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Abstract—This paper is concerned with the distributed re-
cursive filtering of cyber-physical systems consisting of a set of
spatially distributed subsystems. Due to the vulnerability of com-
munication networks, the transmitted data among subsystems
could be subject to deception attacks. In this paper, attackers
do not have enough knowledge of the full network topology and
the system parameters and therefore cannot carry out stealth
attacks. For this scenario, a defense strategy dependent on the
received innovation is proposed to identify the occurring attacks
as far as possible. In light of identified attacks, a novel distributed
filter is constructed and its gain is designed via a set of recursive
formulas on the upper bound of covariance of filtering errors. The
utilization of upper bound is to avoid the calculational challenge
of cross-covariance matrices and realize the requirement of
distributed implementation, simultaneously. Furthermore, the
developed scheme only depends on the neighboring information
and the information from the subsystem itself, and thereby
satisfying the requirement of the scalability. Finally, a standard
IEEE 39-bus power system is utilized to verify the effectiveness
of the proposed filtering scheme.

Index Terms—Cyber-physical systems; distributed filtering;
security defenses; deception attacks; power systems.

I. INTRODUCTION

Cyber-physical systems (CPSs), one of the cornerstones

in the era of Industry 4.0, are large-scale, geographical-

ly dispersed, networked systems, in which physical sen-

sors/controllers and software components are deeply inter-

twined to implement real-time monitoring and control. The

main merit of such systems is that integrate physical entities

with cyber networks provides greater autonomy, efficiency,

functionality and reliability, as well as adaptability [1]–[3].

As a new research frontier, they are being widely promoted

by governments and industry around the world and represen-

tative systems include distributed energy resources, intelligent

transportation networks, gas/water distribution networks, and

unmanned factories [4], [5]. In order to describe the character-

istic of complex coupling of subsystems, typical CPSs can be

modeled as large-scale systems or discrete sequential systems

when ignoring the function of cyber layers. It is worth noting

that the inherent coupling among subsystems is difficult to be

completely decoupled, which results in the critical challenge to
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guarantee the requirement of scalability, that is, the complexity

of parameter design is almost no effect from the increased

scale of CPSs. Generally speaking, the small gain condition,

the game theory and the arithmetic mean-geometric mean

inequality are some considerable approaches to realize the

easy-to-implement design of expected gain parameters.

Distributed filtering plays a critical role in performing real-

time monitoring and control in the area of CPSs, especial-

ly in power distribution grids and process control systems

[6]–[8]. Some representative approaches, such as consen-

sus/diffusion/distributed Kalman filtering as well as H∞ fil-

tering, have been developed in the literature. For instance, a

consensus-based Kalman filtering has been proposed in [9]

to carry out the dynamic state estimation for the purpose of

real-time monitoring of power systems, and developed in [8]

to estimate the slab temperature distribution in a hot rolling

process monitoring system. Furthermore, a diffusion Kalman

filtering has been designed in [10] for distributed hybrid power

state estimation, where an auto-encoder technique has been

employed to overcome the challenge from the data dimension-

ality in mixed measurements. Moreover, a distributed Kalman

filtering relying on differences among neighbors’ prediction

has been designed to estimate the operating condition of

renewable microgrids in [11] for the case of reliable channels

and in [12] for the case subject to packet losses, and the

corresponding convergence conditions have been analyzed

simultaneously. It is worth mentioning that a distributed filter

only using local data can effectively deal with the challenges

from both communication latency and communication cost

existing in a central paradigm. In other words, instead of all-

to-all or all-to-one (i.e. centralized fusion) communication, the

information only needs to be exchanged among neighbors,

who are usually sparsely deployed in a predetermined region.

In comparison with the centralized system over sensor

networks [13], the estimated states and/or covariance matrices

from neighboring subsystems in distributed CPSs have to take

part in the evolution of filter dynamics via interconnection

[14]. This kind of structure leads to the sensibility to abnormal

neighboring information even if some compensation schemes

are employed. Unfortunately, data collection or transmission in

practical systems could be incomplete or even unreliable due

to the vulnerability of shared communication channels without

enough capability or defense. That is to say, the resultant open

network makes distributed CPSs vulnerable to the destruction

coming from cyber-attacks [15]–[18]. This paper only focuses

on deception attacks, under which adversaries have the ca-

pability of overhearing and modifying the information of data
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packets in cyber-layers [19]. More specifically, we assume that

attackers have no sufficient knowledge of full network topol-

ogy and system parameters and therefore cannot implement

undetectable attacks or stealth attacks [20]. Furthermore, the

purpose of attacks is to give rise to either physical or economic

impacts on CPSs by making filter’s output unreliable values

about the system operator. As a result, it is of great significance

to design a suitable filter structure with a defense mechanism

and develop a corresponding filtering algorithm that facilitates

the implementation of target monitoring in a reliable manner.

In the framework of Kalman filtering, the implementation

of filtering algorithms for distributed CPSs may depend on

the estimate, the covariance (or its upper bound), or/and

the innovation coming from neighboring subsystems. When

cyber-attack is a concern, much progresses have been made

on recursive filtering [21], [22], attack scheduling [23], [24]

and attack detection [25]. In contrast with research on the

delectability of attacks or the optimal attack allocation, we

should take designed filters and attack detectors as a w-

hole from the conception of system theory to ensure proper

monitoring and operation of CPSs. It naturally leads to that

the designed defense strategies should be realizable from the

engineering point of view. That is, its parameter can be easily

determined and the calculation burden is small such that the

defense rule can be performed in time via general processors.

