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Abstract
Joint Cramér‐Rao lower bound ( JCRLB) is very useful for the performance evaluation of
joint state and parameter estimation ( JSPE) of non‐linear systems, in which the current
measurement only depends on the current state. However, in reality, the non‐linear
systems with two‐adjacent‐states dependent (TASD) measurements, that is, the current
measurement is dependent on the current state as well as the most recent previous state,
are also common. First, the recursive JCRLB for the general form of such non‐linear
systems with unknown deterministic parameters is developed. Its relationships with the
posterior CRLB for systems with TASD measurements and the hybrid CRLB for regular
parametric systems are also provided. Then, the recursive JCRLBs for two special forms
of parametric systems with TASD measurements, in which the measurement noises are
autocorrelated or cross‐correlated with the process noises at one time step apart, are
presented, respectively. Illustrative examples in radar target tracking show the effective-
ness of the JCRLB for the performance evaluation of parametric TASD systems.

1 | INTRODUCTION

To assess the performance of parameter estimators, we can
resort to the lower bound and the upper bound. They assess
estimation performance from two different aspects. The lower
bound puts a limit to the best estimation performance, whereas
the upper bound [1] puts a limit to the worst estimation per-
formance. For lower bound, the most well‐known one is the
Cramér‐Rao lower bound (CRLB). For upper bound, a lot of
work has been investigated. For example, a multi‐innovation
stochastic gradient algorithm and the corresponding param-
eter estimation errors upper bound were proposed in [2] for
time‐invariant stochastic systems. For systems with time‐
varying parameters, a finite data window stochastic gradient
identification algorithm was proposed in [3], in which the
minimum parameter estimation error upper bound was ob-
tained by choosing the data window length. A desirable
property for estimators is the consistency [4] if their estimation
errors converge to zero in a certain sense. For example, a hi-
erarchical least squares identification algorithm was proposed

in [5] by decomposing a dual‐rate system model into several
subsystems model for dual‐rate linear systems with noises. This
algorithm is consistent and has low computational complexity.
For general dual‐rate sampled‐data systems, a computationally
efficient algorithm was proposed in [6] using hierarchical
identification principle, in which the parameter estimates can
converge to their true values. When the measurements of the
systems are scarce, a gradient‐based parameter identification
method [7] was proposed and its convergence property was
also analysed.

Recursive state estimators for non‐linear systems have
been widely used in signal processing and control. The non‐
linear filters can be designed by using the Bayesian estimation
approach. However, in general, only suboptimal filters can be
obtained for non‐linear systems due to complicated non‐linear
multiple integrals. Among the suboptimal filters, the extended
Kalman filter (EKF) [8, 9] is probably the earliest and most
well‐known one. Its main idea is to approximate the non‐linear
systems as linear systems by first order Taylor series expansion
and ignore the higher order terms. So far, a large number of
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advanced non‐linear filters have been developed, for example,
the unscented filter (UF) [10, 11], quadrature Kalman filter
(QKF) [12, 13], cubature Kalman filter (CKF) [14–16], and so
forth. All these non‐linear filters aim to approximate the first‐
two moments used in the linear minimum mean‐squared error
(LMMSE) estimation. The UF approximates the first‐two
moments based on the unscented transformation of well‐
designed sigma‐points. The QKF calculates the first‐two
moments using the Gauss–Hermite quadrature integration
rules, but the number of integral points increases exponentially
as the dimension of state increases. The CKF transforms the
integral problem into a summation problem using a third‐
degree spherical‐radial cubature rule, by which it can
approximate the first‐two moments needed in the LMMSE. In
the recent years, another well‐known non‐linear filter is the
particle filter (PF) [17, 18]. The PF uses sequential Monte
Carlo method to generate a large number of samples to
characterize the posterior probability density. For the state
estimation of special systems, for example, bilinear systems,
the standard Kalman filter is not applicable. A state filtering
method was developed in [19] by using delta operator to
minimize the covariance matrix of state estimation errors for
single‐input–single‐output and multiple‐input–multiple‐output
bilinear systems. For linear systems with multistate delays,
extended state Kalman filter will suffer from heavy compu-
tational burden. To overcome this, a highly computationally
efficient state filter was proposed for such systems in [20]
following the same idea of [19].

All the above estimators mainly deal with the regular non‐
linear systems, in which the current measurement only depends
on the current state. However, in many real applications, the
non‐linear systems are more complex [19, 20]. For example,
non‐linear systems with two‐adjacent‐states dependent
(TASD) measurements are also common. Actually, non‐linear
systems with autocorrelated measurement noises or with cross‐
correlated process and measurement noises at one time step
apart [21] are two typical cases of such systems. To handle
these two cases, one way is to reformulate the measurement
equation as a new measurement equation which is dependent
on the current state as well as the most recent previous state. In
many real applications, the whiteness assumption for noise as
in the regular non‐linear systems cannot be completely satis-
fied, where the measurement noise is either autocorrelated or
cross‐correlated with the process noise. In the radar tracking
system, the measurement noises are always autocorrelated,
which usually influences the maneuvering target tracking per-
formance [22, 23]. In the global navigation satellite system,
suffering from signal outages and multi‐path error, the mea-
surement noise becomes autocorrelated [24–26]. Parameters
estimation is an important subject in modern signal processing
where the measurement noises involved is often autocorrelated
[27, 28]. The systems with dependent process and measure-
ment noises is also very common in practice [29]. Particle fil-
ters were proposed in [30] for these cases in which the process
and measurement noises are dependent. Some practical ap-
plications of models with dependent noises, for example,
sensor fusion and econometrics, have been shown in [31]. To

assess the performance of non‐linear filters, the posterior
CRLB (PCRLB) is proposed. In [32], a recursive approach to
compute the PCRLB was developed for filtering of regular
non‐linear dynamic systems. To evaluate the performance for
filtering of non‐linear systems with TASD measurements, a
recursive CRLB was developed in [33] for non‐linear systems
with the coloured noise, in which the first‐order coloured
measurement noise case is a typical TASD system, and a
recursive PCRLB was proposed in [34] for the non‐linear
systems with cross‐correlated process and measurement noises
at one time step apart. In [35], a conditional PCRLB for TASD
systems was proposed, which depends on the measurement
history up to now. Because it relies on a specific imple-
mentation, it can be used to guide online sensor selection.

