the batch
EM algorithm converges to the maximum likelihood estimate
of the variables in question (in this case, the truth values
of measured variables and the reliability of sources). The
likelihood function can be given by:

L =

N∏
j=1

{
M∏
i=1

a
SiCj

i (1− ai)(1−SiCj) × d× zj

+

M∏
i=1

b
SiCj

i (1− bi)(1−SiCj) × (1− d)× (1− zj)

}
(4)

where, N and M are the numbers of measured variables and
sources, respectively, zj is 1 if measured variable Cj is true
(and 0 otherwise). The optimal estimation of the parameters
in the batch EM algorithm [36] are given by:

a∗i =

∑
j∈SJi

Zj∑N
j=1 Zj

b∗i =
Ki −

∑
j∈SJi

Zj

N −
∑N

j=1 Zj

(5)

where SJi is the set of measured variables the participant Si

actually observes and Ki is its size. Zj is the probability of
Cj to be true given current estimation and observed data.

In this paper, we design a new streaming fact-finder based
on a recursive EM algorithm to accurately estimate the above
parameters from streaming data.

III. A RECURSIVE FACT-FINDER

In the following subsections, we derive a recursive formula
for our fact-finder (in Section III-A) then summarize the final
algorithm (in Section III-B).

A. The Derivation

In estimation theory, a recursive formula of the EM scheme
estimates parameters of the model in consecutive time intervals
as follows [30]:

θ̂k+1 = θ̂k + {(k + 1)Ic(θ̂k)}−1ψ(Xk+1, θ̂k) (6)

where θ̂k is the estimation parameter by observing the data up
to the time interval k, I−1

c (θ̂k) represents the inverse of the
Fisher information (i.e., Cramer Rao lower bound (CRLB))
of the estimation parameter at time k and ψ(Xk+1, θ̂k) is the
score vector of the observed data at time interval k + 1 w.r.t
the estimation parameter θ̂k. This formula basically provides
us a recursive way to compute the estimation parameter in
the new time interval (i.e., θ̂k+1) based on its estimation
value in the previous time interval (i.e., θ̂k), the CRLB of the
estimation (i.e., I−1

c (θ̂k)) and the score vector of the updated
data observed in the new interval (i.e., ψ(Xk+1, θ̂k)). Based
on our previous results of the EM scheme, θ̂k is the estimation
vector defined as θ̂k = (âk1 , â

k
2 , ...â

k
M ; b̂k1 , b̂

k
2 , ...b̂

k
M ). I−1

c (θ̂k)
and ψ(Xk+1, θ̂k) are given by [35]:

I−1
c (θ̂k)i,j =


0 i 6= j
âk
i×(1−âk

i )
N×d i = j ∈ [1,M ]

b̂ki×(1−b̂ki )
N×(1−d) i = j ∈ (M, 2M ]

(7)

and

ψ(Xk+1, θ̂k)i,j (8)

=


0 i 6= j∑N

j=1 Ẑj
k+1

(
SiCj

âk
i

− 1−SiCj

1−âk
i

) i = j ∈ [1,M ]∑N
j=1(1− Ẑj

k+1
)(

SiCj

b̂ki
− 1−SiCj

1−b̂ki
) i = j ∈ (M, 2M ]

where Ẑj
k+1

is the probability of the jth measured variable
to be true in the k+1 time interval. Plugging Equation (7) and
(8) into (6), the recursive formula to update the estimation
parameters is given by:

âi
k+1 = âi

k +
1

Nd(k + 1)
×[ ∑

j∈SJk+1
i

Ẑj
k+1

(1− âik)−
∑

j∈ ¯SJi
k+1

Ẑj
k+1

âi
k
]

b̂i
k+1

= b̂i
k
+

1

Nd(k + 1)
×[ ∑

j∈SJk+1
i

(1− Ẑj
k+1

)(1− b̂i
k
)−

∑
j∈ ¯SJi

k+1

(1− Ẑj
k+1

)b̂i
k
]

(9)

From above equations, we observe that the estimation of the
parameters related with reliability of each source in current
time interval can be computed from their estimations in the
past and the observed data in the new interval. Moreover,
Ẑj

k+1
is unknown and can be estimated by its approximation

Z̃j
k+1

, which can be computed as follows:



