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A BSTRACT 

In this paper we study some bivariate counting distributions that are 
obtained by the trivariate reduction method. We work with Poisson 
compound distributions and we use their good properties in order to derive 
recursive algorithms for the bivariate distribution and bivariate aggregate 
claims distribution. A data set is also fitted. 
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I. INTRODUCTION 

Ahmed (1961) and Papageorgiou and David (1995) discuss some bivariate 
counting distributions, namely, the joint distribution ( N , M )  where 
N = No + NI and M = No + N2 with No, N, and N2 independent random 
variables such that 

~0  ° °  
 (No = n) = , > o 

n! ' -- 

IP(NI = n) = e - x ' -  n! ' n > 0  

E'(N2 = n) = e -x2 A~ n! ' n_>0 

i.e. NI and N2 are Poisson distributed while No is mixed Poisson distributed 
with mixing distribution whose cumulative density function (cdf) is U(A). 
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The joint probability function (P0 of (N, M) is given by 

mi,O,,m) 
I P ( N = n , M = m )  = Z ~(No=k)I?(N, = n - k ) I P ( N z = m - k )  

k=0 

For some choices of the mixing distribution A, Papageorgiou and David 
(1995) give the density of (N, M) by using Stifling numbers of the second 
kind, C-numbers and modified Bessel functions of the third kind. 

Using a general class of counting random variables that are simulta- 
neously mixed and compound Poisson, it is possible to give simple 
expressions for the joint distribution of (N, M) which avoid these numbers. 
Moreover our methodology gives easily the joint pf of the random sums 

(SN, S M )  : (Xl -{- "" - ~ - / ~ N ,  V l  -t- . . .  -+- YM) 
where X,, X2, ... (resp. YI, Y2, ...) is a random sample of observations from 
X (resp. Y). 

X and Y are independent nonnegative arithmetic random variables that 
are also independent of (N, M). The distribution of (SN, SM) is of  interest in 
insurance problems where it represents the aggregate claims distributions 
when X and Y are claim amounts. 

We will also extend the model to (N, M) = (N O + Nl, No + N2) where 
No, Ni and N2 are mixed Poisson distributions. 

Finally a data set will be fitted, b 
We will use the following conventions: ~ = 0 when b < a and 

P ( N = n ,  M = m ) = 0 w h e n n < 0 o r m < 0 .  k=a 
In order to prove the algorithms leading to recursive formulae for some 

compound distributions, we will use extensively the concept of  ordinary 
generating function (see Panjer and Willmot (1992) for a reference in 
actuarial sciences). 
Let a sequence {a,,, n = 0, I, 2, ...} of real numbers. 
The ordinary generating function of this sequence is defined as 

OO 

To°(Z) : ~ o.~' 

Of course z must be chosen such that the sum exists. 
Ordinary generating functions have the following nice properties: 
- There is a one-to-one correspondence between {a,,, n = O, 1, 2, ...} 

and To,,(z)  

1 J " T o ° ( z )  
- a,, n! dz" ]z=0 
- c,, = ~a,,  + /~b , ,  ~ T,.,,(z) = ~ T . , , ( z )  + ~ T b o ( z )  

- c,, = ~ akb, , -k ~ Tc . ( z )  = To°(z )Te , , ( z )  
#=0 d 

- T,,o,, ( z )  = z d z  Ta. ( z )  
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The philosophy for using ordinary generating functions is the following: 
- we look for a relation between some sequences a,,, bn, cn, ... 
- go in the z map where the calculations become easier (think of the 

convolution that becomes a product) 
- go back to the initial map by inverting the expression in z thanks to the 

properties. 

The notion of ordinary generating function and its properties trivially extend 
in a bivariate setting. 
In this paper, the sequence a,, or a(,,,m) in a bivariate setting will be 
probability functions. As a consequence we will not have problems of 
convergence for the ordinary generating functions: [z[ < oz. 
In the present case, ordinary generating functions are just probability 
generating functions (pgf). 
From now on we will only refer to pgfand we will use them extensively in the 
sense of ordinary generating functions. 

