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Recursive hybrid algorithm for non-linear system identification
using radial basis function networks

s. CHENt, s. A. BILLINGSt and P. M. GRANTt

Recursive identification of non-linear systems is investigated using radial basis
function networks. A novel approach is adopted which employs a hybrid cluster
ing and least squares algorithm. The recursive clustering algorithm adjusts the
centres of the radial basis function network while the recursive least squares
algorithm estimates the connection weights of the network. Because these two
recursive learning rules are both linear, rapid convergence is guaranteed and this
hybrid algorithm significantly enhances the real-time or adaptive capability of
radial basis function models. The application to simulated real data are included
to demonstrate the effectiveness of this hybrid approach.

1. Introduction
Neural networks have been widely used in many areas of signal processing. A

particular network structure, namely the multi-layer perceptron, has been employed
in non-linear systems identification (Chen et al. 1990 a, 1990 d). This application is
based on the excellent approximation properties of the multi-layer perceptron
(Cybenko 1989, Funahashi 1989). On-line or adaptive identification of multi-layer
perceptron models can be achieved using the back-propagation algorithm (Rumel
hart et al. 1986) or the recursive prediction error algorithm (Chen et al. 1990 d).
Multi-layer perceptrons, however, are highly non-linear in the parameters and suffer
drawbacks of slow convergence and unpredictable solutions during learning.

The radial basis function (RBF) network offers a viable alternative to the
two-layer perceptron in signal processing applications. The RBF method has
traditionally been used for strict interpolation in multi-dimensional space (Powell
1985, 1987). The original RBF model required that there be as many RBF centres
as data points, which is rarely practical because the number of data points is usually
very large. Broomhead and Lowe (1988) removed the strict interpolation restric
tion. Their interpretation of the RBF network allows the use of less RBF centres
than data points and, therefore, provides a more suitable basis for the application
to signal processing.

Modelling non-linear systems using RBF networks has certain attractive advan
tages. The general approximation capabilities of the RBF network provides the
theoretical foundation of representing complex processes. Furthermore, the re
sponse of the RBF network is linear with respect to the connection weights of the
network. Provided that the other parameters, the RBF centres, can be chosen
appropriately, the linear least squares method can therefore be employed to
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1052 S. Chen et al.

estimate these weights. The performance of an RBF network critically depends
upon the chosen centres. The RBF centres should suitably sample the network
input domain and reflect the data distribution. For off-line system identification,
blocks of data are usually available. Broomhead and Lowe (1988) suggested that
the centres are randomly chosen from data points. This is clearly an unsatisfactory
method· for selecting centres. A better approach based on the orthogonal. least
squares algorithm (Chen et al. 1990b, 1990 c) has been developed to fit RBF
models. This algorithm not only provides the least squares estimate for the RBF
weights but also selects appropriate centres automatically from the data set.
Moreover, the information regarding how many centres are required to fit the data
adequately is revealed during the identification procedure and the selection of
centres is directly linked to the reduction of the error variance.

For on-line or adaptive applications of RBF models, however, some kind of
recursive identification algorithm is required. A simple solution is to fix the RBF
centres first and to update only the RBF weights in real-time using the recursive
least squares or least mean squares algorithm. This can only work well if variations
in the underlying system are small. It is advantageous to update RBF centres and
weights simultaneously because this will significantly improve both the modelling
capability and. the tracking property. Moody and Darken (1989) suggested using an
n-means clustering technique to adjust centres in real-time and derived a hybrid
clustering and least mean squares algorithm. In the present study we adapt this idea
to non-linear system identification using RBF models. In order to improve the
convergence properties further, we propose a hybrid clustering and Givens least
squares algorithm.

The n-means clustering algorithm partitions the data set into n clusters and
obtains' n cluster centres by minimizing the total squared error incurred in repre
senting the data set by the n cluster centres (Duda and Hart 1973). In general, only
a local minimum of the total squared error is found in this way. This is, however,
sufficient for the current application of the RBF network. The value of the total
squared error is unimportant in the present application. The aim is to allocate the
RBF centres in only those regions where the network input data exists and to reflect
data patterns by the positions of the centres. This n-means clustering algorithm can
be implemented recursively so that, if the data distribution is changing, the
distribution of centres can follow the variations of data patterns. The reason to
choose the Givens least squares algorithm (Gentleman 1973) is that it has superior
numerical properties over the ordinary least squares algorithm and it is inherently
recursive. The version of the Givens method employed in this study does not
require the square root computation (Gentleman 1973). A further advantage is that
the Givens algorithm can be implemented using systolic arrays (Gentleman and
Kung 1981).