Z̃j
k+1

= f(ãi
k+1, b̃i

k+1
, Xk+1)

=
Ak+1

j × d
Ak+1

j × d+Bk+1
j × (1− d)

where

Ak+1
j =

M∏
i=1

(ãi
(k+1))SiCj

k+1

(1− ãi(k+1))(1−SiC
k+1
j )

Bk+1
j =

M∏
i=1

(b̃i
(k+1)

)SiCj
k+1

(1− b̃i
(k+1)

)(1−SiC
k+1
j )

ãi
k+1 = âi

k × sk+1
i

ski
b̃i

k+1
= b̂i

k
× sk+1

i

ski
(10)

where sk+1
i and ski are the probabilities of source Si to report

a measured variable at time interval k+1 and k. For the above
equation to hold, we assume source reliability changes slowly
over time and can be treated unchanged over two consecutive
time intervals.

Based on the definition of Z̃j
k+1

, we can further represent
it as a function of âik, b̂i

k
, Xk, Xk+1, the values of which we

know at time interval k + 1:

Z̃j
k+1

= g(âi
k, b̂i

k
, Xk, Xk+1)

=
Ck+1

j × d
Ck+1

j × d+Dk+1
j × (1− d)

where

Ck+1
j =

M∏
i=1

(âi
k × sk+1

i

ski
)SiCj

k+1

(1− âik ×
sk+1
i

ski
)(1−SiC

k+1
j )

Dk+1
j =

M∏
i=1

(b̂i
k
× sk+1

i

ski
)SiCj

k+1

(1− b̂i
k
× sk+1

i

ski
)(1−SiC

k+1
j )

(11)

Plugging Equation (11) into Equation (9), we can get the
following recursive computation of the estimation parameters:

âi
k+1 = âi

k +
1

Nd(k + 1)
×[ ∑

j∈SJk+1
i

g(âi
k, b̂i

k
, Xk, Xk+1)(1− âik)

−
∑

j∈ ¯SJi
k+1

g(âi
k, b̂i

k
, Xk, Xk+1)âi

k
]

b̂i
k+1

= b̂i
k
+

1

Nd(k + 1)
×[ ∑

j∈SJk+1
i

(1− g(âik, b̂i
k
, Xk, Xk+1))(1− b̂i

k
)

−
∑

j∈ ¯SJi
k+1

(1− g(âik, b̂i
k
, Xk, Xk+1))b̂i

k
]

(12)

Additionally, we can also compute the updated correctness
of measured variables (i.e, Ẑj

k+1
) as follows:

Ẑj
k+1

= f(âi
k+1, b̂i

k+1
, Xk+1) (13)

where function f is the same as the one in Equation (10).
This gives us the recursive equations to compute the esti-

mation parameters of our model in the current time interval
based on the estimations from the previous time interval and
the observed data up to now. Therefore, we can utilize (12)
to keep track of the estimation parameter of the sources that
report new observations consecutively over time. We also note
that the estimation parameter change of the updated sources
will affect the credibility of measured variables they report,
which in turn will affect the credibility of other sources
asserting the same measured variable. We call this credibility
update propagation “Ripple Effect”. To capture such an effect,
we do a simple trick: only run one EM iteration after applying
the recursive formula (as compared to running the full version
of EM from scratch). This turns out to be an efficient heuristic
based on the following observations: i) the recursive estimation
already offers us a reasonably good initialization on the
estimation parameter; ii) the credibility change of sources by
a few updates in a short time interval is usually slight. This
allows the recursive EM to converge much faster than the batch
algorithm that starts from a random point.