2. A GENERAL FAMILY OF RANDOM VARIABLES THAT ARE SIMULTANEOUSLY 

MIXED AND COMPOUND POISSON 

Walhin and Paris (2000b) review the characteristics of a general family of 
random variables that have the property of being mixed and compound 
Poisson distributions. 

A mixed Poisson process is such that 

1-i(n, t) = I?(N(t) = n) = e -'x' (At)"dU(A) " 
n[ 

where N(t)  gives the number of occurrences in (0, t]. 
By choosing 

n ( 0 ,  r) = e - ° ( ' )  

0( , )  >__ 0 

0(0) = 0 

~tO(t)d completely monotone 

Walhin and Paris (2000b) show that N(t)  can also be interpreted as a 
compound Poisson model: 

L(t) 

N(,)  = 
i=1 
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where L(t )  is Poisson distributed and independent of the ~i which are 
independent identically distributed (i.i.d.) random variables. We will use this 
property in the sequel. A good choice for the function O'(t) is the choice 
made by Hofmann (1955) and studied in Walhin and Paris (2000b) and in 
Kestemont and Paris (1985): 

0 ' (0  - P ( l + c t )  ~ P > 0 '  c > O ,  a>_O 

By integration, one has 

P [(l + ct)l-a-- l] O ( t ) - - c ( l  a) 

O(t) = pin(1 + ct) by continuity for a = I 

Particular cases of interest are Poisson (a = 0), Poisson Inverse Gaussian 
(a - -0 .5) ,  Negative Binomial (a = 1), Polya-Aeppli (a = 2) and Neymann 
Type A (a ~ oo, c ~ O, ac---+ b). 

Some properties are 
c~ 

~u(,)(z) = ~ n( , , ,  t)~" = n (0 ,  ~ -  t_,) = e - ° ( ' - <  

t l~0 

EN( t )  = pt 

VarN(t)  = pt + pact 2 

( 1 )  ~3N(I) ( Z ) = e -O( t ) (  l-~g'(z)  ) 

where ~bx(z) = E[z x] denotes the pgf of the random variable X. 
The probability law of the ~i is deduced from 

q(0) = 0 
oo 

(2) f~(z) = Z q ( k ) z k  = 1 O ( t -  tz) 
k=~ 0(I) 

q(n) s 
(3) - - - r + - ,  n > l  

q(n - 1) n 
c! 

r - -  - -  
1 + c t  

s = r(a - 2) 

One says that the {i belong to the (r, s, 1) class. The I in (r, s, 1) is 
connected with the n > 1 in (3). 
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From now on we will refer to the Hofmann distribution (Ho(p,  c, a)) 
with the convention that t = 1. In model 1, No will be Ho(p, c, a) while in 
model 2, Ni will be no(pi, ci, ai), i = 0, 1, 2. Note that in general, the 
(r, s, 1) class is denoted as (a, b, I) class. We use the notation (r, s, 1) class 
in order to avoid confusion with the a of  the Hofmann distribution. 

3. MODEL 1' B1VARIATE COUNTING VARIABLES 

In this section we work with the model 

(N, M) = (No + Ni, No + N2) 

where No is Ho(p, c, a) and Ni and N2 are respectively Po(AI) and Po(A2). 
The three random variables are assumed to be mutually independent. 

Let 

cp(u, v) = Z p ( n , m ) u " v "  
n=0 m=0 

be the pgf of  (N,M) where we use the notation 

p(n ,m)  = I?[N = n, M = m] 

Let ~b0, ~bl and ~b2 the pgf of  No, Nl and N2 respectively. 
We have 

N0 NI N~ 

= 

--_ e-0(l)[I -~duv)] e-,X~(I-,,)e-A2(I-v) 

Differentiating with respect to u and multiplying by u gives 

o4(u, ) . . . .  o duv) 
u o - t )uv Ou 4(u,v)+uAj4)(u,v) 

Inverting this expression gives 

,nin(n,m) 
np(n ,m)  = O(1) 

k=l 

kq(k)p(n  - k, m - k) + Aip(n - l ,m) ,  n > 0 

Differentiating with respect to v gives a symmetric recursion. 