Actually, most discrete‐time dynamic systems may
incorporate some parameters which can be random or non‐
random. Joint state and parameter estimation (JSPE) has got
a growing interest in various applications, such as target
tracking [36], signal processing [37], sensor registration [38].
The main approaches for JSPE include joint filter [39, 40],
dual filter [41, 42] expectation maximization method [43, 44]
and so forth. Joint filter schemes usually augment the pa-
rameters into a state vector and use various kinds of filters,
for example, EKF, UKF, and so forth, to simultaneously
estimate both. Dual filter schemes use two separate filters
for state and parameter estimation. It decouples parameters
and states and ignores the relevant information between
them. Expectation maximization schemes solve the joint
estimation problem by two iterative steps, in which the E‐
step assumes that the parameters are known and estimates
the states, and the M‐step uses the estimated states to
identify the system parameters. To assess the performance
for JSPE, hybrid CRLB (HCRLB) is introduced in [45–49].
A unified framework for HCRLB applied to the joint esti-
mation of random and non‐random parameters was sum-
marized in [50]. Then the asymptotic tightness of the
HCRLB was analysed in [51]. For the purpose of compu-
tational efficiency, the recursive form of HCRLB was pro-
posed for the ground moving extended target tracking
problem [52], and the more general form of it was obtained
for the discrete‐time systems involving unknown time
invariant deterministic parameters in [53]. Furthermore, the
HCRLB was extended to the non‐linear systems with time‐
variant measurement parameters in [54].

Performance evaluation of JSPE for parametric TASD
systems has not been studied yet. This article studies this
problem and aims at proposing a recursive performance bound
for the JSPE of parametric systems with TASD measurements.
The contributions of this paper are as follows.

1. We develop a recursive joint CRLB ( JCRLB) for the general
form of parametric TASD systems.

2. Its relationships with the PCRLB for the TASD systems
and the HCRLB for parametric regular systems are dis-
cussed. It is found that both the PCRLB for TASD systems
and the HCRLB for regular parametric systems are special
cases of the JCRLB for parametric TASD systems.
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3. We present specific JCRLBs for two special cases of para-
metric TASD systems, including non‐linear systems with
autocorrelated measurement noises or with cross‐correlated
process and measurement noises at one time step apart.

The rest of this article is organized as follows. Section 2
formulates the JCRLB problem and presents the non‐linear
TASD systems with unknown deterministic parameters. Then,
a recursive JCRLB to evaluate the performance of JSPE for
these systems is proposed in Section 3. Section 4 develops the
JCRLBs for two specific non‐linear parametric systems. In
Section 5, some illustrative examples in radar target tracking
are provided to verify the effectiveness of the proposed
JCRLB. Section 6 concludes this paper.

2 | PROBLEM FORMULATION

As we know, the classical CRLB is suitable for the estimation of
non‐random parameters, whereas the Bayesian CRLB is appli-
cable to random parameters. In joint parameter estimation
problem, one wishes to estimate an unknown joint parameter
vector χ = (x0, θ0)0 given themeasurement z, wherex is a random
parameter vector and θ is a non‐random parameter vector. The
joint Fisher information matrix ( JFIM) for χ is then

J ¼ E½−Δχ
χ lnpðx ; z|θÞ�

where p(x, z|θ) is the joint conditional probability density
function (PDF), Δ denotes the second‐order derivative oper-
ator, that is, Δb

a ¼ ∇a∇0b, and ∇ denotes the gradient operator.
Let bχ ðzÞ be an unbiased estimator of χ. The JCRLB on the

mean squared error (MSE) is defined as the inverse of the
JFIM [49]:

E ½bχ ðzÞ − χ �½bχ ðzÞ − χ �0
� �

≥ J −1

Consider the following general form of non‐linear para-
metric systems with TASD measurements.

x kþ1 ¼ f kðx k; θx;w kÞ ð1Þ

zk ¼ hkðx k; x k−1; θz; v kÞ ð2Þ

where θx and θz are unknown as the deterministic parameter
vectors, the process noise hwki and the measurement noise
hvki are mutually independent white noises with PDFs p(wk|
β) and p(vk|γ), respectively, which depend on unknown
deterministic parameter vectors β and γ, and the initial state x0 is
independent of the process andmeasurement noises with PDF p
(x0|α), which depends on the unknown deterministic parameter
α. The joint estimand (quantity to be estimated) consists of the
system state x k ∈ Rn and non‐random parameter vector
θ¼ ½α0; β0; γ0; θ0x; θ

0
z�
0 ∈ Rm, composed of all unknown deter-

ministic parameters.

Unlike in regular parametric systems, the measurement zk
in TASD systems depends on both the current state xk and the
most recent previous state xk−1. The main goal of this paper is
to obtain a recursive JCRLB for filtering of non‐linear para-
metric systems with TASD measurements.

3 | JCRLB FOR PARAMETRIC TASD
SYSTEMS

3.1 | JCRLB

From Equations (1) and (2), the joint conditional probability
distribution of x k+1 = [x0

0, …, xk+1
0 ]0 and z k+1 = [z10, …, z k+1

0 ]0

given the parameter θ at arbitrary time k + 1 is

pkþ1 ≜ p x kþ1; zkþ1
�
�
�θ

� �

¼ p x k; zk
�
�
�θ

� �
⋅ p x kþ1jx

k; zk; θ
� �

⋅ pðzkþ1jx kþ1; x
k; zk; θÞ

¼ pk ⋅ pðx kþ1jx k; θÞ ⋅ pðzkþ1jx kþ1; x k; θÞ

ð3Þ

Definition 1 Define bχ k and bχ k as estimates of joint
estimands χk = [(xk)0, θ0]0 and χk = [(xk)0, θ0]0,
respectively.

Definition 2 The MSE of bχ k at time k is defined as

MSEðbχ k
Þ ≜ E½eχ k

ðeχ k
Þ
0
� ¼ ∫eχ k

ðeχ k
Þ
0pkdxkdzk

and the MSE of bχ k at time k is defined as

MSEðbχ kÞ ≜ E½eχ kðeχ kÞ
0
� ¼ ∫eχ kðeχ kÞ

0pðx k; z
kjθÞdxkdzk

where eχ k
¼ bχ k − χ k and eχ k ¼ bχ k − χ k are the associated esti-

mation errors, p(xk, zk|θ) is the joint conditional probability
distribution of xk and zk given θ

Definition 3 Define the JFIM Jk about the joint esti-
mand sequence χk as

J k ≜ E½−Δχ k

χ k ln pk�
�
�
�
θ¼θ0

¼ − ∫ ðΔχ k

χ k ln pkÞpkdxkdzk

�
�
�
θ¼θ0

where θ0 is the true value of the unknown non‐random
parameter θ.

Lemma 1 The MSE of a joint unbiased estimate bχ k

is bounded from below by the inverse of the J k [49] as
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MSEðbχ k
Þ ≜ E½eχ k

ðeχ k
Þ
0
� ≥ ðJ kÞ

−1

Definition 4 Define J −1
k as the (n + m) � (n + m)

right‐lower block of ðJ kÞ
−1 and Jk as the JFIM about

xk and θ,

Lemma 2 The MSE of a joint unbiased estimate bχ k is
bounded from below by the inverse of Jk [51, 53] as

MSEðbχ kÞ ≜ E½eχ kðeχ kÞ
0
� ≥ J −1

k

We aim to obtain a recursive form to calculate J −1
k without

manipulating the large matrix J k.