It is noteworthy that residual-based detectors, such as the

most prominent χ2 detectors, are capable for the consid-

ered scenario. Surely, other model-based detectors, such as

CUSUM detectors [26], likelihood ratio detectors [27] as well

as graphic-based detectors [28], could be suitable especially

for the scenario of stealth attacks if ignoring the limitation of

the real-time and the communication burden.

Recalling the distributed filtering of CPSs modeled by large-

scale systems,there is no appropriate compensation scheme to

deal with the impact from the covariance subject to cyber-

attacks so far. As such, a conservative strategy should be

developed to enhance the reliability of designed filtering

algorithm in the presence of deception attacks. Obviously, it

is nontrivial to design the desired filter with attack detection

to satisfy the requirement of scalability due mainly to the

complex coupling among subsystems, which could not be

decoupled into some independent subsystems. Summarizing

the above discussions, in this paper, we focus on the distributed

recursive filtering of CPSs with attack detection. The main

contributions are highlighted as follows: 1) Via a designed

attack detector, a distributed filter with a novel structure

is designed in order to enhance the capability of dealing

with unreliable information transmission due to deception

attacks; 2) In light of the characteristic of χ2 distribution,

an upper bound of the filtering error covariance is recursively

calculated by the solution of a Riccati-like difference equation;

3) A distributed design scheme in a scalable way is developed

by resorting to a gradient-based method and the corresponding

upper bound is suppressed via the designed gains; And 4) a

standard IEEE 39-bus power system is utilized to verify the

effectiveness of proposed filtering scheme.

The rest of this paper is organized as follows. Section II

briefly introduces the problem under consideration. In Section

TABLE I
INDEX OF SYMBOLS

Notations Descriptions

xi,k The state of subsystem i

x̂i,k The estimation of state xi,k
zi,k The innovation of subsystem i

Pi,k The covariance of filtering errors of filter i

Πi,k An upper bound of Pi,k

x̂r
ij,k

Data on x̂j,k received by neighboring filter i

zr
ij,k

Data on zj,k received by neighboring filter i

Πr
ij,k

Data on Πj,k received by neighboring filter i

θψz
ij,k

The malicious data added in zj,k

θψx
ij,k

The malicious data added in x̂j,k

θψ
p

ij,k
The malicious data added in Πj,k

θ The size of malicious data

Θx
ij , Θz

ij The covariance of ψx
ij,k

and ψz
ij,k

Θlp
ij , Θrp

ij The column and row covariance of ψ
p

ij,k

Qi The covariance of process noises wi,k

Ri The covariance of measurement noises νi,k
Ni The set of neighbors of subsystem i

ςi The number of neighbors of subsystem i

III, a distributed design scheme with a scalable form is

proposed in light of the minimized upper bound of filtering

error covariance. Section IV provides a real application on

power systems to validate the usefulness of obtained results.

Finally, some conclusions are stated in Section V.

Notation The notation used here is fairly standard ex-

cept where otherwise stated. R
n denotes the n dimension-

al Euclidean space. Nm stands for the positive integer set

{1, 2, · · · ,m}. The notation A ≥ B (respectively, A > B),

where A and B are symmetric matrices, means that A−B is

positive semi-definite (respectively, positive definite). Finally,

E{ω} denotes the expectation of stochastic variable ω, and

P{ω} represents the occurrence probability of event ω.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, the pair G = (V , E) is employed to describe

the topology of CPSs consisting of a set of interconnected

subsystems, where V = {1, 2, · · ·m} and E ⊆ V×V stand for

the sets of subsystems and interconnected edges. If there exists

an edge (i, j), the subsystem j is called as a neighbor of the

subsystem i. Furthermore, the general notations are provided

in Table I.

A. The plant of interest

Let us investigate a class of CPSs consisting of m intercon-

nected subsystems, whose dynamics is described by

xi,k+1 = Aiixi,k +
∑

j∈Ni

Aijxj,k + wi,k (1)

with measurements

yi,k = Cixi,k + νi,k, i ∈ Nm (2)

where xi,k ∈ R
nx is the state of target subsystem i that cannot

be observed directly, yi,k ∈ R
ny is the measurement output

from sensor i, and {wi,k}k≥0, and {νi,k}k≥0 are independent

and identically distributed (i.i.d) random sequences obeying
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Gaussian distribution with zero mean and covariance Qi and

Ri. Additionally, we assume that all stochastic variables and

the initial state xi,0 are mutually independent. Aii, Aij and

Ci are known matrices with compatible dimensions.

Considering the distributed characteristic, the following

filter, called as filter i, is constructed:

x̂i,k+1 = Aiix̂i,k +Kii,kzi,k

+
∑

j∈Ni

Aij x̂j,k +
∑

j∈Ni

Kij,kzj,k (3)

where Kii,k and Kij,k are the filter gains to be designed.

In what follows, we define the corresponding filtering error

covariance:

Pi,k = E{(xi,k − x̂i,k)(xi,k − x̂i,k)
T }. (4)

Under the framework of distributed Kalman filtering, filter i

usually needs to send its estimate x̂i,k, innovation zi,k and

covariance Pi,k (or its upper bound) to its neighbors at each

time step for the purpose of implementation.