The paper is organized as follows. Section 2 introduces a brief summary of RBF
networks applied to model single-input single-output non-linear systems. The
derivation of the hybrid clustering and Givens least squares algorithm is given in
§ 3, and application to a simulated time series process, a liquid level system and a
heat exchanger are included in § 4. The results obtained using two-layer perceptrons
trained by a parallel recursive prediction error algorithm (Chen et al. 1990 d) are
also given in § 4 as comparison. The extension to multi-input multi-output systems
is straightforward and this is discussed in § 5. Finally, some concluding remarks are
given in § 6.
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Algorithm for non-linear system identification 1053

2. ModeUing non-linear systems using RBF networks
Many single-input single-output non-linear systems can be described in terms of

some non-linear functional expansion of lagged inputs and outputs as follows

yet) = J.(y(t - I), ... , yet - ny), u(t - I), ... , u(t - nJ) + e(t) (I)

where y(t), u(t) and e(t) are the system output, input and white noise respectively;
ny and nu are the lags of the output and input respectively; and 1.( .) is some
non-linear function. Most of the discussion in the current study is based on this
system representation.

The assumption for the system representation (I) is that the noise source is
white and enters the system additively. In general, however, the noise source may be
correlated and can enter the system in a more complicated manner. These possibil
ities can be accommodated in the following more general system representation

y(t) = f,(y(t - I), ..., y(t - ny ) , u(t - I), ..., u(t - nu ) , e(t - I), ..., e(t - ne )) + e(t)

(2)

where n, is the lag of the noise, and e(t) is white. The system (2) is known as the
NARMAX model (Leontaritis and Billings 1985, Chen and Billings 1989). The
identification procedure developed in the present study can be extended to this
general system.

The RBF network depicted in Fig. I is a two-layer processing structure. The
first layer consists of an array of computing units. Each unit contains a parameter
vector called a centre, and this calculates the Euclidean distance between the centre
and the network input vector. The unit then passes the result through a non-linear
function. The second layer is essentially a linear combiner. The overall response of
such a network is a mapping f,: R'" -+ R, that is

n

f,(v) = L lJ,c/>( Ilv - c, II)
;-1

f,(v)

(3)

Linear Combiner

n Units

~,=~(llv -c, I \)

Figure I. Radial basis function network.
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1054 S. Chen et al.

where v E R'" is the network input vector; 4>( •) is a function from R + to R; II • II
denotes the euclidean norm; c, E R'", I ,;;; i ,;;; n, are the RBF centres; (Ji' I ,;;; i ,;;; n,
are the connection weights; and n is the number of computing units in the first
layer.

The aim in the present study is to use the RBF network response !,( .) to
capture or to approximate the underlying dynamics/,( .) in (I). Define m = ny + n u

and let

vet) = [yet - I) ... y(t - ny)u(t - I) ... u(t - nuW

The idea then becomes one that uses

yet) = j,.(v(t»

(4)

(5)

as the one-step-ahead predictor for yet). In the present study, 4>( .) is chosen as the
so-called thin-plate-spline function

4>(v) = v2 10g (v) (6)

This choice of 4>( .) provides good modelling capability and is discussed, for
example, by Powell (1987). Other choices of 4>( . ) can also be employed.

Whether a non-linear model is adequate can be tested using the following two
model validity approaches. Define the one-step-ahead prediction error or residual

€(t) = y(l) - yet) (7)

(8)

The first model validation method computes the following correlation functions
(Billings and Voon 1986).

'I'u(k) k;= 0 }
'I'u,(k) for all k

'I'q,u)(k) k;;:O
'I'u2',(k) for all k

'I'u2',2(k) for all k

where wet) = €(t + I)u(t + I), u 2'(t) = u 2(t) - u2(t) and U
2(1) is the time average or

mean value of u2(t). In general, if the correction functions (8) are within the 95%
confidence bands, ± 1·96/N'/

2
, the model is regarded as adequate, where N is the

number of data samples. The tests (8) were developed based on the facts that 'I'u(k)
and 'I'.,(k) alone are not sufficient to validate non-linear models and may even give
misleading information regarding the adequacy of the fitted model. The higher
order correlation tests are thus included (Billings and Voon 1986). The alternative
approach is the chi-squared statistical test (Bohlin 1978, Leontaritis and Billings
1987). Define an 'I-dimensional vector valued function

n(t) = [w(t)W(1 - I) ... w(t - 'I + IW (9)

where wet) is some function of the past inputs, outputs and prediction errors. The
chi-squared statistic is defined as

with
N

J1 = N- 1 L n(t)€(I)/U,
t= I

(10)

( I I)
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N

rrr = N- ' L n(t)nT(t)
t= I

1055

( 12)

where 11; is the variance of 8(t). If the values of' for several different choices of w(t)
are within the 95% acceptance region, the model is regarded as adequate. The
theoretical justification for this chi-squared test can be found in (Bohlin 1978,
Leontaritis and Billings 1987).