Theorem 1 Given the Fisher information matrix
Jk about xk and θ as

J k ¼
J x;x
k J x;θ

k

J θ;x
k J θ;θ

k

2

4

3

5 ð4Þ

the recursion from Jk to Jk+1 can be obtained as

J x;x
kþ1 ¼D22

k − D21
k ½D

11
k þ J x;x

k �
−1

D12
k

J x;θ
kþ1 ¼D23

k − D21
k ½D

11
k þ J x;x

k �
−1
ðD13

k þ J x;θ
k Þ ¼ ðJ

θ;x
kþ1Þ

0

J θ;θ
kþ1 ¼D33

k þ J θ;θ
k − ðD31

k þ J θ;x
k Þ½D

11
k þ J x;x

k �
−1
ðD13

k þ J x;θ
k Þ

8
>>>><

>>>>:

ð5Þ

where

D11
k ¼ Epkþ1f−Δ

xk
xk
½lnpðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1; x k; θÞ�g

D12
k ¼ Epkþ1f−Δ

xkþ1
xk
½lnpðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1;x k; θÞ�g

D13
k ¼ Epkþ1f−Δ

θ
xk
½lnpðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1; x k; θÞ�g

D22
k ¼ Epkþ1f−Δ

xkþ1
xkþ1
½lnpðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1;x k; θÞ�g

D23
k ¼ Epkþ1f−Δ

θ
xkþ1
½lnpðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1;x k; θÞ�g

D33
k ¼ Epkþ1f−Δ

θ
θ½lnpðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1; x k; θÞ�g

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð6Þ

and D12
k ¼ ðD

21
k Þ
0, D13

k ¼ ðD
31
k Þ
0, D23

k ¼ ðD
32
k Þ
0. The initial

information J0 can be obtained from the prior probability
distribution p(x0|α) as

J x;x
0 ¼ E½−Δx 0

x 0
ln p x 0jαð Þ�

J x;θ
0 ¼ E½−Δθ

x 0
ln p x 0jαð Þ� ¼ ðJ θ;x

0 Þ
0

J θ;θ
0 ¼ E½−Δθ

θ ln p x 0jαð Þ�

8
>>><

>>>:

ð7Þ

Proof See Appendix 1.

Remark 1 If p(x0|α) is not available, then J x;x
0 ¼ 0,

J x;θ
0 ¼ ðJ

θ;x
0 Þ
0
¼ 0, and J θ;θ

0 ¼ 0. Next, we discuss two
commonly encountered cases in practice, including the
additive Gaussian noise case and linear additive
Gaussian noise case.

Corollary 1 Suppose that the discrete‐time non‐linear
system (Equations (1) and (2)) is driven by additive
Gaussian noises as

x kþ1 ¼ f kðx k; θxÞ þw k ð8Þ

zk ¼ hkðx k; x k−1; θzÞ þ v k ð9Þ

where the noises hwki and hvki are mutually independent
white Gaussian processes with zero mean and invertible
covariance matrices Qk and Rk, respectively. Then Equation (6)
will be simplified to

D11
k ¼ Ef½∇xkf

0
kðx k; θxÞ�Q

−1
k ½∇xkf

0
kðx k; θxÞ�

0
g

þ Ef½∇xkh
0
kþ1ðx kþ1; x k; θzÞ�

� R−1
kþ1½∇xkh

0
kþ1ðx kþ1; x k; θzÞ�

0
g

D12
k ¼ −E ∇xkf

0

kðx k; θxÞ
� �� �

Q−1
k

þ E ½∇xkh
0
kþ1ðx kþ1; x k; θzÞ�

�

⋅R−1
kþ1½∇xkþ1h

0
kþ1ðx kþ1; x k; θzÞ�

0
o

D13
k ¼ Ef½∇xkf

0

kðx k; θxÞ�Q
−1
k ½∇θf

0

kðx k; θxÞ�
0
g

þ Ef½∇xkh
0
kþ1ðx kþ1; x k; θzÞ�

� R−1
kþ1½∇θh

0
kþ1ðx kþ1; x k; θzÞ�

0
g

D22
k ¼Q−1

k þ E ½∇xkþ1h
0
kþ1ðx kþ1; x k; θzÞ�

�

⋅R−1
kþ1½∇xkþ1h

0
kþ1ðx kþ1; x k; θzÞ�

0
o

D23
k ¼ −Q−1

k Ef½∇θf
0
kðx k; θxÞ�

0
g

þ E ½∇xkþ1h
0
kþ1ðx kþ1; x k; θzÞ�

�

⋅R−1
kþ1½∇θh

0
kþ1ðx kþ1; x k; θzÞ�

0
o

D33
k ¼ Ef½∇θf

0

kðx k; θxÞ�Q
−1
k ½∇θf

0

kðx k; θxÞ�
0
g

þ Ef½∇θh
0
kþ1ðx kþ1; x k; θzÞ�

� R−1
kþ1½∇θh

0
kþ1ðx kþ1; x k; θzÞ�

0
g

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð10Þ
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where θ = [θx
0 , θz0 ]0

Proof See Appendix 2.

Corollary 2 Suppose that the discrete‐time system
(Equations (8) and (9)) is further reduced to a linear
system with additive Gaussian noises as

x kþ1 ¼ F kx k þ F θ
kθx þw k ð11Þ

zk ¼H kx k þ Ck−1x k−1 þH θ
kθz þ v k ð12Þ

where the noises hwki and hvki are mutually independent
white Gaussian processes with zero mean and invertible
covariance matrices Qk and Rk, respectively. Then Equa-
tion (10) will be simplified to

D11
k ¼ F 0kQ

−1
k F k þ C 0kR

−1
kþ1Ck

D12
k ¼ −F 0kQ

−1
k þ C 0kR

−1
kþ1H kþ1 ¼ ðD

21
k Þ
0

D13
k ¼ F 0kQ

−1
k F θ

k; 0
� �

þ C 0kR
−1
kþ1½0;H

θ
kþ1� ¼ ðD

31
k Þ
0

D22
k ¼Q−1

k þH 0kþ1R
−1
kþ1H kþ1

D23
k ¼ −Q−1

k ½F
θ
k; 0� þH 0kþ1R

−1
kþ1½0;H

θ
kþ1� ¼ ðD

32
k Þ
0

D33
k ¼ ½F

θ
k; 0�

0
Q−1

k ½F
θ
k; 0� þ ½0;H

θ
kþ1�

0
R−1

kþ1½0;H
θ
kþ1�

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð13Þ

where 0's are zero matrices with appropriate dimensions.

Proof See Appendix 3.