Remark 1: It is worth noting that the model (1) is a very

general form and has been widely utilized to model various

CPSs, such as power systems, automation processes, and series

systems [29]–[32]. For example, in an array of masses, the

elements of xi,k consist of the horizontal and vertical velocities

and displacements of masses [29], where the displacements

are with respect to a given equilibrium position in the plane.

For multiple maneuvering targets, the elements of xi,k are the

position coordinates and the corresponding velocities along X-

and Y -axes [30]. Furthermore, the state vector xi,k is selected

as ( ∆wi,k ∆Pti,k ∆Pgi,k ∆P i
tie,k )T in [14] in power

systems, where ∆wi,k, ∆Pti,k, ∆Pgi,k and ∆P i
tie,k describe,

respectively, the deviation of frequency, generator mechanical

power, turbine valve position and the net tie-line power flow,

or selected as ( Vi,k Iti,k ΦV,k ΦI,k ΨV,k ΨI,k )T in

[31], where Vi,k, Iti,k, ΦV,k, ΦI,k, ΨV,k and ΨI,k denote,

respectively, the load voltage at point of common coupling,

the load current, the dynamics of primary control (the third

and fourth elements), and the dynamics of secondary voltage

controllers (the last two elements).

Remark 2: In the model (1), Aij combining with the topol-

ogy G reflects the physical connection of spatially distributed

subsystems in CPSs. As such, in comparison with traditionally

distributed filtering over sensor networks, the estimate x̂j,k
from neighbors of subsystem i is indispensable to guarantee

the filter’s implementation, which results in that the covariance

matrix (or its upper bound) needs to be transmitted as well. On

the other hand, different from the physical coupling of CPSs,

the topology G in (3) describes the communication among

filters and therefore the exchanged data could suffer from

cyber-attacks. This kind of characteristic is clearly disclosed

in Fig. 1 to be further discussed in the following subsection.

B. Cyber-attacks and a detection strategy

Due to the vulnerability of communication networks, the

adversary may overhear and modify the information in the

transmitted data packets in order to yield a larger estimation

error in supervisory units, which will produce some negative

impacts on the operation of systems [33]. In this paper, we

only consider the case that attackers do not have knowledge

of full network topology and system parameters. In other

words, they cannot carry out stealth attack [20]. A schematic

block diagram of CPSs under deception attacks is shown in

Fig. 1. Specifically, we assume that attackers can overhear the

information transmitted by unsecured channels and randomly

modify them by adding malicious data θψx
ij,k, θψz

ij,k, and

θψ
p
ij,k into three transmitted data x̂j,k, zj,k and Pj,k. Here,

θ is a given constant quantifying the size of malicious data,

and ψx
ij,k ∈ R

nx , ψz
ij,k ∈ R

ny and ψ
p
ij,k ∈ R

nx×nx are zero-

mean white Gaussian variables with covariance Θx
ij , Θz

ij , Θlp
ij ,

and Θrp
ij . Furthermore, random variables ψx

ij,k, ψz
ij,k and ψ

p
ij,k

are mutually independent at any instants.

Deception 
attacks

Filter i

Receiver

Malicious data Distributed filters

Distributed filters

Detector

Received data

Transmitted data

Sensor j

Sensor i

Filter j

Subsystem j

Receiver

Detector

CPSs

Subsystem i

CPSs

Channels
Channels

Fig. 1. A schematic block diagram of CPSs under deception attacks.

In what follows, for the purpose of description, we introduce

a binary variable ξij,k (j ∈ Ni) to indicate whether the

attackers launch the attack on data transmitted from filter j

to filter i:

ξij,k =

{

1, Data from j to i subject to attacks;
0, Otherwise.

(5)

and further assume that its statistical characteristic is P{ξij,k =
1} = ξ̄.

With the help of the introduced binary stochastic variable,

the received data by filter i from filter j are described by










x̂rij,k = x̂j,k + θξij,kψ
x
ij,k,

zrij,k = zj,k + θξij,kψ
z
ij,k,

P r
ij,k = Pj,k + θξij,kψ

p
ij,k.

(6)

In this paper, a detection strategy dependent on both zrij,k
and a predetermined threshold α is employed to improve the

security of proposed distributed filter. To identify the attack,

let us first introduce a value function ϕ(·):
ϕ(zrij,k) = 1− exp

(

− (zrij,k)
TR−1

j zrij,k
)

. (7)