B. The Final Algorithm

Algorithm 1 Recursive Expectation Maximization Algorithm
1: while new update Xk+1 arrives do
2: for i = 1 : M do
3: compute âi

k+1, b̂i
k+1

based on Equation (12)
4: update âi

k, b̂i
k

with âi
k+1, b̂i

k+1

5: end for
6: for j = 1 : N do
7: compute Ẑj

k+1
based on Equation (13)

8: end for
9: run one EM iteration to capture the “ripple effect”

10: Let Zr
j = the value of Ẑj

k+1
after the iteration

11: Let ari = the value of âik+1after the iteration
12: Let bri = the value of b̂i

k+1
after the iteration

13: for j = 1 : N do
14: if Zr

j ≥ 0.5 then
15: Cj is true
16: else
17: Cj is false
18: end if
19: end for
20: for i = 1 : M do
21: calculate tri from ari , bri based on Equation (3)
22: end for
23: k = k + 1
24: end while

In summary of the recursive EM algorithm derived above,
the psuedocode of the algorithm is given in Algorithm 1. The
algorithm runs when a new update Xk+1 arrives and it first
computes the recursive update on the estimation parameter
(i.e., âik+1, b̂i

k+1
) based on Equation (12). The correctness

of measured variables are consequently updated from the
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Figure 1. Algorithm Performance versus Number of Participants

estimation parameters based on Equation (13). The recursive
algorithm runs one EM iteration to capture the “ripple effect”
of the credibility prorogation as we discussed in the previous
subsection. After that, we decide the truthfulness of each
measured variable Cj at current time slot based on the updated
value of Ẑj

k
(i.e., Zr

j ). We can also compute the reliability of

each source from the updated values of âik+1, b̂i
k+1

(i.e., ari
and bri ) based on Equation (3).

IV. EVALUATION

In this section, we evaluate the performance of the proposed
recursive EM algorithm compared to the batch EM algorithm
and three state-of-art fact-finders; namely, Sums [18], Average-
Log [25] and Truthfinder [37]. For the batch EM algorithm,
there are two ways for parameter initialization: one way is
to statically initialize the estimation parameters based on the
observed data and run EM from scratch (denoted as batch EM-
S) [36] and the other way is to use the values computed from
the previous updates for the current initialization (denoted
as EM-P). Below, We first evaluate estimation accuracy and
algorithm execution time through an extensive simulation
study. The recursive EM algorithm is shown to achieve a better
performance tradeoff compared to the batch EM algorithm and
other state-of-art baselines. Then, we empirically demonstrate
convergence of the recursive EM algorithm to results of the

(optimal but slower) batch EM algorithm through a real-world
social sensing application.

A. Simulation Study

We begin by evaluating the performance of the proposed
recursive EM algorithm in simulation by measuring (i) the
accuracy of participant reliability estimation, (ii) the false
positive and false negative rates (i.e., claims misclassified as
true or false), and (iii) the average time the algorithm takes to
process an update in different conditions.

We built a simulator in Matlab 7.10.0 that generates a ran-
dom number of participants and measured (Boolean) variables.
A random probability Pi is assigned to each participant Si rep-
resenting his/her reliability (i.e., the ground truth probability
that they report correct observations). A “reporting rate” of a
source is defined as the probability that the source reports
an observation at a given time slot, reflecting the source’s
willingness to report. At a given time slot, for each participant
Si, the simulator decides whether or not the participant reports
an observation based on its reporting rate. Each reported
observation from Si has a probability ti of being true (i.e.,
reporting the value of a variable correctly) and a probability
1−ti of being false. We let ti be uniformly distributed between
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Figure 2. Algorithm Performance versus Participant Chat Rate

0.5 and 1 in our experiments1. The fact-finder is executed
as reports arrive to update estimates of participant reliability
and truth values of reported data. Each point on the following
curves is an average of 50 experiments.

In the first experiment, we evaluated the performance of
recursive EM, the batch EM, and other baselines while varying
the number of participants in the system. The total number
of reported variables was set to 2000, half of which were
reported correctly. The reporting rate of participants was fixed
at 0.5. The number of participants was varied from 60 to 150.
We simulated 100 time slots for the data stream generation.
The observation updates of the last 20 slots were used to
evaluate the algorithm performance. Reported results were
averaged 50 experiments that differ in participant reliability
distributions. Results are shown in Figure 1. Observe that the
recursive EM algorithm takes the shortest time to process an
update while keeping the estimation accuracy (in terms of
both participant reliability estimation and measured variable
classification) very close to the batch EM algorithm.

