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Abstract
The metabolism and composition of lipids is of increasing interest for understanding and detecting
disease processes. Lipid signatures of tumor type and grade have been demonstrated using
magnetic resonance spectroscopy. Clinical management and ultimate prognosis of brain tumors
depend largely on the tumor type, subtype, and grade. Mass spectrometry, a well-known analytical
technique used to identify molecules in a given sample based on their mass, can significantly
improve the problem of tumor type classification. This work focuses on the problem of identifying
lipid features to use as input for classification. Feature selection could result in improvements in
classifier performance, discovery of biomarkers, improved data interpretation, and patient
treatment.

I. Introduction
There are approximately 21,000 new cases of brain and spinal cancer diagnosed in the
United States each year, and the overall five-year survival rate is estimated to be 34% [1].
For some types of brain cancer, however, the median survival is less than two years [2], [3].
Clinical management and ultimate prognosis depend largely on the tumor type, subtype, and
grade as evaluated by magnetic resonance imaging (MRI) and tissue histopathology when
available. Biopsied or resected tumor tissue is classified based on the type or subtype of
progenitor cells promoting neoplastic growth, and into risk grades II, III, and IV, based on
characteristic features of malignant proliferation [4], [5]. In this work we focus on the
subtypes astrocytoma and oligodendroglioma which present morphological features of
respectively astrocytes and oligodendrocytes of the glial cell family in the brain. The
survival profile of these subtypes varies greatly, with astrocytoma presenting a higher risk of
malignancy as compared to oligodendrogliomas [1], thus differentiation between these
subtypes is of significance to both direct patient care and research to improve treatments.

The metabolism and composition of lipids is of increasing interest for understanding and
detecting disease processes [6]. Lipid signatures of tumor type and grade have been
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demonstrated using magnetic resonance spectroscopy [7], [8]. In many gliomas, the
phosphatidylinositol lipid pathway is an important factor in cell growth due to mutation-
driven increases in the PI3 kinase enzyme activity, which impedes normal apoptosis -
mechanism of cell death.

Mass spectrometry (MS) is a well-known analytical technique used to identify molecules in
a given sample based on their mass. The analysis of the sample involves two main steps: i)
ionization, and ii) mass analysis. There are a number of different ionization techniques,
including matrix-assisted laser desorption ionization (MALDI), and more recently,
desorption electrospray ionization (DESI). In MALDI-MS, the sample is coated with a
matrix, a light-absorbing organic acid with low molecular weight. The ionization mechanism
in MALDI involves shooting an ultraviolet or infrared laser beam to the compound. The
matrix enhances the desorption and ionization by absorbing the energy from the laser and
producing charged molecules, which in turn are analyzed by the mass analyzer. The output
of the mass spectrometer is a spectrum indicating the mass-to-charge ratio (m/z) of the
molecule on the x-axis and its associated detected relative abundance on the y-axis.

While MALDI-MS is capable of identifying molecules with higher m/z values, the sample
preparation limits its translation to “real-time” application. In DESI-MS, the ionization
involves targeting the sample with a stream of charged solvent droplets. The analyte (i.e.,
the sample to be analyzed) molecules are taken up by the charged solvent and are analyzed
by the mass analyzer. DESI-MS is used to analyze molecules with lower weights including
lipids. However, unlike MALDI-MS, where the desorption and ionization are performed in
the vacuum and involves sample preparation, in DESI-MS the surface ions are produced in
ambient conditions requiring no sample preparation. This property of DESI-MS could be
extremely useful in clinical applications, specifically during surgery, where it is critical to
analyze samples for specific biomarkers (e.g., possible traces of cancer). In [9], authors
discuss the application of DESI-MS for intraoperative analysis of tumors for neurosurgery.

In mass spectrometry imaging, the sample is moved in the x-y plane in the ionization source,
and hence, can analyze specific regions in the sample referred to as pixels. Note that each
pixel from the sample corresponds to a spectrum indicating the relative abundance of
different molecules in the region defined by the pixel. In contrast to profiling molecular
distribution of tissue extracts, in mass spectrometry imaging the morphological features in
the tissue is preserved allowing for visual comparison between the chemical composition of
the tissue and the heterogeneity and the infiltration levels within the tissue.

Mass spectrometry and machine-learning have been used for assessment of cancers from
other organs as well as brain cancer. Ovarian cancer was correctly predicted from serum
samples analyzed with MS using classifiers based on peak-probability and support vector
machines [10], [11]. Prostate samples have also been distinguished by similar techniques
[12]. In our previous work, we have used matrix assisted laser desorption ionization MS
(MALDI-MS) to classify progression of meningioma [13]. With a similar approach, post-
operative DESI-MS analysis showed utility to discriminate gliomas along several axes of the
histopathological criteria used to assess tumor severity, namely type and grade [14], [15].