3. Hybrid clustering and Givens least squares algorithm
For on-line identification applications using the RBF network, some recursive

rules are essential to update the centres and weights. The centres should suitably
sample the network input domain and should be able to track the changing patterns
of data. Moody and Darken (1989) suggested the n-means clustering procedure as
a good updating rule for the RBF centres. The n-means clustering technique is well
documented in many pattern classification text books (e.g. Duda and Hart 1973).
Because the response of the network is linear with respect to its weights, it is natural
to consider the recursive least squares method for adjusting the weights. These
observations suggest the recursive identification algorithm for RBF models should
have a hybrid structure consisting of

(a) recursive n-means clustering sub-algorithm for adjusting the RBF centres;

(b) recursive least squares sub-algorithm for updating the RBF weights.

Details of these sub-algorithms are now given.
Given initial centres c,(O), I ,;;; i ,;;; n. and an initial learning rate for the centres

ae(O), at each sample t the recursive n-means clustering algorithm consists of the
following computational steps.

(i) Compute distances and find a minimum distance

aj(t) = Ilv(t) - c,(t -I) II, I,;;; t e; n

k = arg [min {aj(t), I ,;;; i e; n}J

(ii) Update centres and re-compute kth distance

cj(t) =cj(t -I), I';;;i';;;n and i"#k

Ck(t) = Ck(t - I) + aC<t)(v(t) - ck(t - I»

ak(t) = Ilv(t) - Ck(t) II
The initial centres are often chosen randomly. The learning rate should be ae(t) < I,
and should slowly decrease to zero. In the present appliction aC<t) is computed
according to

( 13)

where int [ 'J denotes the integer part of the argument. Other computing rules can
also be applied to aC<t).

The convergence properties of the n-means clustering procedure were studied by
MacQueen (1967). The n -means clustering is based on a linear learning rule, thus
guaranteeing rapid convergence. It is also an unsupervised procedure using only the
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1056 s. Chen et al.

network input data. No desired response is required and the procedure will not be
affected by the learning rule used for the weights. Notice the similarities between the
n-means clustering and Kohonen self-organizing algorithm (Kohonen 1987).

The recursive least squares algorithm is based on a recursive solution of the
normal equation. Define the hidden layer output vector at t as

and the connection weight vector at t as

0(/) = [B. (t) ... B.(tW

The weighted normal equation can then be written as

(X;W,X,)0(t) = X;W,y,

where

x, = [cIIT~I)]
cIlT(t)

s, = [y( I) ... y(tW

and W, is a txt diagonal matrix defined recursively by

W = [A.(t)W'_1 OJ WI = I
t 0 I'

(\4)

( 15)

(\6)

( 17)

(\8)

(\9)

A.(t) is the usual forgetting factor at t. The recursive least squares algorithm solves
(16) to give

0(t) = (X;W,X,)-IX;W,y, (20)

It is well known that if the number of parameters n is large, the least squares
problem may become ill-conditioned and the use of Givens transformations (Gen
tleman 1973) to solve the recursive least squares problem has numerical advantages
over the algorithms based directly on the normal equation. W:/2X, can be decom
posed into

W:/2X, = Q(t)S(t)

where

(21)

s(t) = (22)

and Q(t) is a t x n matrix with orthogonal columns that satisfy

QT(t)Q(t) = D(t) = diag {d l (t), ..., dn(t)}

0(t) can be obtained by solving the triangular system

S(t)0(t) = z;(t)

(23)

(24)
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where z(t) is an n-dimensional vector given by

z(t) = D- I(t)QT(t)W:12y,

1057

(25)

(26)

Givens least squares algorithm can be employed to derive (24) and thus to solve for
0(t). The algorithm is initialized by setting

:~~b)==oo }
S(O) = I

D(O) = lip

where I is the n x n identity matrix and p is a large positive scalar. The forgetting
factor A(t) is usually computed according to the rule (Ljung and Soderstrom 1983)

A(I) = AoA(1 - I) + I - An. (27)

AO and A( 0) are chosen to be less than but dose to 1. At each sample I, the
computational procedure is as follows.