Then, the following indicator function

ϑij,k =

{

0, α ≤ ϕ(zrij,k),

1, otherwise,
(8)
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is adopted to indicate whether attacks occur. Specifically, we

claim that an attack to the communication between filter i and

filter j occurs when ϑij,k = 0. Additionally, for the conve-

nience of analysis, we denote ϑii,k = 1 for any instants. It

is well known that zTj,kR
−1

j zj,k obeys the χ2 distribution with

degree of freedom ny , and the corresponding distribution table

can be easily obtained. Therefore, for any given probability p,

we can easily obtain αp such that P{zTj,kR−1

j zj,k < αp} > p

and then calculate α = 1− exp(−αp).
According to above analysis, the adopted model is essential-

ly the well-known χ2-detector, which keeps the Gaussianity

of filtering error dynamics [34] and hence possesses the irre-

placeable superiority in performance analysis. Let us further

disclose the reason of this kind of selection in comparison

with existing detection approaches. First, detectors based on

weighted least square are also χ2-detectors essentially and can

further generate cumulative-sum detectors [26] via detecting a

change in the distribution, which could be the presence of a

large detection delay; Second, detectors based on a Kullback-

Leibler distance [35] are suitable for quasi-static systems

and highly depend on the probability distribution of ideal

measurements; Third, detectors based on Bayesian inference

[36] have to calculate the filter gains in real-time and reveal the

disadvantage in time complexity when the dynamical system

is a concern. As such, for the case of no-stealth attacks, the

employed detector should be the best one. Finally, more attack

models can be found in [37] and corresponding detectors are

not surveyed due to the limited space.

C. The object of this paper

With the help of this identification function, the distributed

filter (3) is improved as follows:

x̂i,k+1 = Aiix̂i,k +Kii,kzi,k

+
∑

j∈Ni

Aij x̂
r
ij,k +

∑

j∈Ni

ϑij,kKij,kz
r
ij,k.

(9)

According to the analysis in Subsection II-A and Subsection

II-B, the objective of this paper is to design a Kalman-type

distributed filter of the form (9) such that an upper bound

of filtering error covariance is guaranteed over a given finite-

horizon Nf , that is, there exists a sequence of positive-definite

matrices {Πi,k|k}k∈Nf
satisfying

Pi,k ≤ Πi,k, ∀k ∈ Nf . (10)

Furthermore, the sequence of upper bounds {Πi,k}k∈Nf
is

optimized via the designed filter parameters Kij,k for j ∈
Ni∪{i}. It is worth mentioning that such a bound Πi,k should

own the computational advantage of Riccati-like difference

equation and must reflect the attack detection ϑij,k in real-

time in order to guarantee its security.

Remark 3: Lots of results are essentially performed in a

centralized way for recursive filtering issues of CPSs modeled

by (1). Specifically, the desired gain is usually dependent

on cross-variance matrices [30], or calculated via matrix

parameters of augmented systems [38]. At the same time,

various approaches have been proposed to overcome this

disadvantage. For instance, 1) taking
∑

j∈Ni
Aijxj,k as a

whole input produces a new distributed Kalman filtering in

[39], whose gain is related with the error cross correlation;

2) considering the utility function on prediction errors and

measured local outputs leads to distributed moving horizon

estimation [40], of which the developed approach is dependent

on the Chebyshev approximation with the help of traditional

lifting techniques; and 3) the technique of covariance’s bounds

is adopted in [7] to obtain partition-based distributed Kalman

filtering, the idea of which is also employed in our paper. It is

worth mentioning that, taking the addressed cyber-attacks into

account, these approaches are commonly incapable due mainly

to the high calculation burden of error cross correlation, the

infeasibility of lifting techniques, and the covariance bounds

subject to attacks.

III. MAIN RESULTS

This section is first concerned with the unbiasedness of

designed distributed filter and then obtains an upper bound

of filtering error covariance.

A. The design of filter gains

As mentioned in Subsection II-B, we need to propose a

rule to replace the covariance matrix Pj,k by the received one

(i.e. P r
ij,k ) at instant k because the real covariance matrix

could be unknown for filter i. For this purpose, we first find

from (6) that

Pj,k = P r
ij,k − θξij,kψ

p
ij,k. (11)

By resorting to the property of conditional expectation of

random matrix [41], one has

E{Pj,k + PT
j,k|P r

ij,k} = P r
ij,k + (P r

ij,k)
T (12)

and

E{(Pj,k − P r
ij,k)(Pj,k − P r

ij,k)
T |P r

ij,k}
+ E{(Pj,k − P r

ij,k)
T (Pj,k − P r

ij,k)|P r
ij,k}

= θ2ξ̄
(

trace(Θrp
ij )Θ

lp
ij + trace(Θlp

ij)Θ
rp
ij

)

.

(13)

For the analysis convenience, we denote

Ωij = θ2ξ̄
(

trace(Θrp
ij )Θ

lp
ij + trace(Θlp

ij)Θ
rp
ij

)

, (14)

and

Υij,k =

{

Pi,k, i = j
1

2
(P r

ij,k + P rT
ij,k) + κϑij,k

Ωij , otherwise
(15)

where the scalar κϑij,k
(i.e. κ0 and κ1) predetermined by

statistical experiments is utilized to adjust the probability of

Υij,k ≥ Pj,k.

In what follows, the upper bound of Pi,k (denoted as Πi,k)

is employed to realize the distributed implementation of the

filter (9) with attack detection. In this case, the corresponding

matrix Υij,k in (15) is replaced by

Ῡij,k =

{

Πi,k, i = j
1

2
(Πr

ij,k + (Πr
ij,k)

T ) + κϑij,k
Ωij , otherwise.

(16)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSMC.2019.2960541 



IEEE TRANS. SYST., MAN, CYBERN., SYST. 5

Under this scheme, we have the same probability to guarantee

Ῡij,k ≥ Πj,k ≥ Pj,k.