We have proved 
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Theorem 1 
For model 1 the probability function is given by the following recursion 

p(O, O) = e -°(I)-'x'-~z 
min(n ,m)  

np(n,m) =0(1)  ~ k q ( k ) p ( n - k ,  m - k ) + A l p ( , , -  l ,m),  n > 0  
k = l  

H,i,O,m) 
mp(n,m)=O(1)  ~ k q ( k ) p ( n - k ,  m - k ) + A 2 p ( n , m - l ) ,  m > 0  

k = l  [] 

Let us note that for the particular cases where No is Negative Binomial or 
Poisson Inverse Gaussian, we have easier recursions. 

The case Negative Binomial (a = 1) is given in Hesselager (1996) where 
the fact that the Negative Binomial belongs to the (r, s, 0) class is used: 

lF'(U0 = 0) = (1 + c) -'e 

I?(U0 = k) s 
~ ( N o = k _ l ) = r + ~  , k > O  

with 

C 
r m 

l + c  

p - - c  
S m 

l + c  

The Negative Binomial can be expressed in the following explicit notation: 

In this case the recursion becomes (Hesselager (1996)): 

p(0, 0) =(1 + c)-e~e -x'-A2 

p(n,m) =(r  +S)p(n  - 1, m - 1) + ~ p ( n  - l , m) 

A t r p ( n - 2 ,  m - l ) ,  n > 0  
n 

p(n,m) =(r  + S ) p ( n -  1, m - 1) + A2p(n,m - 1) 
IT/ I17 

AZrp(n - 1, 117 - 2), I1l > 0 
m 
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The case Poisson Inverse Gaussian (a = 0.5) is derived without using the 
distribution of the ~i (see equations (1) and (2)). The pgf of (N, M) has the 
following direct properties: 

(4) qS(u, v) =e @ ((' +c(, .... ))½-, ) e-A, (1-u) C-A2(I- ,,) 

~(14, V) ~1-] ([ ~_C~2llU]@ ~(lg, U) 

0 z 
v) 

(1 +c( l  - uv)) ]dp(u'v) 
p2vZ 2Alpv 

-t 1 -+- c(l - u v )  q~(u, v )  + (I + c ( l  --  uv)) ½ (9(u, v) 
0 2 ( l)~ ) 

(5) (1 + c ( 1 -  uv))~uz~b(u,v ) =~b(u,v) -A~(1 + c ) + A ~ c u v -  Icu+P 2'U2 

+ ~uq~(u,v)(2A, (l q-C)--2AICuv+lcv) 

From (4) we easily find the initializing terms: 

p(0, 0) = e -~' -;~2-2~((1+c) ° ' -  i) 

p ( l , o )  = 

p(0, l) = , 2p(0, 0) 

p ( I , l ) =  AIA2+(I + 

Inverting (5) and using its similar expression in v gives 

3 7 
(I +c)n(n- l)p(n,m)= c(n- 1 ) (n -~ )p (n -  l , m -  1)--~1 c(2n-~)p(n-Z,m-1) 

+2A, (1 +c ) (n -  1)p(n- 1,m)-A~(l+c)p(n-2,m) 

+k~cp(n -3 ,m-  l)+p2p(n-2,m-2), ,,>2 

(I +c)m(m- l )p(n,m) = c(m-1)(m-~)p(n- l ,m- ! ) -  A2c(2m-2)P(n-1,m- 2) 

+2A2(1 +c ) (m-  l)p(n,rn-1)-A~(l+c)p(n,m-2) 
+A~cp(n-l,m-3)+p2p(n-2,m-2), m>2 

We recall that p is one of the parameters of the Hofmann distribution 
(HoCo , c, a)) while p(n, m) is the pC of (N, M). 
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4. MODEL 1' B I V A R I A T E  R A N D O M  S U M S  

Now let us study the bivariate vector 

(aN, SAg) = ( X ]  Or- ... + XNo+N,, YI + ... + YNo+N2) 

whose pf is given by 
(DO O0 

Z Z  , , . m  ~[S N = x, S M = y] = g(.¥, y) = p(n, m)p~ ( x ) f y  ( y )  

n=0 m=O 

where fx(x)  (resp. fr(y)) is the pf of X (resp. Y). Our aim is to give a 
recursive scheme in order to derive the pf g(x,y). 