(a) Perform Givens transformations

[

D I12(1 - I) [S(t -I) z(t - 1)1] [D I /2(1)

[0 ... 0 11.(1 - I)] -+

,5'12 [<I>T(I) y(I)]

where ,5 is initialized to I/A(I).
(b) Solve the triangular system (24) for 0(t).

[S(I) z(l)] ]
[0 0 11,(1)]

[0 0 0]

(28)

(29)

Explicit formulations for the Givens transformations will now be given. First let
I = I + n and introduce and I x I diagonal matrix D(I) as

- [D(I) 0] . - _
D(I) = 0 11;(1) = diag {d ,(I), ..., d,(I)}

Next define an I x I upper triangular matrix S(t) as

o
and denote

S(I) = [S(I) Z(I)]
0 ... 0 I

I S,2(1) Sl3(1)
o I . S23(t)
o 0····. .

. .... :.... [ ..s,_;,(t)

o '. 0 I

(30)

s1/2[<I>T(t) y(t)] = (b(O» 112[X\0)(t)...X\0)(I)] (31)

The Givens transformations (28) can then be written more concisely as

[D
I12(1 - I) [S(I - I)] ] [D I /2(1) [S(I)]]

(b(O» 112 [x\O)(I) ... xjO)(I)] -+ [0 ... 0] (32)

Assume that after i-I Givens transformations have been performed,

(bCO» 1/2(X\°I(I), ..., xjO)(I» (33)

is transferred to

(34)
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1058 S. Chen et al.

Then the ith Givens transformation transfers

0, , 0, d:/2(t - I), d:/2(t - I)sii+ I (t - I), ..., d:/2(t - I)s,/(t - I)}
0, , 0, (6(i-I»1/2X~i-I)(t), (6(i-I»1/2X~i+-ll)(t), (6(.-I)1/2X(i-I)(t) (35)

into

where

and

0, , 0, d:/2(t), d:/2(t)Sii+I(t), , d:/2(t)Si/(t) }

0, ,0, 0, (6(i»"2x~il,(t), , (Dli»1/2xji)(t)

diet) = d,(t - I) + 6(i-I)(X~i-I)(t»2

C = diet - I)/d,(t)

b = 6(i-I)X~i-I)(t)/d,(t)

6(i) = C 6(i-')

(36)

(37)

(38)
x~)(t) = X~-I)(t) - xli-I)(t)Sik(t - I)} _.
- () _ - ( I) b (I-I)() k - I + I, ..., ISik t - CSik t - + Xk t

For time-varying or non-stationary systems, in order to provide a continual
tracking capability, the time-decreasing learning rate cxc(t) in ( 13) can be replaced by
a constant learning rate CXc and a constant forgetting factor 0 < A< I can be
employed instead of A(t) given in (27). For certain applications, it is vital to reduce
computational load as much as possible, and the least squares sub-algorithm within
the hybrid structure may be replaced by the least mean squares sub-algorithm at the
cost of convergence speed.

4. Application examples
The hybrid clustering and Givens least squares algorithm derived in the previous

section was used to identify three systems.

Example I

This is a simulated time-series process. 1500 samples of data were generated by

yet) = (0,8 - O· 5 exp ( _y2(t - I»)y(t - I)

-(0'3 +0'gexp( _y2(t -1»)y(t -2) +0·1 sin (3' 1415926y(t -I» +e(t)

where the noise e(t) was a gaussian white sequence with mean zero and variance
0·04. The structure of the RBF model was defined by m = "» = 2 and n = 30. The
parameters in the hybrid algorithm were chosen to be

p = 1000, A.o = 0,99, A(O) = 0·95 and cxC<O) = 0·9.

Initial centres were randomly selected from the region [ - 2, 2] x [ - 2, 2].
The evolution of the mean square error (variance of the residuals) obtained

using the hybrid algorithm is plotted in Fig. 2. During the recursive identification
procedure, the mean square error was reduced from an initial 12 dB to the noise
floor, approaching -14 dB. The distribution of the observations and the final RBF
centres are depicted in Fig. 3. Several chi-squared tests for the final RBF network
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-14
o

Samples
1500

Figure 2. Evolution of mean square error (Example I). Solid: RBF network, dashed:
multi-layer perceptron.

were calculated and they were all within the 95% confidence band. Two typical
chi-squared tests and the autocorrelations of 6(t) are shown in Figs 4 and 5
respectively. The model validity tests confirm that this RBF network is an adequate
model for the time series.