Remark 4: A conservative bound Ῡij,k in (16) is adopted to

improve the security of distributed filter. In this scheme, the

parameter κϑij,k
, which takes the value κ0 or κ1, is utilized to

adjust the effect from cyber-attacks. Obviously, κ0 is greater

than κ1 because the probability of occurring cyber-attacks is

higher when ϑij,k = 0.

Now, by means of above analysis, we have the following

results.

Theorem 1: For CPSs described by(1), if x̂i,0 = E{xi,0}
for any i ∈ Nm, the proposed distributed filter with the form

(9) is unbiased, that is, E{xi,k − x̂i,k} = 0.

Proof: The proof of the unbiasedness will be performed

via mathematical induction. Under this conception, since

x̂i,0 = E{xi,0} for any i ∈ Nm, we first assume E{xi,k −
x̂i,k} = 0 for any i ∈ Nm and then verify that this assumption

is also true for the instant k + 1.

By means of the statistical properties of cyber-attacks, it

follows from (20) that

E{xi,k − x̂i,k} = E{ei,k+1}
=

∑

j∈Ni∪{i}

E

{

(

Aij − ϑij,kKij,kCj

)

ej,k

}

= 0

which implies that the proposed filter is unbiased. The proof

is now complete.

Theorem 2: For any i, let Πi,0 ≥ Pi,0 be given. For the

distributed filter (9) with gains

Kij,k = AijῩij,kC
T
j

(

CjῩij,kC
T
j + V̂ij

)−1
, (17)

a feasible upper bound Πi,k+1 of the covariance matrix Pi,k+1

is calculated by

Πi,k+1 = (1 + ςiζi,k)AiiSii,kA
T
ii +Qi

+
∑

j∈Ni

(ςi + ζ−1

i,k )AijSij,kA
T
ij (18)

where ζi,k is any positive scalar and

Ŵij = θ2ξ̄Θx
ij ,

V̂ij =

{

Ri, i = j,

Rj + θ2ξ̄Θz
ij , i ̸= j,

Ῡij,k =

{

Πi,k, i = j,
1

2
(Πr

ij,k + (Πr
ij,k)

T ) + κϑij,k
Ωij , i ̸= j,

Sij,k = Ῡij,k − ϑij,kῩij,kC
T
j

×
(

CjῩij,kC
T
j + V̂ij

)−1
CjῩij,k + Ŵij .

Proof: Recalling (4) and (10), we can find that the

evaluation of filtering performance is based on the filtering

errors describing the deviation between the real state xi,k
and the estimated state x̂i,k. In what follows, let us denote

xi,k− x̂i,k as ei,k for the convenience of analysis. Subtracting

(9) from (1) leads to the following filtering error dynamics

ei,k+1

= (Aii −Kii,kCi)ei,k + wi,k −Kii,kνi,k

+
∑

j∈Ni

(

(

Aij − ϑij,kKij,kCj

)

ej,k − θξij,kAijψ
x
ij,k

− ϑij,kKij,k(νj,k + θξij,kψ
z
ij,k)

)

(19)

which is further written as

ei,k+1 =
∑

j∈Ni∪{i}

(

(

Aij − ϑij,kKij,kCj

)

ej,k

− ϑij,kKij,kν̃ij,k − θξij,kAijψ
x
ij,k

)

+ wi,k

(20)

where

ν̃ij,k =

{

νi,k, i = j

νj,k + θξij,kψ
z
ij,k i ̸= j

It is not difficult to see from (20) that the accurate covari-

ance Pi,k+1 depends on

∑

j∈Ni∪{i}

∑

s∈Ni∪{i}

(

Aij − ϑij,kKij,kCj

)

× E{ej,keTs,k}
(

Ais − ϑis,kKis,kCs

)T

that is, depends on all cross-variance matrices Pjs,k

(i.e. E{ej,keTs,k}, j, s ∈ Ni). Considering the connectivity of

topology, the optimal filtering is only realized in a centralized

way, which results in the serious burden in both calculation

and communication as increasing the scale of subsystems. As

such, in order to overcome this shortage, its upper bound of

Pi,k (denoted as Πi,k) is employed to realize the distributed

implementation of the filter (9) with attack detection.

In what follows, in order to develop a distributed design

method on desired filter gains Kij,k, we introduce the follow-

ing auxiliary dynamics

ηj,k+1 =
(

Aij − ϑij,kKij,kCj

)

ej,k

− ϑij,kKij,kν̃ij,k − θξij,kAijψ
x
ij,k.

(21)

For this dynamics, one has

Φη
j,k+1

= E{ηj,k+1η
T
j,k+1}

= (Aij − ϑij,kKij,kCj

)

Pj,k(Aij − ϑij,kKij,kCj

)T

+ ϑij,kKij,kE{ν̃ij,kν̃Tij,k}KT
ij,k

+AijE{θ2ξ2ij,kψx
ij,k(ψ

x
ij,k)

T }AT
ij .

(22)

Then, the expectation in the above equation is calculated as

follows

E{ν̃ij,kν̃Tij,k} = V̂ij , E{ξ2ij,kψx
ij,k(ψ

x
ij,k)

T } = Ŵij .

Therefore, it is easy to obtain that

Φη
j,k+1

= (Aij − ϑij,kKij,kCj

)

Pj,k(Aij − ϑij,kKij,kCj

)T

+ ϑij,kKij,kV̂ijK
T
ij,k +AijŴijA

T
ij .