This work focuses on the problem of identifying lipid features to use as input for
classification. Specifically, we consider the feature selection problem for the classification
of astrocytoma and oligodendroglioma samples using their mass spectrum. Feature selection
could result in improvements in classifier performance as well as in discovery of biomarkers
and improved interpretation of biological data. In the case of tumor subtype classification,
biomarker discovery allows for an improved diagnosis and treatment.
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II. Classification and Feature Selection
In this section, we briefly review the support vector machine (SVM) algorithm and a feature
selection framework which is closely related to SVM.

A. Support Vector Machine Algorithm
The support vector machine algorithm [16] is a sparse kernel algorithm used in classification
and regression problems. Here, we will briefly discuss the SVM framework for the two-class
classification problem. Let the training set be given by x1, x2, … , xN, with target values
given by z1, z2, … , zN, respectively, where  and zn ∈ {−1, 1}, n = 1, 2, … , N.
Moreover, assume that this training set is linearly separable in a feature space  defined by

the transformation ; that is, there exists a linear decision boundary in the feature
space separating the two classes.

To classify a new data point  by predicting its target value z define

(1)

where  is a weight vector and  is a bias parameter. This representation can be

rewritten in terms of a kernel function as , where an, n = 1, 2,
… , N, and b are parameters determined by the training set xn and zn, n = 1, 2, … , N, and
k(·, ·) is the kernel function. The sign of the function y(x) determines the class of x. More
specifically, for a new data point x, the target value is given by z = sgn(y(x)), where sgn

, y ≠ 0, and sgn(0) ≜ 0. In the SVM approach the parameters w and b are chosen such
that the margin, that is, the minimum distance between the decision boundary and the data
points, is maximized. Hence, only a subset of the training data (i.e., support vectors) is used
to determine the decision boundary. It can be shown that the solution to the SVM problem
results in a convex optimization problem, and hence, a global optimum is guaranteed.

In the case where there is an overlap between the two data classes, the SVM algorithm can
be modified by allowing misclassification of data points. In this case the margin is
maximized while penalizing misclassified points. Such a trade-off is controlled by a positive
complexity parameter C, which is determined using a hold-out method such as cross-
validation [16].

B. Recursive Feature Elimination
In this section, we briefly review a feature selection algorithm referred to as recursive
feature elimination (RFE) which is based on the SVM algorithm. Although the RFE
framework can be applied to SVM with a nonlinear kernel [17], here, we consider the SVM
algorithm with a linear kernel.

As discussed above, each data point x resides in a high dimensional feature space , D ⪢
1. However, in studying biological data one observes a high degree of correlation among the
components of x. In addition, x could contain components that do not contribute to the
classification problem and can be regarded as noise (i.e., uninformative features). Hence, it
is desirable to select a subset of components in  and exclusively use them for data
classification. The process of selecting a subset of components in the feature space is
referred to as feature selection. Feature selection could result in improvements in classifier
performance as well as in discovery of biomarkers and improved data interpretation for
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biological data. In the case of tumor subtype classification, biomarker discovery allows for
an improved diagnosis and treatment.

The feature selection problem for high dimensional data is challenging. Using an exhaustive
search method to identify the optimal set of features subject to some model selection
criterion is computationally infeasible for high dimensional feature spaces. In a framework
proposed in [17], SVM is used for feature selection by iteratively removing features (i.e.,
components in the feature space) that are least informative for classification. Specifically, let
w = [w1, … , wD]T denote the weight vector in (1) identified by training the SVM on the
training set as discussed in Section II-A. In the RFE framework, we define the feature index
set , identify components which play the “weakest” role in the SVM
classification and recursively eliminate features and the corresponding components in the

feature space from the data. Specifically, in iteration k, the component  is
eliminated from the feature space, where  is the feature index set in iteration k. In the next
iteration, the SVM algorithm is re-trained on the modified training set and the process
described above is repeated. This process can be repeated until all features in the feature
space are eliminated or some termination criterion is met. See [17] for a detailed discussion.

III. Feature Selection using the Recursive Feature Elimination Framework
In this section, we apply the RFE framework discussed in Section II-B to the problem of
classification of two glioma subtypes, namely, astrocytoma and oligodendroglioma. The
data were collected from research subjects under approved local Institutional Review Board
protocol at the Brigham and Women’s Hospital, Boston, MA. In this study, 29 glioma
samples were acquired from multiple research subjects, with samples of astrocytomas and
oligodendrogliomas and from different grades between II to IV. Here, the term “sample”
refers to one piece of resected tissue and all the spectra acquired from it.

A. Preprocessing of DESI Mass Spectra
Each spectrum contains numerous peaks each corresponding to a specific molecule or a set
of molecules. However, before using the spectra to classify tumor samples into two different
subtypes, preprocessing steps are necessary. First, each spectrum is denoised using the
undecimated wavelet transform (UDWT). Then, the baseline artifact is estimated and
removed in the denoised signal [18].

Next, in the normalization step, individual spectra are rescaled such that the area under the
curve (also referred to as total ion current) for all spectra correspond to some fixed constant
value. In the peak detection stage, peaks are identified by locating local maxima in the
denoised and normalized spectra. The peaks indicate the presence of a molecule or a fraction
of the molecule in the region of the sample corresponding to the spectrum, where its identity
can be determined by the m/z ratio. We used MATLAB Bioinformatic Toolbox for
preprocessing of spectra. See [18-20] for a detailed discussion.