Let ~(u, v) be the pgf of (SN, SM) and let ~bx(u) (resp. ~by(v)) be the pgf 
of X (resp. Y). 
We have 

oo oo 

= 

(6) = e-O(0[ I -Vd~.,'(,,)~,'@))] e -;~, (l-¢,.,.(u)) e -~  (~-~,.(,)) 

Differentiating with respect to u and multiplying by u gives 

O~(u, v) -0(1' OO2~(u,v) (7) u Ou )u ~ ~(u,v)  + AlU if(u, v) 

where ~ ( u , v )  = ~b¢(~bx(U)~br(v)) is the probability generating function of 
the pair 

( X , + . . . + X ~ ,  Y , + . . . +  Y~) 

whose pf will be denoted by 

h ( i , j )=]? (X l+ . . .+X~=i ,  Y I + . . . +  Y ( = j ) ,  i>O, j > O  

Inverting (7) gives 

X V X 

(8) xg(x,y) = 0(1) ~ Z ih(i,j)g(x - i, y - j )  + A 1 Z  ifx(i)g(x - i,y), x > 0 
i=0 j = 0  i=0 

The following theorem is a trivial extension of the bivariate Panjer (1981) 
algorithm given in Walhin and Paris (2000a). The proof is given for 
illustration. 
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Theorem 2 
The probability function h (x,y) of  

( x ,  + ... + x ~ ,  y~ + ... + y~) 

is given by 

(9) h(0,0)=l 

(10) h(x,y)= 

(11) h(x,y)= 

0(1-fx(O)fy(O)) 
0(~) 

l 

1 -rfx(O)fy(O) 
.,. ,, . (y)\) 

r+s , x - i ,  x y , 

1 

1 -rfx(O)fy(O) 
X ~ 

( Z Z ( r + sJ-)fv( i)f y(j) h ( x -  i ,y- j )  + q(1 ) f  x( x ) f  v(Y ) , 
\ i j Y 

where we use the notation 

X .|' X y 

Z Z = Z "( ' , ; I  - w(o,o 
i j i=0 j = 0  

x>0 

y>0  

Proof 
Equation (9) follows immediately from equation (2). 
Now we prove equation (10). We have 

(12) k q ( k ) = r ( k - l ) q ( k - l ) + ( r + s ) q ( k - l ) ,  k > l  

d @x(u)g?y(V) and summing Multiplying each side of (12) by ~v --t (u) 
k =  1 to k =  cx~ we find 

_o %(u, v) - q(1)dox(u)Oy(v) 
Ou 

from 

= r~u ~((u, v)~bx(u)Oy(v) 

d 
+ (r + s)~((u, v)-~u~bx(u)~by(v) 

- (r 4- s)q(O)ff~bx(u)~by(v) 
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Multiplying by u and inverting gives 

X . "  I ' 

xh(x,y) = r  Z ~ (x - i)f~,(i)fy(l')h(x - i, y - j )  
i=0 j=0 

.X" P 

+ (r + s) ~ Z ( fx( i ) fy( j )h(x-  i, y - j )  
i=0 j = 0  

+ q(1 

Rearranging gives (10). 
(I 1) follows similarly. [] 

Of course more general results can be derived if (12) becomes 

kq(k) = r ( k -  I ) q ( k -  I) + (r + s ) q ( k -  1), k > m 

for a general m. In this case, one says that the {i belong to the (r, s, m) class. 
With the symmetric expression of (8) we have the following result: 

Theorem 3 
For tile model 1, the probability function g(x,y)  of  the compound distribution 
is given by the following recursion: 

(13) g(O, O) = e-°(l-f*(°lf"(°))e-A' (I-f.v(O))e-,{2(I-fr(O)) 

'j~=o xh ( i j )g (  x (14) g(x,y) = 0(1) - t - i, y - j )  
i=l 

X • 

+ A, ~-]£fx( i )g(x  - i,y), x > o 
i= l  X 

y . 

(15) g(x,y) =0(1 ~ "  ( ~/__.J-h,i,j,g(x-i, y - j )  
i=0  j = l  Y 

y 

+ A2 --~___J--fy(j)g(x,y - j ) ,  y > 0 
j=l Y 

where h(iff) is given by theorem 2. 