(23)
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In what follows, replacing Pj,k by Ῡij,k, one has an upper

bound

Φη
j,k+1

≤
(

Aij − ϑij,kKij,kCj

)

Ῡij,k

(

Aij − ϑij,kKij,kCj

)T

+ ϑij,kKij,kV̂ijK
T
ij,k +AijŴijA

T
ij

(24)

and its trace is suppressed by selecting

Kij,k = AijῩij,kC
T
j

(

CjῩij,kC
T
j + V̂ij

)−1
, (25)

which means that

Φη
j,k+1

≤ Aij(Ῡij,k + Ŵij)A
T
ij − ϑij,kAijῩij,k

× CT
j

(

CjῩij,kC
T
j + V̂ij

)−1
CjῩij,kA

T
ij

= AijSij,kA
T
ij .

(26)

Finally, according to the relationship between (19) and (20),

one has

Pi,k+1 = E

{(

∑

j∈Ni∪{i}

ηj,k+1

)(

∑

j∈Ni∪{i}

ηTj,k+1

)}

= E

{

ηi,k+1η
T
i,k+1

}

+
∑

j∈Ni

E

{

ηi,k+1η
T
j,k+1 + ηj,k+1η

T
i,k+1

}

+
∑

j∈Ni

∑

s∈Ni

E

{

ηj,k+1η
T
s,k+1

}

+Qi

≤ (1 + ςiζi,k)Φ
η
i,k+1

+ (ςi + ζ−1

i,k )
∑

j∈Ni

Φη
j,k+1

+Qi

≤ Πi,k+1

(27)

which completes the proof.

So far, we have realized the mentioned objective in Subsec-

tion II-C, that is, obtaining the upper bound and the desired

filter parameters via formulas in Theorem 2. In what follows,

we will further discuss the developed result in comparison with

existing ones to systematically expose the main contribution.

B. Two modified versions

It is worth noting that the obtained upper bound Πi,k+1 is

dependent on the scalar ζi,k, and therefore such a bound can

be further optimized, which leads to the following corollary.

Corollary 1: For any i, let Πi,0 ≥ Pi,0 be given. For the

distributed filter (9) with gain (17), a feasible upper bound

Πi,k+1 of the covariance matrix Pi,k+1 is optimized by

Πi,k+1 = min
ζi,k>0

(

(1 + ςiζi,k)AiiSii,kAii +Qi

+
∑

j∈Ni

(ςi + ζ−1

i,k )AijSij,kAij

)

.

In some practical engineering, the innovation from neigh-

bors may not be employed to perform the state estimation. An

improved version of distributed filter design is easily accessed,

and provided in the following corollary.

Corollary 2: For any i, let Πi,0 ≥ Pi,0 be given. For the

distributed filter

x̂i,k+1 = Aiix̂i,k +
∑

j∈Ni

Aij x̂
r
ij,k +Kii,kzi,k (28)

with the gain

Kii,k = AiiΠi,kC
T
i

(

CiΠi,kC
T
i + 0.5Ri

)−1
, (29)

a feasible upper bound Πi,k+1 of the covariance matrix Pi,k+1

is calculated by

Πi,k+1 = 2AiiSii,kAii +Qi

+
∑

j∈Ni

ςiAij(2Ῡij,k + Ŵij)A
T
ij (30)

where

Ῡij,k =
1

2
(Πr

ij,k + (Πr
ij,k)

T ) + κϑij,k
Ωij ,

Sii,k = Πi,k −Πi,kC
T
i

(

CiΠi,kC
T
i + 0.5Ri

)−1
CiΠi,k.

Proof: For the adopted filter (28), one has

ei,k+1

=
(

Aii −Kii,kCi

)

ei,k −Kii,kνi,k

+
∑

j∈Ni

(

Aijej,k − θξij,kAijψ
x
ij,k

)

+ wi,k

=
√
2ς−1

i

∑

j∈Ni

( 1√
2

(

Aii −Kii,kCi

)

ei,k +
ςi√
2
Aijej,k

− 1√
2
Kii,kνi,k − ςiθξij,k√

2
Aijψ

x
ij,k

)

+ wi,k.

(31)

Then, along the similar line of the proof of Theorem 2, one

selects the following auxiliary dynamics

ηij,k+1 =
1√
2

(

Aii −Kii,kCi

)

ei,k +
ςi√
2
Aijej,k

− 1√
2
Kii,kνi,k − ςiθξij,k√

2
Aijψ

x
ij,k.

(32)

For above dynamics, one has

Φi,η
j,k+1

= E{ηij,k+1η
iT
j,k+1}

≤ (Aii −Kii,kCi

)

Pi,k(Aii −Kii,kCi

)T

+ ς2i AijPj,kA
T
ij +

1

2
Kii,kRiK

T
ii,k

+
ς2i
2
AijŴijA

T
ij .

(33)

In what follows, replacing Pj,k by Ῡij,k results in

Φi,η
j,k+1

≤ (Aii −Kii,kCi

)

Πi,k(Aii −Kii,kCi

)T

+ ς2i AijῩij,kA
T
ij +

1

2
Kii,kRiK

T
ii,k

+
ς2i
2
AijŴijA

T
ij .