3.2 | Relationship with the PCRLB for
TASD systems

Corollary 3 Suppose that the discrete‐time system
(Equations (1) and (2)) is reduced to the following non‐
parametric non‐linear TASD system

x kþ1 ¼ f kðx k;w kÞ ð14Þ

zk ¼ hkðx k; x k−1; v kÞ ð15Þ

where the process noise hwki and the measurement noise hvki

are mutually independent white noise sequences. The initial
state x0 is independent of the process and measurement noises.
Then the recursion for Jk in Theorem 1 will be reduced to

J kþ1 ¼D22
k − D21

k ½D
11
k þ J k�

−1
D12

k ð16Þ

where

D11
k ¼ Epkþ1f−Δ

xk
xk
½lnpðx kþ1jxkÞ þ lnpðzkþ1jx kþ1; x kÞ�g

D12
k ¼ Epkþ1f−Δ

xkþ1
xk
½lnpðx kþ1jx kÞ þ lnpðzkþ1jx kþ1; x kÞ�g

¼ðD21
k Þ
0

D22
k ¼ Epkþ1f−Δ

xkþ1
xkþ1
½lnpðx kþ1jx kÞ þ lnpðzkþ1jx kþ1; x kÞ�g

8
>>>>>>>><

>>>>>>>>:

ð17Þ

pkþ1 ≜ pðx kþ1; zkþ1Þ ð18Þ

This is exactly the FIsM for non‐parametric TASD systems
proposed in [33, 34]. Obviously, Equation (16) is a special case
of the JCRLB in Theorem 1.

3.3 | Relationship with the HCRLB for
regular parametric systems

In regular parametric systems, the current measurement zk
only depends on the current state xk, that is, zk = hk(xk, vk,
θz). This is a special case of Equation (2). For such systems,
the likelihood PDF p(zk+1|xk+1, xk, θ) in Equation (3) will
be reduced to p(zk+1|xk+1, θ). As a result, in Equation (6)
we have

Epkþ1f−Δ
xk
xk
½ln pðzkþ1jx kþ1; x k; θÞ�g

¼ Epkþ1f−Δ
xk
xk
½ln pðzkþ1jx kþ1; θÞ�g ¼ 0

Similarly,

Epkþ1f−Δ
xkþ1
xk
½lnpðzkþ1jx kþ1; x k; θÞ�g ¼ 0

Epkþ1f−Δ
θ
xk
½lnpðzkþ1jx kþ1; x k; θÞ�g ¼ 0

Then, Equation (6) will be simplified to

D11
k ¼ Epkþ1f−Δ

xk
xk
½ln pðx kþ1jx k; θÞ�g

D12
k ¼ Epkþ1f−Δ

xkþ1
xk
½ln pðx kþ1jx k; θÞ�g

D13
k ¼ Epkþ1f−Δ

θ
xk
½ln pðx kþ1jx k; θÞ�g

D22
k ¼ Epkþ1f−Δ

xkþ1
xkþ1
½ln pðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1; θÞ�g

D23
k ¼ Epkþ1f−Δ

θ
xkþ1
½ln pðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1; θÞ�g

D33
k ¼ Epkþ1f−Δ

θ
θ½ln pðx kþ1jx k; θÞ þ ln pðzkþ1jx kþ1; θÞ�g

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð19Þ
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The JFIM Jk in Equation (5) with Equation (6) replaced by
Equation (19) is exactly the FIM for regular parametric systems
proposed in [53]. Therefore, Equation (19) is a special case of
the JCRLB in Theorem 1.

4 | JCRLB FOR TWO SPECIAL TYPES OF
NON‐LINEAR SYSTEMS

The non‐linear parametric systems, in which the measurement
noises are either autocorrelated or cross‐correlated with the
process noises at one time step apart, are two special types of
TASD systems. Specific JCRLBs for these two types of systems
will be presented next.

4.1 | JCRLB for non‐linear systems with
autocorrelated measurement noises

Consider the following non‐linear system:

x kþ1 ¼ f kðx k; θxÞ þw k ð20Þ

y k ¼ lkðx k; θzÞ þ ek ð21Þ

where θx and θz are unknown deterministic parameter vectors,
the process noise hwki is white, the measurement noise heki is
autocorrelated satisfying the following first‐order autore-
gressive(AR) model [23].

ek ¼Ψk−1ek−1 þ ξk−1 ð22Þ

where the driven noise hξk−1i is white, hwki and hξk−1i are
mutually independent, and both independent of the initial state
x0 as well.

The difference of two adjacent measurements yields

zk ¼ y k − Ψk−1y k−1 ð23Þ

By treating zk as a pseudo measurement, we have the
following TASD measurement equation

zk ¼ lkðx k; θzÞ − Ψk−1lk−1ðx k−1; θzÞ þ ξk−1

¼ hkðx k; x k−1; θzÞ þ v k ð24Þ

where

hkðx k; x k−1; θzÞ ¼ lkðx k; θzÞ − Ψk−1lk−1ðx k−1; θzÞ

v k ¼ ξk−1

Obviously the pseudo measurement noise hvki is white,
and independent of hwki and x0.

Applying Theorem 1 to the equivalent TASD system
(Equations (20) and (24)), we can obtain the recursive JCRLB for
non‐linear systems with autocorrelated measurement noises.

Next we discuss some specific forms of the JFIM for non‐
linear systems with autocorrelated measurement noises when
the noises are Gaussian and the systems are linear.

Theorem 2 For the non‐linear system (Equations (20)
and (22)), if w k ∼Nð0;QkÞ and ξk ∼Nð0;RkÞ, then
Equation (6) in Theorem 1 will be simplified to

D11
k ¼ Ef½∇xkf

0

kðx k; θxÞ�Q
−1
k ½∇xkf

0

kðx k; θxÞ�
0
g

þ Ef½∇xkl
0
kðx k; θzÞΨ0k�R

−1
k ½∇xkl

0
kðx k; θzÞΨ0k�

0
g

D12
k ¼ −Ef½∇xkf

0
kðx k; θxÞ�gQ

−1
k

− Ef½∇xkl
0
kðx k; θzÞΨ0k�R

−1
k ½∇xkþ1l

0
kþ1ðx kþ1; θzÞ�

0
g

D13
k ¼ Ef½∇xkf

0

kðx k; θxÞ�Q
−1
k ½∇θf

0

kðx k; θxÞ�
0
g

− E ½∇xkl
0
kðx k; θzÞΨ0k�R

−1
k

�
∇θl

0
kþ1ðx kþ1; θzÞ

− ∇θl
0
kðx k; θzÞΨ0k

0
�

D22
k ¼Q−1

k þ E½∇xkþ1l
0
kþ1ðx kþ1; θzÞ�

⋅ R−1
k ½∇x kþ1l

0
kþ1ðx kþ1; θzÞ�

0�

D23
k ¼ −Q−1

k Ef½∇θf
0

kðx k; θxÞ�
0
g þ E½∇xkþ1l

0
kþ1ðx kþ1; θzÞ�

⋅ R−1
k ½∇θl

0
kþ1ðx kþ1; θzÞ − ∇θl

0
kðx k; θzÞΨ0k�

0�

D33
k ¼ Ef½∇θf

0

kðx k; θxÞ�Q−1
k ½∇θf

0

kðx k; θxÞ�
0
g

þ E½∇θl
0
kþ1ðx kþ1; θzÞ − ∇θl

0
kðx k; θzÞΨ0k�R

−1
k

⋅ ½∇θl
0
kþ1ðx kþ1; θzÞ − ∇θl

0
kðx k; θzÞΨ0k�

0�

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð25Þ

where θ = [θx
0 , θz0 ]0

Proof See Appendix 4.