The second experiment compares the recursive EM to base-
line algorithms when the source reporting rate changes from
0.1 to 1. Reported results are averaged over 50 experiments.
The results are shown in Figure 2. We observe that the

1In principle, there is no incentive for a participant to lie more than 50%
of the time, since negating their statements would then give a more accurate
truth

recursive EM algorithm continues to achieve a better trade-off
between estimation accuracy and execution time: it runs fastest
while offering comparable quality to the batch algorithm.
Note also that both estimation accuracy and execution time
of the studied algorithms improve as the source reporting rate
increases. The reason is that a higher reporting rate leads to
more data, which eventually allows faster convergence of the
algorithm to a more accurate point.

In the third and last experiment, we examine the effect of
changing the measured variable mix on the performance of all
algorithms. We fixed the total number of measured variables
to be 2000 and vary the ratio of the number of correctly
reported measured variables to the total number of reported
variables from 0.1 to 0.6. The number of participants is set
to 120 and source reporting rate is fixed at 0.5. Reported
results are averaged over 50 experiments. The results are
shown in Figure 3. As before, we observe that the recursive
EM algorithm has the shortest execution time and does almost
as well as the batch EM algorithm.

The simulation results show that the proposed recursive EM
algorithm succeeds at offering similar estimation accuracy to
its best batch counterpart while running significantly faster.

B. A Real World Case Study

In this section, we evaluate the performance of the proposed
recursive EM algorithm compared to the batch EM algorithm
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Figure 3. Algorithm Performance versus Ratio of Correctly Reported Measured Variables

through a real world social sensing application. The applica-
tion targets at finding the free parking lots on the campus of
University of Illinois at Urbana-Champaign (UIUC). The “free
parking lots” are defined as the parking lots that are free of
charge after 5pm daily in this application. The goal here was
to see if our recursive EM algorithm can track the performance
of the batch EM algorithm and correctly find the real locations
of free parking lot on campus. Specially, we selected 106
parking lots on campus and asked volunteers to mark the
ones they believe as “Free”. Participants marked those parking
lots they have been to or are familiar with. We observe that
various types of parking lots exist on campus: enforced parking
lots with time limits, parking meters, permit parking, street
parking, etc. Different parking lots have different regulations
for free parking. Moreover, instructions and permit signs often
read similar and easy to miss. Hence, participants are prone to
make mistakes in their marks. For the purpose of evaluation,
we went to those selected parking lots and manually collected
the ground truth.

In the experiment, 30 participants were invited to provide
their “free parking lot” marks on the 106 parking lots (46
of which are indeed free). There were 340 marks collected
from participants in total. We then ran both the recursive and
batch EM algorithms on the collected marks and compared
their performance on identifying the correct free parking lots.
Results are shown in Figure 4. We observe that the recursive

EM algorithm is able to track the performance of the batch
EM algorithm and converge to the number of free parking
lots found by the batch algorithm as the amount of marks
used by the algorithm increases. This result verified the nice
convergence property of the developed recursive EM algorithm
using real world data.

It should be emphasized that our choice of application is
intended to be a proxy for other more pertinent uses of our
fact-finding tool that are harder to experiment with in a paper
(due to absence of ground truth). For example, “free parking
lots” may stand for “operational gas stations” in a post-disaster
scenario (such as the New York gas crisis in the aftermath of
recent hurricane Sandy).

We should also highlight that we chose an application where
ground truth does not change. This is intentional, in order to
favor our competition (the batch algorithms) that operate on
the entire data set at once and hence have difficulty handling
dynamic changes. We expect the advantages of our recursive
algorithm to be more pronounced if ground truth did change
during the experiment (e.g., a gas station runs out of gas), since
it is easy to adapt them to give more weight to more recent
measurements. Due to space limitations, we do not include an
evaluation of such more favorable scenarios to the recursive
scheme.