(34)

Then, selecting the filtering gain (29), one has an upper bound

of Φi,η
i,k+1

Φi,η
j,k+1

≤ AiiS̄i,kA
T
ii +

ς2i
2
Aij(2Ῡij,k + Ŵij)A

T
ij . (35)

Finally, according to the relationship between (31) and (32),

one has

Pi,k+1

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSMC.2019.2960541 



IEEE TRANS. SYST., MAN, CYBERN., SYST. 7

= E

{(√
2ς−1

i

∑

j∈Ni

ηij,k+1

)(√
2ς−1

i

∑

j∈Ni

ηij,k+1

)T}

= 2ς−2

i E

{(

∑

j∈Ni

ηij,k+1

)(

∑

j∈Ni

ηij,k+1

)T}

= 2ς−2

i

∑

j∈Ni

∑

s∈Ni

E

{

ηij,k+1(η
i
s,k+1)

T
}

+Qi

≤ 2ς−1

i

∑

j∈Ni

Φi,η
j,k+1

+Qi

≤ 2ς−1

i

∑

j∈Ni

(

AiiS̄i,kA
T
ii

+
ς2i
2
Aij(2Ῡij,k + Ŵij)A

T
ij

)

+Qi

= Πi,k+1,

which completes the proof.

In summary, this paper made a successful attempt to develop

a novel distributed filtering algorithm with attack detection.

The developed result is nontrivial and processes the following

identified characteristics: 1) the adopted detector is simplistic

and can be carried out in usual processors. There is no

doubt that the utilization of detectors can effectively identify

abnormal data and therefore increases the security of dis-

tributed filtering when occurring a deception attack. 2) the

filtering algorithm developed in Theorem 2 is only dependent

on the subsystem information itself and the received data

from neighboring subsystem, that is, the implementation of

algorithm is mutually independent among subsystems. In other

words, such an algorithm is carried out in a distributed way

and is not affected by increasing the scale of subsystems (i.e.

the requirement of scalability).

IV. SIMULATION RESULTS

In this section, the developed recursive algorithm with attack

detection is verified by resorting to the standard IEEE 39-

bus power system, which includes 10 generators, 29 loads,

and 40 transmission lines. The objective is to design a set of

desired filter gains Kii,k and Kij,k via Theorem 2 to realize

secure filtering. Similar to the application in [42], the system

is partitioned into 10 areas, with one generator in each area,

as shown in Fig. 2 for clear description. The dynamics of

each power generation area is modeled by the following linear

continuous-time model:

ẋi(t) = Ac
iixi(t) +

∑

j∈Ni

Ac
ijxj(t) +Bc

i ui

where xi and ui are, respectively, the system state and the

control input of area i. More specifically, the system state

consists of

xi = [ ∆wi ∆Pij ∆Pmi
∆Pvi

]T

where the definitions of elements (i.e. system variables of

power systems) are shown in Table II.

TABLE II
SYSTEM VARIABLES OF THE IEEE 39-BUS SYSTEMS

∆wi Deviation of the the angular velocity of the rotor
∆Pmi Deviation of the mechanical power
∆Pvi Deviation of the electrical power
∆Pij Deviation of the power flow on the tie-line from

area i to area j
Hi Inertia constant defined as

Hi =
Kinetic energy at rated speed

Machine rating

Ri Speed regulation
Di The load damping constant
Tchi

The time delay of non-reheat turbine
Tgi The time constant of the governor
Tij The synchronizing torque coefficient

TABLE III
PARAMETERS FOR THE IEEE 39-BUS SYSTEMS

Di Tchi
Tgi Ri Hi

Area 1 5 0.2 0.25 0.5 12

Area 2 4 0.2 0.25 0.5 8

Area 3 4 0.2 0.25 0.5 8

Area 4 6 0.2 0.25 0.5 10

Area 5 3.5 0.2 0.25 0.5 7

Area 6 3 0.2 0.25 0.5 7

Area 7 7.5 0.2 0.25 0.5 10

Area 8 4 0.2 0.25 0.5 4

Area 9 6.5 0.2 0.25 0.5 6

Area 10 5 0.2 0.25 0.5 5

Introducing stochastic noises, all system matrices in this

application are

Ac
ii =











− Di

2Hi
− 1

2Hi

1

2Hi
0

∑

j∈Ni
Tij 0 0 0

0 − 1

Tchi

0 1

Tchi

− 1

RiTgi

0 0 − 1

Tgi











,

Ac
ij =









0 0 0 0
−Tij 0 0 0
0 0 0 0
0 0 0 0









, Bc
i =









0
0
0
1

Tgi









,

and the covariance of process noises is Qi = 0.5I . Fur-

thermore, the model parameters in above matrices are given

in Table III, where Tij is the same with that in [42], and

omitted here due to the limited space. In what follows, the

measurement matrix is

Cc
i =





0 1 0 0.1
0 0 1 0
0 0 0 1





and the covariance of measurement noises is Ri = 0.1I .

We can find that the information ∆wi cannot be involved

in measurements. For the purpose of gain design and system

simulation, the sampling period is selected as 0.02s and

the corresponding discrete-time model is not difficult to be

obtained approximatively.