Remark 2 Suppose that the non‐linear system (Equa-
tions (20) and (22)) does not depend on any non‐
random parameters, that is, θ ∈∅. By applying Cor-
ollary 3, we can obtain the PCRLB for non‐linear
systems with autocorrelated measurement noises,
which is the same as Corollary 3.5 in [33].

Corollary 4 If the non‐linear system (Equations (20)
and (22)) is further reduced to a linear system
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x kþ1 ¼ F kx k þ F θ
kθx þw k

y k ¼ Lkx k þ Lθ
kθz þ ek

ek ¼Ψk−1ek−1 þ ξk−1

8
>><

>>:

ð26Þ

then Equation (25) in Theorem 2 will be further simplified to

D11
k ¼ F 0kQ

−1
k F k þ L0kΨ

0
kR

−1
k ΨkLk

D12
k ¼ −F 0kQ

−1
k − L0kΨ

0
kR

−1
k Lkþ1 ¼ ðD

21
k Þ
0

D13
k ¼ F 0kQ

−1
k ½F

θ
k; 0� − L0kΨ

0
kR

−1
k ð½0; L

θ
kþ1� − Ψk½0; Lθ

k�Þ

D22
k ¼Q−1

k þ L0kþ1R
−1
k Lkþ1

D23
k ¼ −Q−1

k ½F
θ
k; 0� þ L0kþ1R

−1
k ð½0; L

θ
kþ1� − Ψk½0; L

θ
k�Þ

D33
k ¼ ½F

θ
k; 0�

0
Q−1

k ½F
θ
k; 0� þ ð½0; L

θ
kþ1� − Ψk½0; Lθ

k�Þ
0
R−1

k

⋅ð½0; Lθ
kþ1� − Ψk½0; L

θ
k�Þ

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð27Þ

where 0's are zero matrices with appropriate dimensions.

4.2 | JCRLB for non‐linear systems with
noises cross‐correlated at one time step apart

Consider the following non‐linear system:

x kþ1 ¼ f kðx k; θxÞ þw k ð28Þ

y k ¼ lkðx k; θzÞ þ ek ð29Þ

where θx and θz are unknown deterministic parameter vectors,
hwki and heki are zero‐mean white noises cross‐correlated at
one time step apart [30] and independent of the initial state x0

as well, satisfying

covðw kÞ ¼Qk

covðekÞ ¼ E k

E½w ke
0
j� ¼ U kδk;j−1

where δk,j−1 is the Kronecker delta function.
As in [35], the following TASD measurement equation can

be obtained

zk ¼ lkðx k; θzÞ þ ek þGkðx k − f k−1ðx k−1; θxÞ − w k−1Þ

¼ lkðx k; θzÞ þGkðx k − f k−1ðx k−1; θxÞÞ þ ek − Gkw k−1

¼ hkðx k; x k−1; θÞ þ v k

ð30Þ

where

hkðx k; x k−1; θÞ ¼ lkðx k; θzÞ þGkðx k − f k−1ðx k−1; θxÞÞ

v k ¼ ek − Gkw k−1

Gk ¼ U 0k−1Q
−1
k−1

θ¼ ½θ0x; θ
0
z�
0

and the pseudo measurement noise hvki and hwk−1i are mutu-
ally independent white noises, and the mean and covariance of
hvki are zero and Rk ¼ E k − U 0k−1Q

−1
k−1U k−1, respectively.

Applying Theorem 1 to the equivalent TASD system
(Equations (28) and (30)), we can obtain the recursive JCRLB
for non‐linear systems with cross‐correlated process and
measurement noises at one time step apart.

Next we discuss some specific forms of the JFIM for non‐
linear systems with noises cross‐correlated at one time step
apart when the noises are Gaussian and the systems are linear.

Theorem 3 For the non‐linear system (Equations (28)
and (29)), if w k ∼Nð0;QkÞ and ek ∼Nð0;E kÞ, then
Equation (6) in Theorem 1 will be simplified to

D11
k ¼ Ef½∇x kf

0

kðx k; θxÞ�Q
−1
k ½∇x kf

0

kðx k; θxÞ�
0
g

þ Ef½∇x kf
0

kðx k; θxÞG
0
kþ1�R

−1
kþ1½∇x kf

0

kðx k; θxÞG
0
kþ1�

0
g

D12
k ¼ −E ∇x kf

0

kðxk; θxÞ
� �� �

Q−1
k − E½∇x kf

0

kðx k; θxÞG
0
kþ1�

⋅ R−1
kþ1½∇x kþ1l

0
kþ1ðx kþ1; θzÞ þG0kþ1�

0�
¼ ðD21

k Þ
0

D13
k ¼ Ef ∇x kf

0

kðx k; θxÞ
� �

Q−1
k ½∇θf

0

kðx k; θxÞ�
0
g

− E ½∇x kf
0
kðx k; θxÞG

0
kþ1�R

−1
kþ1

�

⋅ ∇θ½ l0kþ1ðx kþ1; θzÞ − ∇θf
0
kðx k; θxÞG

0
kþ1
�0
o
¼ ðD31

k Þ
0

D22
k ¼Q−1

k þ E
�
½∇x kþ1l

0
kþ1ðx kþ1; θzÞ þG0kþ1�

⋅ R−1
kþ1½∇x kþ1l

0
kþ1ðx kþ1; θzÞ þG0kþ1�

0�

D23
k ¼ −Q−1

k Ef½∇θf
0
kðx k; θxÞ�

0
g

þ E
�
½∇x kþ1l

0
kþ1ðx kþ1; θzÞ þG0kþ1�R

−1
kþ1

⋅ ½∇θl
0
kþ1ðxkþ1; θzÞ − ∇θf

0

kðx k; θxÞG
0
kþ1�

0�
¼ ðD32

k Þ
0

D33
k ¼ Ef½∇θf

0

kðx k; θxÞ�Q
−1
k ½∇θf

0

kðx k; θxÞ�
0
g

þ E
�
½∇θl

0
kþ1ðxkþ1; θzÞ − ∇θf

0

kðx k; θxÞG
0
kþ1�

⋅ R−1
kþ1½∇θl

0
kþ1ðx kþ1; θzÞ − ∇θf

0

kðx k; θxÞG
0
kþ1�

0�

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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ð31Þ

Proof See Appendix 5.