Proo[" 
Equation (13) is immediately derived from equations (6) and (2). 
Equation (14) follows immediately from equation (8) while its similar 
expression valid for y > 0 gives (15). [] 
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5. MODEL 2 

In this section we consider the following model 

(X, M) = (Uo + Xj, No+N2) 

where Ni are independent Ho(pi, ci, ai). The corresponding pf of  the ~i are 
denoted by q~. 
Then we have the following results. The proofs are similar to those given in 
sections 3 and 4. So we omit them. 

Theorem 4 
For model 2, the probability function p(n,m) is given by the following 
recursion: 

p ( 0 , 0 )  = e - °° ( I ) - ° '  (I)-o~o) 

,.i.(,,m) i -"--," " 
p ( n , m ) :  Z -Oo(I)qo(i)p(n-i,m-i)+~_. t-O,(l)ql(i)p(n-i,m), n > 0  

i=1 n i=1 n 

' m i n ( n , m )  . m i 

p ( n , m )  ~ lo0( l )qo( i )p(n- i ,m- i )+~mO2( l )q2( i )p(n ,m- i ) ,  m > 0  
i=1 "= 

[ ]  

Theorem 5 
For model 2, the probability function g(x,y) is given by the following 
recursion." 

g ( 0 , 0 )  = e -° ' '  (1-fv(0)f,.(0) )e-O, (I-J:,.(0)) e-0.~(I -fr(0)) 

x Y i . .  x i 

g( x'y ) = O°( l ) Z j~--o xh( t d)g( x - i' y - j) + Ol ( l ) i~t xb x( i)g( x - i'Y ) - -  "= . x > O 

.v y • I' • 

where h(i, j) is given by theorem 2 and bx(k) is given by 

b~(o)  = I O ~ ( I - f x ( o ) )  
0 . ( t )  

' ; ) 
bx(/,-) - I - , . : ~ , ( 0 )  + . ~ . ) f , & ) b x ( k  - i) + q.(l)f ,~(/ ,-)  , k > 0 

i =  I 

and by(k) is defined shnilarly. [] 
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R e m a r k :  for the case where the Ni belong to the (r, s, 0) class, Hesselager (1996) 
gives an easier algorithm. However, for the case Negative Binomial which is a 
member of the (r, s, 0) class, numerical examples show that this algorithm is 
not stable while the combination of theorems 5 and 2 give stable recursions. 

6. A FIT 

We use in this section a set of  accident data  used in Papageorgiou and David 
(1995) for illustration. 

We fit model 1 for the following choices of  No: 
- a = 0: Poisson 
- a = I: Negative Binomial 
- a = 0.5: Poisson Inverse Gaussian 
- a free: general Hofmann  distribution. 

The fits are proceeded by maximum likelihood. N and M are accident 
observations. 
It can be shown that 

= M  

where 19 (resp. ~ is the empirical mean of  N (resp. 34). 
This reduces the number of  estimates to be found by numerical techniques. 
For  the Hofmann  fit we need to maximize numerically the loglikelihood 
subject to three variables. 
We find the following estimates: 

T A B L E  I 

MAXIMUM LIKELIHOOD ADJUSTMENT 

Ai A2 p c a Ioglihelihood 

Poisson  1.0319 1.2724 0 .6388 0 - 112.7380 

P IG 1.0893 1.3298 0 .5815 0 .8432 0.5 - I  12.3577 

N B  1.0939 1.3344 0 .5769 0 .4092 I - I 12.3802 

H o f i n a n n  1.0796 1.3201 0 .5912 1.6697 0 .2546 - I  12.3467 

Based on the comparison of  the Ioglikelihoods, it does not seem necessary to 
work with a more complicated model than the one obtained with all N i ,  

i = 0, 1, 2 being Poisson distributed. A likelihood ratio test would not reject 
this hypothesis. 