B. Peak Matching
Next, we discuss a feature extraction framework for mass spectrometry data which is also
referred to as peak matching or binning. As discussed earlier, the m/z ratio of each detected
peak in a spectrum indicates the presence of a molecule or a fraction of a molecule in the
region of the sample corresponding to the spectrum. However, the fact that the mass
spectrometer introduces a measurement error merror introduces small shifts in the location of
the peaks in different spectra. As a result, prior to any form of analysis involving a set of
spectra, the peaks in different spectra corresponding to the same molecule (with the same m/
z value) need to be matched.
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In a standard technique in mass spectrometry data analysis, the entire range of m/z ratios is
partitioned into a set of “bins” (each defined by an interval), where each bin is associated
with a unique molecule (or a fraction of a molecule) with a given m/z ratio. Once the bins
are identified, each spectrum is revisited, and based on the m/z ratio of each individual peak,
the peak is assigned to one of the bins. Peaks corresponding to the same bin are assumed to
be associated with the same molecule [18], [21]. This procedure can be regarded as a feature
extraction technique, where the bins serve as features allowing peaks across different spectra
to be analyzed.

Here, we follow the mass clustering framework introduced in [21] to identify the bins of
variable size. The mass clustering framework in [21], which is essentially a variation of the
centroid linkage hierarchical clustering algorithm [22], considers each bin as a cluster of
points, that is, a set of m/z ratios. The algorithm starts by considering singleton clusters
(each m/z ratio is a cluster). Next, in each iteration, new clusters are formed by merging
clusters with minimum inter-cluster distance. See [22] for a detailed discussion. Note that
contrary to the distance function given in [21], where the measurement error is a function of
the measured mass, we use an absolute measure of distance to define the mass distance
function. This is due to the fact that the mass analyzer used in this study has a measurement
error approximated to be constant for the m/z range between 200.08 and 1000.

C. Identified Features
Next, we apply the RFE framework presented in Section II-B to the classification problem
involving two glioma subtypes, namely, astrocytoma and oligodendroglioma. Here, we
perform feature selection and concurrently evaluate the classifier’s performance. In order to
assess the performance of the SVM classifier, a k-fold cross-validation method is used [22].
Specifically, the collection of all available samples is partition into k subsets. The SVM
classifier is trained on k − 1 subsets and tested on the remaining subset. This process is
repeated k times so that the classifier is tested on all available partitions. In each run of
cross-validation, the RFE is applied to the training set.

For the mass spectrometry data set a total of 821 bins of size less than 1 m/z were identified,
that is, each spectrum resides in a 821-dimensional space. The average accuracy for the
classification of astrocytoma and oligodendroglioma mass spectrometry samples using an
SVM classifier with a linear kernel is given in Figure 1, where we used a 4-fold cross-
validation. We notice in Figure 1 that the classifier performance starts degrading at iteration
680 of the RFE framework. Note that the set of selected features by the RFE framework is
not necessarily the same in each run of cross-validation. The set of features retained by the
RFE framework in iteration 680 for all 4 cross-validation runs was chosen for further
analysis.

In order to identify significant features, a histogram of the selected features (i.e., m/z values)
for all 4 runs of cross-validation is computed. The histogram is given in Figure 2 and a list
of m/z values which have appeared at least 3 times (out of 4 possible appearances) is given
in Table II.

D. Discussion
In this section, we underline the significance of the features selected in the classification
problem involving astrocytomas and oligodendrogliomas from a biochemical perspective.
Under the experimental DESI mass spectrometry conditions used for tissue analysis, the
majority of the molecules extracted and detected constituted of free fatty acids,
corresponding dimers, and lipids. In previous work, we identified some lipids that
discriminated astrocytoma grades by qualitative assessment of imaging spectra, but the

Gholami et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2013 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



approach was limited for the assessment of glioma subtype [14]. The general observation
was that sulfatides appeared to have discrimination power as they were typically observed
from astrocytomas and absent in oligodendriogliomas, but their absence from astrocytomas
grade IV prevented us from drawing such conclusions.

In a follow-up study [15], we observed that the lipid profile of a grade III astrocytoma
contains lipid species of all glycerophosphoserines (PS), glycerophosphoinositols (PI), and
sulfatides (ST) classes, whereas the grade III oligodendroglioma shows a distinct profile of
lipid species with PS(40:4) m/z 838.3, and PI(38:4) m/z 885.5 present at much higher
relative abundances than observed in the pure astrocytoma. Using a combination of in-house
programs and commercial software solution (ClinProTools), we were able to classify
subtypes of gliomas using SVM, but have found considerable limitations in data pre-
processing workflow and feature selection. The approach presented in this paper provides a
solution to this problem by providing a framework to systematically select relevant features
for classification.
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Fig. 1.
Average classification accuracy of the SVM classifier.
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Fig. 2.
Histogram of the selected features identified by the RFE framework.
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TABLE I
Recursive Feature Elimination
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