Remark 3 Suppose that the non‐linear system (Equa-
tions (28) and (29)) does not depend on any non‐random
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parameters, that is, θ ∈ ∅. By applying Corollary 3, we
can obtain the PCRLB for non‐linear systems with
noises cross‐correlated at one time step apart, which is
the same as Theorem 4 in [34].

Corollary 5 If the non‐linear system (Equations 28
and 29) is further reduced to a linear system,

x kþ1 ¼ F kx k þ F θ
kθx þw k ð32Þ

y k ¼ Lkx k þ Lθ
kθz þ ek ð33Þ

then Equation (31) in Theorem 3 will be further simplified to

D11
k ¼ F 0kQ

−1
k F k þ F 0kG

0
kþ1R

−1
kþ1Gkþ1F k

D12
k ¼ −F 0kQ

−1
k − F 0kG

0
kþ1R

−1
kþ1ðL

0
kþ1 þG0kþ1Þ

0
¼ ðD21

k Þ
0

D13
k ¼ F 0kQ

−1
k ½F

θ
k; 0� − F 0kG

0
kþ1R

−1
kþ1

⋅ð½0; Lθ
kþ1� − Gkþ1½F

θ
k; 0�Þ ¼ ðD

31
k Þ
0

D22
k ¼Q−1

k þ ðL
0
kþ1 þG0kþ1ÞR

−1
kþ1ðL

0
kþ1 þG0kþ1Þ

0

D23
k ¼ −Q−1

k ½F
θ
k; 0� þ ðL

0
kþ1 þG0kþ1ÞR

−1
kþ1

⋅ð½0; Lθ
kþ1� − Gkþ1½F

θ
k; 0�Þ ¼ ðD

32
k Þ
0

D33
k ¼ ½F

θ
k; 0�

0
Q−1

k ½F
θ
k; 0� þ ð½0; L

θ
kþ1� − Gkþ1½F

θ
k; 0�Þ

0
R−1

kþ1

⋅ð½0; Lθ
kþ1� − Gkþ1½F

θ
k; 0�Þ

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð34Þ

where 0's are zero matrices with appropriate dimensions.

5 | ILLUSTRATIVE EXAMPLES

In this section, numerical examples in the radar target tracking
are provided to demonstrate the effectiveness of the proposed
recursive JCRLB for JSPE of non‐linear parametric systems
with TASD measurements. However, to the best of our
knowledge, there does not exist any unbiased joint estimator
for this problem. So we design the following numerical ex-
amples to show how hard it is to jointly estimate the target
motion state and radar measurement biases.

Consider a single target with coordinated turn motion in
the two‐dimensional plane [14, 16, 29, 33].

X kþ1 ¼

1
sinωT

ω
0

cosωT − 1
ω

0 cosωT 0 −sinωT

0
1 − cosωT

ω
1

sinωT
ω

0 sinωT 0 cosωT

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

X k þw k ð35Þ

where X k ¼ xk; _xk; yk; _yk
� �0 is the state vector, T = 1 s is the

sampling interval, ω = 2◦s−1 is the turning rate, wk is a zero‐
mean white Gaussian process noise with covariance Qk = cov
(wk) = diag(qM, qM), q = 0.01 m2 s−3 and

M ¼

T 3

3
T 2

2

T 2

2
T

2

6
6
6
4

3

7
7
7
5

ð36Þ

A two‐dimensional radar located at the origin is used to
track the motion of the target

zkþ1 ¼
rkþ1
θkþ1

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2kþ1 þ y2kþ1
q

tan−1 ykþ1
xkþ1

� �

2

6
6
6
4

3

7
7
7
5
þ

Δr

Δθ

� �

þ ekþ1

ð37Þ

where zk+1 is the radar measurement vector consisting of the
range measurement rk+1 and the bearing measurement θk+1,
Δr and Δθ are range and bearing measurement biases, which
are unknown non‐random parameters with ground truth
20 m and 5 mrad, respectively, and hek+1i is the measure-
ment noise.

5.1 | Example 1: autocorrelated
measurement noises

In this example, we assume that the measurement noise hek+1i

in Equation (37) is autocorrelated and governed by

ekþ1 ¼ 0:5Iek þ ξk ð38Þ

where I is a 2 � 2 identity matrix, hξki is a zero‐mean white
Gaussian driven noise with covariance Rk = diagðσ2

rðξÞ; σ2
θðξÞÞ.

Moreover, hwki and hξki are mutually independent, and both
of them are independent of the initial state X0. The distribution
of X0 is X 0 ∼N �X 0;P0ð Þ with

�X 0 ¼ ½2000 m; 10 ms−1; 4000 m; 10 ms−1�
0

P0 ¼ diagð5002 m2; 2002 m2s−2; 5002 m2; 152 m2s−2Þ

We consider three different settings for σr(ξ) and σθ(ξ) in
Table 1. Experiments over 1000 Monte Carlo runs are used to
show how the proposed JCRLB can be used to evaluate the

TABLE 1 Settings of σr(ξ) and σθ(ξ) in Example 1

Case 1 σr(ξ) = 10 m σθ(ξ) = 3 mrad

Case 2 σr(ξ) = 15 m σθ(ξ) = 5 mrad

Case 3 σr(ξ) = 20 m σθ(ξ) = 7 mrad

228 - LI ET AL.



estimation performance in this radar target tracking example
with autocorrelated measurement noises.

According to Equation (24), the equivalent TASD mea-
surement equation for this example is

z�kþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2kþ1 þ y2kþ1
q

− 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2k þ y2k
q

tan−1 ykþ1
xkþ1

� �

− 0:5tan−1 yk
xk

� �

2

6
6
6
4

3

7
7
7
5

þ 0:5
Δr

Δθ

� �

þ ξk

ð39Þ

Figures 1–4 show that the JCRLBs of position, velocity,
range bias Δr and bearing bias Δθ increase as the covariance of
the pseudo measurement noise hξki increases. From Equa-
tion (39), we know that the uncertainty of the pseudo mea-
surement z�kþ1 is only dependent on the uncertainty of the
white noise hξki owing to its independence of state xk+1 and
xk and that the uncertainty of xk+1 and xk is fixed. So if the
covariance Rk increases, then the uncertainty of the pseudo
measurement noise increases and the pseudo measurement
z�kþ1 is more uncertain. Thus the JCRLB of the non‐linear
system gets larger when Rk gets larger. That is, the larger the
pseudo measurement noise level is, the more difficult it is to
jointly estimate the target motion state and radar measurement
biases.
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5.2 | Example 2: cross‐correlated process
and measurement noises at one time step apart

In this example, we assume that the measurement noise
ek ∼N 0;E kð Þ in Equation (37) is cross‐correlated with the
process noise hwki in Equation (35) at one time step apart.
The cross‐correlation between wk and ek+1 is

E½w ke0kþ1� ¼ U k ¼
0:5 0:5 0:2 0:2
0 0 0 0

� �0

. The measure-

ment noise covariance is Ek = diagðσ2
rðeÞ; σ2

θðeÞÞ. Also, the
distribution of X0 is X 0 ∼N �X 0;P0ð Þ with

�X 0 ¼ ½2000 m; 10 ms−1; 4000 m; 10 ms−1�
0

P0 ¼ diagð5002 m2; 1002 m2s−2; 5002 m2; 152 m2s−2Þ

We consider three different settings for σr(e) and σθ(e) in
Table 2. Experiments over 1000 Monte Carlo runs are used to
show how the proposed JCRLB can be used to evaluate the
estimation performance in this radar target tracking example
with cross‐correlated process and measurement noises at one
time step apart.