It can easily be verified that without the noise e(t) this simulated system
generates a stable limit cycle as illustrated in Fig. 6. The identified RBF network
was used to produce iteratively the network output

Yd(t) =f,(vd(t»

where vAt) = [Yd(t - I)Yd(t - 2)]T. The iterative network outputs produce a simi
lar limit cycle as can be seen from Fig. 7. These two limit cycles have approxi
mately a period of 5, in the sense that every five samples approximately complete
a circle (211 phase angle) in the state space. However, the amplitudes of response
appear to change randomly. One hundred samples of the autonomous system
outputs and the iterative network outputs are shown in Fig. 8. Even though the
RBF network was identified using the noisy system observations, the iterative
network outputs closely matches the response of the autonomous system. This
demonstrates that the identified RBF model does capture the underlying dynamics
of the system.
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2

o

1
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'"

-1

-2
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.'

.

-1

S. Chen et aI.

o
y(t)

1

o

2

Figure 3. Distribution of observations and RBF centres. 1500 observation samples,
0: position of RBF centre.

The rate of convergence for the hybrid identification algorithm shown in Fig. 2
is quite remarkable. As a comparison, a two-layer perceptron was fitted to the data
using the parallel recursive prediction error algorithm (Chen et al. 1990d). This
paral1e1 recursive prediction error algorithm is known to have much better conver
gence properties over the back-propagation algorithm. The two-layer perceptron
had a structure of m = ny = 2 and 7 hidden nodes, giving rise to a total of 29
parameters. The evolution of the mean square error for this neutral network model
is also depicted in Fig. 2. It is clear that the RBF model trained by the hybrid
algorithm achieved much faster convergence.

Example 2
The process considered is a liquid level system. The system consists of a DC

water pump feeding a conical flask which in turn feeds a square tank. The system
input is the voltage to the pump motor and the system output is the water level in
the canonical flask: 1000 samples of data generated in an experiment are shown in
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33

o
o

1]

(a)

20

33

o
o

1]

(b)

20

Figure 4. Chi-squared tests (Example 1): (a) w(t) = e2(t - I)y(t - I);
(b) w(t) = e(t -1)y2(t -1); ........95% confidence band.

Fig. 9. The RBF model had a structure of m = ny + no = 3 + 5 and n = 40. The
parameters for the identification algorithm were chosen to be

p = 1000, Ao = 0·99, A.(O) =0,95 and (%c(O) =0·6

Random initial centres were used.
The evolution of the mean square error is depicted in Fig. 10. The mean square

error was reduced from the initial value of 2 dB to the final value of -26 dB. The
correlation tests for the identified model are shown in Fig. II. It is observed that at
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Figure 5. Autocorrelations of residuals (Example I). - . - 95% confidence band.

three points the values of <J>u,(k) are slightly outside the 95% confidence bands.
Several chi-squared tests were also computed. Again, only at a few isolated points
are statistics slightly outside the confidence band, and this was judged a good result,
considering that the data was from a real system and the identification algorithm
was a recursive one.

A two-layer perceptron with a structure of m = ny + nu = 3 + 5 and 5 hidden
nodes was also employed to identify this system using the parallel recursive
prediction error algorithm. The network had a total of 51 parameters. The
evolution of the mean square error is shown in Fig. 10, where it is seen that the
reduction in the mean square error was much slower compared with that of the
RBF model.

Example 3

The data was generated from a heat exchanger and contains 996 samples as
shown in Fig. 12. A description of this process and the experiment design was given
by Billings and Fadzil (1985). The dimension of the RBF centres was chosen to be
m = ny + nu = 6 + 6 and the number of centres was n = 90. The parameters for the
recursive algorithm were

p = 1000, Ao = o· 99, A(O) = o· 95 and IXc(O) = O· 5

Initial centres were set randomly.
During the identification procedure, the mean square error was reduced from

the initial 16 dB to the final -13·5 dB, and the evolution of the mean square error
is plotted in Fig. 13. The correlation tests and several chi-squared tests were
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Figure 6. Limit cycle generated by autonomous system response. 1500 samples, initial
condition: y(O) = 0·1 and y( -I) = 0·01.

computed, and they were all within the 95% confidence bands. Six chi-squared tests
are shown in Fig. 14.