For checking the effectiveness of proposed algorithm, ma-

licious data in deception attacks (6) are randomly produced

via Matlab software. Specifically, the Matlab command used

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSMC.2019.2960541 



IEEE TRANS. SYST., MAN, CYBERN., SYST. 8

Fig. 2. IEEE 39-bus power system decomposed into ten control areas [42].

in this paper is “normrnd(0, Σ)”, where “Σ” stands for Θx
ij ,

Θx
ij or Θlp

ij . Moreover, the attack instants are from k = 55 to

k = 74, the size of malicious data is assumed to be θ = 0.55,

the statistical characteristic is ξ̄ = 0.95, and the covariance of

malicious data are

Θx
ij = I, Θz

ij = I,

Θlp
ij = Θrp

ij = 0.45× [ 1 1 1 1 ][ 1 1 1 1 ]T .

This simulation is concerned with distributed filtering, and

the controller ui is designed directly via the corresponding

augmented system in the framework of linear quadratic regula-

tors. The adopted Matlab code is “lqr([Ac
ij ]10×10, diag10{Bc

i },

0.1I40, 1.1I10)”. For the proposed algorithm, we select the

parameters α = 0.85, κ0 = 3 and κ1 = 1. The simulation

is run by the PC deployed an Intel Core CPU i7-5500U at

2.40Hz and 8GB RAM, and MATLAB (R2014a). The initial

conditions of IEEE 39-bus power systems are chosen as

x9,0 = x5,0 = x1,0 = [1.4, 1.5, 1.3, 1.4]T ,

x6,0 = x2,0 = [1.1, 1.2, 1.8, 1.3]T ,

x7,0 = x3,0 = [1.1, 2.8, 2.8, 1.6]T ,

x10,0 = x8,0 = x4,0 = [1.3, 1.3, 1.1, 1.4]T ,

Πi,0 = 0.5I, x̂i,0 = 0.5xi,0, i ∈ N10.

Without loss of generality, we only analyze the test results

on Areas 1, 3, 6, and 8. First, the trajectories of true states

∆wi, ∆Pij , ∆Pmi
, ∆Pvi

(solid lines) and their estimation

(dotted lines) are depicted in Figs. 3-6, where Fig. 3 and Fig. 4

occur some fluctuations from instant k = 55 to instant k = 74.

Comparing the estimated trajectories with true ones, we can

see that errors are small even though deception attacks happen.

Then, the successful detection rate of designed detector is

obtained in Table IV, and the values are over 95% based on

Monte Carlo simulations with 400 runs, which verifies the

effectiveness of adopted attack detector.

In what follows, keeping the same deception attacks,

noises and initial conditions, performing traditional filtering

(i.e. without any defense) results in the corresponding esti-

mation of ∆wi, ∆Pvi
, which are plotted in Figs. 7-8. We

can find from these two figures that the filtering errors are

TABLE IV
SUCCESSFUL DETECTION RATE

Areas 1 2 3 4 5

Rate (%) 96.40 96.87 97.38 95.47 97.23

Areas 6 7 8 9 10

Rate (%) 96.09 96.22 95.18 97.50 97.45

obviously larger than that in Fig. 3 and Fig. 6 over the time

range [55, 74), and such errors further lead to the degradation

of filtering performance after attacks vanish. These verify that

the developed filter is performed very well while showing good

defense capacity.
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Fig. 3. The true value ∆wi and its estimation ∆ŵi (i = 1, 3, 6, 8).
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Fig. 4. The true value ∆Pij and its estimation ∆P̂ij (i = 1, 3, 6, 8).

V. CONCLUSIONS

In this paper, the distributed recursive filtering issue with

attack detection has been investigated for a class of CPSs
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Fig. 5. The true value ∆Pmi and its estimation ∆P̂mi (i = 1, 3, 6, 8).
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Fig. 6. The true value ∆Pvi and its estimation ∆P̂vi (i = 1, 3, 6, 8).

consisting of a set of spatially distributed subsystems. Ac-

cording to deception attacks coming from inherent security

vulnerability of communication networks, a detector, depen-

dent on both the received innovation and a predetermined

threshold α, has been proposed to identify the occurring

attacks as far as possible. In light of identified attacks, a

novel distributed filter has been constructed and its gains have

been designed via a set of recursive formulas. These formulas

have been derived by resorting to a set of auxiliary error

dynamics and have also been utilized to calculate the upper

bound of covariance of filtering errors. It has been further

found that the upper bound only depends on the neighboring

information and the information from the subsystem itself. As

such, the calculation burden almost remains unchanged when

the scale of addressed CPSs increases and thereby satisfying

the requirement of the scalability. Moreover, noting the rule

of attack detectors, the proposed filter is applicable for the

case that attackers cannot carry out stealth attack. Finally,

a standard IEEE 39-bus power systems has been utilized to
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Fig. 7. The true value ∆wi and its estimation ∆ŵi (i = 1, 3, 6, 8).
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Fig. 8. The true value ∆Pvi and its estimation ∆P̂vi (i = 1, 3, 6, 8).

verify the effectiveness of proposed filtering scheme. The test

results shown that the designed filter has the good capability

to reduce the impact from deception attacks. Further research

topics include extending our results to more complex scenarios

as well as various engineering applications: 1) CPSs with

varying or switching topologies, 2) communication scheduling

with various protocols, 3) communications subject to different

attacks or network-induced phenomena, and 4) more effective

detection schemes for cyber-attacks [43]–[45].
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