The original data  with fitted values are in the next table: 
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TABLE 2 
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N M 0 I 2 3 4 5 6 7 

o.bs 5 6 4 I I 0 0 0 

a = 0 4.16 5.30 3.37 1.43 0.45 0.12 0.02 0.00 

a = 0.5 4.29 5.71 3.80 1.68 0.56 0.15 0.03 0.01 

a = 1 4.29 5.73 3.82 1.70 0.57 0.15 0.03 0.01 

a = 0.2546 4.29 5.67 3.74 1.65 0.54 0.14 0.03 0.01 

oh. ' ;  ' 

a = 0  

a = 0 . 5  

a =  

a = 0.2546 

4 9 3 4 3 0 0 0 

4.30 8.13 6.86 3.63 1.38 0.41 0.10 0.02 

4.68 8.06 6.58 3.46 1.33 0.40 0.10 0.02 

4.70 8.03 6.53 3.43 1.32 0.40 0.10 0.02 

4.63 8.10 6.65 3.50 1.34 0.41 0.10 0.02 

obs 

a = 0  

a = 0 . 5  

( . / ~  

a = 0.2546 

2 5 5 4 2 0 0 0 

2.22 5.56 6.14 4.06 1.87 0.65 0.18 0.04 

2.55 5.39 5.52 3.57 1.65 0.59 0.17 0.04 

2.57 5.35 5.47 3.55 1.65 0.59 0.17 0.04 

2.50 5.44 5.61 3.63 1.67 0.59 0.17 0.04 

obs 

a = 0  

a = 0 . 5  

a ~  

a = 0.2546 

I 6 4 I I 2 I 0 

0.76 2.39 3.30 2.70 1.51 0.62 0.20 0.05 

0.92 2.32 2.93 2.40 1.39 0.60 0.21 0.06 

0.94 2.30 2.91 2.41 1.41 0.62 0.21 0.06 

0.90 2.34 2.97 2.41 1.37 0.59 0.20 0.06 

obs 

a = 0  

a = 0 . 5  

a = 0.2546 

0 0 0 2 0 0 0 0 

0.20 0.74 1.23 1.22 0.82 0.40 0.15 0.05 

0.25 0.73 1.11 1.14 0.85 0.47 0.20 0.07 

0.26 0.73 1.11 1.16 0.87 0.49 0.21 0.07 

0.24 0.74 1.12 1.12 0.82 0.45 0.19 0.06 

obs 

a = O  

a = 0 . 5  

a =  

a = 0.2546 

0 0 I 0 0 0 0 0 

0.04 0.18 0.35 0.41 0.33 0.19 0.08 0.03 

0.05 0.18 0.32 0.41 0.39 0.29 0.16 0.07 

0.06 0.18 0.32 0.42 0.40 0.29 0.16 0.07 

0.05 0.18 0.32 0.39 0.37 0.27 0.15 0.06 

obs 

a = O  

a = 0 . 5  

U =  

a = 0.2546 

0 0 0 0 I 0 0 1 

0.01 0.03 0.08 0.11 0.10 0.07 0.03 0.01 

0.01 0.04 0.08 0. t l  0.14 0.13 0.10 0.05 

0.01 0.04 0.08 0.12 0.14 0.13 0.09 0.05 

0.01 0.04 0.07 0.11 0.13 0.12 0.09 0.05 
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We have also conducted a X 2 test in order to judge the goodness of  fit. As 
usual it is important to be extremely cautious with the results of  the ~2 test. 
The grouping rule we have adopted may lead to conclusions that are not 
matched by another grouping rules. Moreover the X 2 test is an asymptotic 
test. However we have only 79 observations in our data set. 

The grouping rule we have adopted is the rule A in Lemaire (1995), i.e. all 
the theoretical values > 1 and 80% of  the theoretical values > 5. 

The cells have been grouped as follows: (0,0), (0,1), (0, > 2), (1~0), (1,1), 
(1,2), ( i , >  3), (2,1), (2,2), (2,3), (2,_> 4), (3 ,>  0), (_> 4 , >  0). The X 2 values 
as well as the associated p-values are given in the following table. 

TABLE 3 

GOODNESS OF FIT TEST 

X. 2 df p-~'atue 

Poisson 5.36 9 0.80 

PIG 6.48 8 0.59 

NB 6.42 8 0.60 
Hofmann 6.42 7 0.49 

Based on this figures, all the fits are acceptable but the Poisson fit wins. This 
is coherent with the conclusions drawn after analysing the loglikelihoods. 
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