The data set was also fitted to a two-layer perceptron trained by the parallel
recursive prediction error algorithm. The network structure was defined by
m = ny + nu = 6 + 6 and 6 hidden nodes, giving rise to a total of 85 parameters.
Two passes of the data set were performed and the resulting mean square error
sequences are plotted in Fig. 13. Initially the network parameters were set ran
domly. Possibly because the network parameters were in a region where gradients
of the mean square error were almost flat, the mean square error remained very
large and almost flat. After about 600 samples of updating, the parameter vector
moved out of the original region of flat gradients and the mean square error began
descending quickly. The parameter vector obtained at the end of the first pass was
then used as the initial value and the algorithm was initialized a second time. The
mean square error rapidly improved at first after a few recursions of the second
pass and then became flat again, most likely because the parameter vector was
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Figure 7. Limit cycle generated by iterative network response. 1500 samples, initial condi
tion: y(O) =0·\ and y( -I) =0·01.

trapped at a local minimum of the mean square error. These problems highlight the
difficulties associated with highly non-linear-in-the-parameter models trained by
gradient learning algorithms, and also serve to demonstrate advantages of the linear
learning rules for the RBF networks.

5. Extensions of the recursive hybrid algorithm
The hybrid algorithm of § 3 can be extended to the multi-input multi-output

system. Consider

y(t) =fs(y(t - I), ..., y(t - ny), u(t - I), ..., u(t - nu»+ e(t) (39)

and assume that the dimension of y(t) is p. A p-output RBF network is required to
model the above system, and the network input vector is given by

(40)



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

18
:2

5 
13

 S
ep

te
m

be
r 2

00
7 

Algorithm for non-linear system identification 1065

1.06

o

Samples

(a)

1.06

o

Samples

-1.06 j..:....:.-----o----+....:....:---!""!"'O-~-_--_
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Figure 8. (a) Autonomous system response; and (b) iterative network response. Initial
condition: y(O) = 0·1 and y( -1) = 0·01.

The hidden layer of the RBF network remains unchanged, and the output layer of
the network contains p linear combiners. Each of these linear combiners is defined
as

"
l,(t) =h,(v(t» = I 1I,A>(llv(t) -cjll), I ~i <»

j=l

(41)

p independent least squares estimators can be employed to identify the connection
weights of these linear combiners. The above discussion can obviously be applied to
the multi-input multi-output NARMAX model

yet) = /.,(y(t - 1), ... , yet - ny ) , u(t - I), ..., u(t - nu),

e(t - I), ..., e(t - ne» + e(t) (42)

6. Conclusions
A hybrid clustering and Givens least squares algorithm has been developed for

the recursive identification of non-linear systems using a radial basis function
network. This hybrid algorithm combines the supervised least squares method with
an unsupervised clustering technique. The centres of the radial basis function
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Figure 9. System outputs and inputs (Example 2): (a) outputs y(t); (b) inputs u(t).
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Figure 10. Evolution of mean square error (Example 2). Solid: RBF network, dashed:
multi-Iayerperceptron.
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Figure 11.

o 10
(e)

Correlation tests (Example 2): (a) 'l'a(k); (b) 'l'«<u)(k); (c) 'l'u,(k); (d) 'l'u,,(k);
(e) 'l'u,·,,(k); - . - 95% confidence band.

network are adjusted using the n-means clustering technique and the connection
weights of the network are updated using the least squares principle. These two
learning rules are implemented recursively and are thus appropriate for real-time or
adaptive applications. Furthermore, they are linear learning rules, thus guarantee
ing rapid convergence. Using three examples, a simulated non-linear time-series and
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Figure 12. System outputs and inputs (Example 3): (a) outputs y(t); (b) inputs u(t).
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Figure 13. Evolution of mean square error (Example 3). Solid: RBF network; dashed:
multi-layer perceptron.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

18
:2

5 
13

 S
ep

te
m

be
r 2

00
7 

Algorithm for non-linear system identification 1069
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Figure 14. Chi-squared tests (Example 3): (a) w(t) = 8(t - I); (b) w(t) = u(t - I); (c)
w(t) = y(t - I); (d) w(t) = S2(t - I); (e) w(t) = u 2(t - I); (f) w(t) = y2(t - I); __
95% confidence band.
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two real processes, it has been shown that this hybrid approach offers a powerful
on-line identification algorithm for radial basis function models.
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