Finally, we should note that we kept our data sets small
enough such that running the batch algorithm upon every



update remained feasible (for evaluation purposes, where each
point needs 50 runs). The real advantage of the recursive
scheme, however, becomes clear when the input volume is
scaled up. For example, hundreds of thousands of tweets may
be received in the aftermath of real disaster events. Interpreting
individual tweets as claims, a recursive fact-finder can rank
the claims by credibility in real-time as events unfold, which
would be much less time consuming than if a batch fact-finder
is re-run continuously as new tweets arrive. Our prior work
presents the results of applying batch fact-finders to Twitter
data [36]; a painfully slow experience which motivated this
work.
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V. RELATED WORK

Social sensing which is also referred to as human-centric
sensing [4], [20], is generally achieved by various kinds of
sensors which are closely attached to humans, either in their
wearable form or in their mobile devices (e.g., cell phones).
A broad overview of social sensing applications is presented
in [1]. Some early applications include CenWits [14], Car-
Tel [15], CabSense [29] and BikeNet [8]. More recent work
has focused on addressing new challenges emerging in social
sensing applications such as preserving privacy of partici-
pants [2], improving energy efficiency of sensing devices [24]
and measuring the sociability of participants and strengthening
their interactions [22], [28]. Examples include privacy-aware
regression modeling, a data fusion technique that produce
the same model as that computed from raw data by prop-
erly computing non-invertible aggregates of samples [2]. E-
Gesture is an energy efficient gesture recognition architecture
that significantly reduces the energy consumption of mobile
sensing device while keeping the recognition accuracy accept-
able [24]. SociableSense is a smart phones based platform
used to measure the sociability of users and foster interactions
among participants by studying their behavior in the office
environment [28]. Nawaz et al. [22] adapted a similar social
sensing system to understand group dynamics and information
flow at building construction sites. Our work complements the
past work by addressing the truth estimation in social sensing
on the fly.

A relevant body of work in the machine learning and
data mining communities performs trust analysis based on
the source and claim information network. Fact-finders are
a class of iterative trust analysis algorithms that estimate
both the credibility of claims and the trustworthiness of the
sources. Examples include Sums [18], TruthFinder [37], the
Investment, PooledInvestment, Average·Log algorithms [25]
and Bayesian Interpretation [32]. Many fact-finders also en-
hance the basic trust analysis models. 3-Estimates [10] rewards
sources that correctly assert highly disputed claims, while
AccuVote [7] considers “source dependence” by effectively
boosting the trustworthiness of independent sources. More
recent works came up with some new fact-finding algorithms
designed to handle domain expertise of information sources,
multi-valued facts of an entity and a subset of known ground
truth of variables. Kasneci et al. [17] proposed a CoBayes
scheme to learn the affinity between users’ expertise and their
statements by mapping them into a common latent knowledge
space. Zhao et al. [40] presented a Bayesian scheme to model
different types of errors made by sources and merge multi-
valued attributes in data integration systems. Yin et al. [38]
provided a semi-supervised approach to find the true values
with the help of (a small amount of) ground truth data. In
contrast, this paper proposed the first on-line fact-finder to
solve the truth discovery problem in social sensing applications
with explicit consideration to continuous data update.

Since people are an indispensable element in social sensing,
some popular attacks originated from human (or source)
interactions are interesting to investigate. Collusion attack is
carried out by a group of colluded attackers who collectively
perform some malicious actions to defraud honest sources or
obtain objective forbidden by the system. This attack could
be mitigated by monitoring the interactions or relationships
among colluded attackers or identifying the abnormal behavior
from the group [19]. Sybil attack is another related attack
carried out by a single attacker who intentionally create a
large number of pseudonymous entities and use them to gain
a disproportionately large influence on the system. This attack
could be mitigated by certifying trust of identity assignment,
increasing the cost of creating identities, limiting the resource
the attacker can use to create new identities and etc. [39]. By
handling reports from colluded or duplicated sources in a way
that takes care of the source dependency, we will be able to
address the above attacks to some extent. For example, by
identifying duplicate sources, we can remove them along with
their reports from the observed dataset, which is expected to
improve the estimation performance. Problems become more
interesting when sources are not just duplicates but actually
linked through the social network [21].

Our work also bears resemblance to reputation systems.
Different types of reputation systems are being used success-
fully in commercial online applications. For example, eBay
is a type of reputation system based on homogeneous peer-
to-peer systems, which allows peers to rate each other after
transactions [13]. Our developed scheme may not be able
to be directly applied to those systems. The reason is: the



structure of a homogeneous peer-to-peer system is commonly
represented by a mesh network graph while the structure
of our scheme is represented by a bipartite network graph
(i.e., sources and measures are in disjoint sets). Amazon
on-line review system represents another type of reputation
systems, where different sources offer reviews on products
(or brands, companies) they have experienced [16]. Customers
are affected by those reviews (or reputation scores) in making
purchase decisions. It turns out that our work fits better into
this type of reputation systems and has the potential to provide
more refined and timely results for the reputation computation.