According to Equation (30), we can obtain the covariance
of the equivalent TASD measurement noise for this example as

Rkþ1 ¼ E kþ1 − U 0kQ
−1
k U k ð40Þ

Figures 5–8 show that the JCRLBs of position, velocity,
range bias Δr and bearing bias Δθ increase as the covariance of
measurement noise heki increases. From Equations (30) and
(40), we know that if the covariance Ek+1 of the measurement
noise heki increases while Uk and Qk are fixed, then the
covariance Rk+1 of the equivalent TASD measurement noise
hvki increases and the equivalent TASD measurement is more
uncertain. Thus the JCRLB of the non‐linear system gets larger
when Ek+1 gets larger. In other words, the larger the mea-
surement noise level gets, the more difficult it is to estimate the
target motion state and radar measurement biases.

TABLE 2 Settings of σr(e) and σθ(e) in Example 2

Case 1 σr(e) = 15 m σθ(e) = 3 mrad

Case 2 σr(e) = 20 m σθ(e) = 5 mrad

Case 3 σr(e) = 25 m σθ(e) = 7 mrad
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6 | CONCLUSIONS

Wehave developed a recursive JCRLB for JSPE of dynamic non‐
linear parametric systems with TASDmeasurements, that is, the
current measurement depends on both the current state and the
most recent previous state. Its connections with the PCRLB for
the systems with TASD measurements and the HCRLB for
regular parametric systems, in which the current measurement
only depends on the current state, have been studied as well. It is
found that both the PCRLB for TASD systems and the HCRLB
for regular parametric systems are special cases of the JCRLB for
the TASD parametric systems. The main difference between
them is due to the use of different likelihood functions. Mean-
while, specific and explicit forms of JCRLBs for commonly
encountered Gaussian noise case and linear Gaussian case have
been presented. The recursive JCRLBs for two typical forms of
the systems with TASD measurements, that is, systems with
autocorrelated measurement noises or cross‐correlated process
and measurement noises at one time step apart, have also been
investigated. Moreover, simplified and explicit forms of the
recursive JCRLBs have been obtained for these two types of
systems for the Gaussian noise case and the linear Gaussian case
as well.
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APPENDIX

Appendix 1: Proof of Theorem 1

Decompose χ k as χ k = [(x k−1)0, (xk)0, θ0]0 and J k as

J k ¼ −Epk

Δxk−1

xk−1 lnpk Δxk
xk−1 lnpk Δθ

xk−1 lnpk

Δxk−1

xk
lnpk Δxk

xk
lnpk Δθ

xk
lnpk

Δxk−1

θ lnpk Δxk
θ lnpk Δθ

θlnpk

2

6
6
6
6
4

3

7
7
7
7
5

¼

J 11k J 12k J 13k

J 21k J 22k J 23k

J 31k J 32k J 33k

2

6
6
6
4

3

7
7
7
5

The matrix inversion formula [55] is

A B
B0 C

� �−1

¼
D−1 −A−1BE−1

−E−1B0A−1 E−1

� �

ð41Þ

where A, B and C are submatrices and D = A−BC −1B 0,
E = C−B 0A−1B.

Since J −1
k is equal to the (n + m) � (n + m) right‐lower

block of ðJ kÞ
−1, and by using Equation (41) we have

J k ¼
J x;x
k J x;θ

k

J θ;x
k J θ;θ

k

" #

¼
J 22k − J 21k ðJ

11
k Þ

−1
J 12k J 23k − J 21k ðJ

11
k Þ

−1J 13k

J 32k − J 31k ðJ
11
k Þ

−1
J 12k J 33k − J 31k ðJ

11
k Þ

−1J 13k

" #

ð42Þ
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Similarly, decompose χ k+1 as χ k+1 = [(x k−1)0, (xk)0, (xk+1)0,
θ0]0 and Jk+1 as

J kþ1 ¼ −Epkþ1

Δxk−1

xk−1 lnpkþ1 Δxk
xk−1 ln pkþ1

Δxk−1

xk
ln pkþ1 Δxk

xk
ln pkþ1

Δxk−1

xkþ1
ln pkþ1 Δxk

xkþ1
ln pkþ1

Δxk−1

θ ln pkþ1 Δxk
θ ln pkþ1

2

6
6
6
6
6
6
6
4

Δxkþ1
xk−1 ln pkþ1 Δθ

xk−1 ln pkþ1

Δxkþ1
xk

ln pkþ1 Δθ
xk
ln pkþ1

Δxkþ1
xkþ1

ln pkþ1 Δθ
xkþ1

ln pkþ1

Δxkþ1
θ ln pkþ1 Δθ

θ ln pkþ1

3

7
7
7
7
7
7
5

where pk+1 is defined in Equation (3). Therefore, we have

lnpkþ1 ¼ lnpk þ lnpðx kþ1jx k; θÞ þ lnpðzkþ1jx kþ1; x k; θÞ

Hence, we have

J kþ1 ¼

Epkþ1ð−Δ
xk−1

xk−1 lnpkÞ Epkþ1ð−Δ
xk
xk−1 lnpkÞ

Epkþ1ð−Δ
xk−1

xk
lnpkÞ Epkþ1ð−Δ

xk
xk
lnpkÞ þD11

k

0 D21
k

Epkþ1ð−Δ
xk−1

θ lnpkÞ Epkþ1ð−Δ
xk
θ lnpkÞ þD31

k

2

6
6
6
6
6
6
6
6
4

0 Epkþ1ð−Δ
θ
x k−1 lnpkÞ

D12
k Epkþ1ð−Δ

θ
xk
lnpkÞ þD13

k

D22
k D23

k

D32
k Epkþ1ð−Δ

θ
θlnpkÞ þD33

k

3

7
7
7
7
7
7
7
5

where Dij
k , i = 1, 2, 3, j = 1, 2, 3 are defined in Equation (6).