The recursive expectation maximization (EM) algorithm is
an online version of the EM algorithm where a statistical
approximation procedure is applied to estimate the parameters
in a recursive and adaptive way [30]. The recursive EM has
been used in a wide range of applications with large dynamics
in sensor networks. For example, Guo et al. developed a
methodology based on recursive EM algorithm to optimize
sensor deployment and adaptively estimate the boundary of
sensor locations [11]. Frenkel et al. applied the recursive EM
algorithm in a multiple target tracking scenario and achieved
a linear computational complexity with respect to the target
number in the system [9]. Chung et al. derived a recursive
EM procedure for direction of arrival (DOA) estimation under
a deterministic model and independent Gaussian noise [5]. In
this paper, we proposed a recursive EM algorithm to greatly
reduce the computation overload of our previous iterative
algorithm which runs on a increasing dataset for streaming
data [36]. To the best of our knowledge, this is the first on-
line algorithm that is developed to address truth discovery
challenge in social sensing applications.

VI. LIMITATIONS AND FUTURE WORK

This paper presented a streaming fact-finding approach
to address the truth estimation challenge in social sensing
applications on the fly. Several simplifying assumptions were
made that offer directions for future work.

Participants (sources) were assumed to be independent.
However, in reality, sources might be non-independent or
even collude to mask the truth. For example, in Twitter,
it could be that a large set of individuals report the same
observation not because they independently observed it them-
selves, but because they heard it from a source they trust
(which could in fact be wrong). Several techniques have
been recently developed to discover source dependencies and
copying relationships [6], [7]. Other approaches were shown
to efficiently mitigate the source collusion attack by analyzing
the network or interaction patterns of colluding sources [19].
Additionally, source dependencies could also be inferred from
the underlying social network. An admission controller was
designed to select independent sources for social sensing
applications based on a few distance metrics derived from the
social network topology [31]. It is reasonable to integrate the
above techniques with our streaming fact-finding approach to
effectively handle source dependencies in the future.

In this paper, we did not assume dependencies between
measured variables. However, observations on different vari-
ables may often be correlated. For example, a fire report at
location A in a city might imply a traffic congestion at location
B that is a few blocks away from A. Several approaches
have been proposed to take the underlying relations between
measured variables as prior knowledge [25], [26]. Hence,
we can possibly extend the model of the EM scheme to
incorporate dependencies into the likelihood function. More-
over, all observations are assumed to be equally important
in our model. It is interesting to extend current model to
consider the “difficulty” of making different observations, and
giving more weight to correct reporting of more difficult
obervations. A few techniques have been proposed to consider
the hardness of observations, which may be used together
with our scheme [10]. Additionally, the measured variable
were assumed to be Boolean in this paper. This assumption is
sufficient in many social sensing scenarios, where the existence
or lack thereof a given condition of interest (e.g., litter) can
be represented by the Boolean variable. Our model can be
extended to handle other discrete measured variables (e.g.,
weather in a city can be sunny, rainy, or snowy) by expanding
the number of estimation parameters to cover all possible
states of the variable. The general outline of the derivation
still holds. Having a basic streaming fact-finding algorithm in
place, we shall relax the above assumptions and accommodate
the mentioned extensions in future work.

VII. CONCLUSION

This paper described a streaming fact-finding approach
to address the truth estimation problem in social sensing
applications that allows applications to process streaming data
efficiently. The streaming approach is developed based on a
recursive EM algorithm that computes the estimation parame-
ters by only processing the newly updated data and combining
the results with previous estimates. The performance of the
streaming fact-finder is evaluated through extensive simula-
tions. Results show that a better trade-off between estimation
accuracy and algorithm execution time has been archived by
the new streaming approach compared to the batch EM scheme
and other baselines. Evaluation data from a real social sensing
application are also presented.
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