Then,

Epkþ1ð−Δ
xk−1

xk−1 ln pkÞ

¼ − ∫ pkþ1 ⋅ ðΔxk−1

xk−1 ln pkÞdxkþ1dzkþ1

¼ − ∫ pk ⋅ pðx kþ1jx k; θÞ ⋅ pðzkþ1jx kþ1; x k; θÞ

⋅ ðΔx k−1

x k−1 ln pkÞdxkþ1dzkþ1

¼ − ∫ pkðΔ
xk−1

xk−1 ln pkÞdxkdzk

¼ J 11k

Similarly,

Epkþ1ð−Δ
xk
xk−1 ln pkÞ ¼ J 12k

Epkþ1ð−Δ
xk
xk
ln pkÞ ¼ J 22k

Epkþ1ð−Δ
θ
xk−1 ln pkÞ ¼ J 13k

Epkþ1ð−Δ
θ
xk
ln pkÞ ¼ J 23k

Epkþ1ð−Δ
θ
θ ln pkÞ ¼ J 33k

Hence,

Then, using the matrix inversion formula (Equation (41)),
the information matrix Jk+1 about xk+1 and θ is

J kþ1 ¼D − CA−1B ¼
J x;x
kþ1 J x;θ

kþ1

J θ;x
kþ1 J θ;θ

kþ1

2

4

3

5 ð43Þ

Substituting Equation (42) into Equation (43), the recursive
form is obtained as Equations (5) and (6).

Appendix 2: Proof of Corollary 1

From the assumptions that the noises are additive Gaussian
noises, we have

ln pðx kþ1jx k; θxÞ ¼ c1 −
1
2
ðx kþ1 − f kðx k; θxÞÞ

0

⋅Q−1
k ðx kþ1 − f kðx k; θxÞÞ

ð44Þ

ln pðzkþ1jx kþ1; x k; θzÞ

¼ c2 −
1
2
½zkþ1 − hkþ1ðx kþ1;x k; θzÞ�

0

⋅ R−1
kþ1½zkþ1 − hkþ1ðx kþ1; x k; θzÞ�

ð45Þ

where c1 and c2 are constants.
Therefore, for calculating the D11;a

k , the partial derivatives
of ln p(xk+1|xk, θx) are

LI ET AL. - 233



− ∇xklnpðx kþ1jx k; θxÞ

¼ ∇x k

1
2
ðx kþ1 − f kðx k; θxÞÞ

0Q−
k ðx kþ1 − f kðx k; θxÞÞ

� �

¼ ∇x k

1
2
�
x 0kþ1Q

−1
k x kþ1 − x 0kþ1Q

−1
k f kðx k; θxÞ

− f 0kðx k; θxÞQ
−1
k x kþ1 þ f 0kðx k; θxÞQ

−1
k f kðx k; θxÞ

��

¼
1
2
½−2∇xkf

0

kðx k; θxÞQ
−1
k x kþ1

þ 2∇xkf
0
kðx k; θxÞQ

−1
k f kðx k; θxÞ�

¼ ∇x kf
0

kðx k; θxÞQ−1
k ðf kðx k; θxÞ − x kþ1Þ

ð46Þ
− Δxk

xk
lnpðx kþ1jx k; θxÞ

¼ −∇xk∇
0
xk
lnpðx kþ1jx k; θxÞ

¼ ∇xk½ðf
0

kðx k; θxÞ − x 0kþ1ÞQ
−1
k ∇xkf kðx k; θxÞ�

¼ ∇xkf
0

kðx k; θxÞQ
−1
k ∇xkf kðx k; θxÞ

þ Δxk
xk
f 0kðx k; θxÞQ

−1
k f kðx k; θxÞ

− Δxk
xk
f 0kðx k; θxÞQ

−1
k x kþ1

¼ ∇xkf
0

kðx k; θxÞQ
−1
k ∇xkf kðx k; θxÞ

− Δxk
xk
f 0kðx k; θxÞQ

−1
k ðx kþ1 − f kðx k; θxÞÞ

ð47Þ

By substituting Equation (47) into Equation (6), we have

D11;a
k ¼ Epkþ1½−Δ

xk
xk
lnpðx kþ1jx k; θxÞ�

¼ Epkþ1 ∇xkf
0
kðx k; θxÞQ

−1
k ∇xkf kðx k; θxÞ

�

−Δxk
xk
f 0kðx k; θxÞQ

−1
k ðx kþ1 − f kðx k; θxÞÞ

i

¼ Epkþ1½∇xkf
0

kðx k; θxÞQ
−1
k ∇xkf kðx k; θxÞ�

in which the following identity has been used

Epðxkþ1jx k;θxÞ½x kþ1 − f kðx k; θxÞ� ¼ 0

For calculating the D11;b
k , the partial derivatives of ln p(zk

+1|xk+1,xk, θz) is

−∇xklnpðzkþ1jx kþ1;x k; θzÞ

¼∇xk

1
2
ðzkþ1 − hkþ1ðx kþ1;x k; θzÞÞ

0

�

⋅R−1
kþ1ðzkþ1 − hkþ1ðx kþ1;x k; θzÞÞ

i

¼∇xk

1
2

h
z 0kþ1R

−1
kþ1zkþ1 − z 0kþ1R

−1
kþ1hkþ1ðx kþ1;x k; θzÞ

−h0kþ1ðx kþ1;x k; θzÞR−1
kþ1zkþ1

þh0kþ1ðx kþ1;x k; θzÞR−1
kþ1hkþ1ðx kþ1;x k; θzÞ

i

¼
1
2

h
− 2∇xkh

0
kþ1ðx kþ1;x k; θzÞR

−1
kþ1zkþ1

þ2∇xkh
0
kþ1ðx kþ1;x k; θzÞR−1

kþ1hkþ1ðx kþ1;x k; θzÞ
i

¼∇xkh
0
kþ1ðx kþ1;x k; θzÞR−1

kþ1ðhkþ1ðx kþ1;x k; θzÞ − zkþ1Þ

ð48Þ
− Δxk

xk
lnpðzkþ1jx kþ1;x k; θzÞ

¼ −∇xk∇
0
xk
lnpðzkþ1jx kþ1;x k; θzÞ

¼ ∇xk½ðh
0
kþ1ðx kþ1;x k; θzÞ − z 0kþ1Þ

� R−1
kþ1∇xkhkþ1ðx kþ1;x k; θzÞ�

¼ ∇xkh
0
kþ1ðx kþ1;x k; θzÞR

−1
kþ1∇xkhkþ1ðx kþ1;x k; θzÞ

þ Δxk
xk
h0kþ1ðx kþ1;x k; θzÞR

−1
kþ1hkþ1ðx kþ1;x k; θzÞ

− Δxk
xk
h0kþ1ðx kþ1;x k; θzÞR

−1
kþ1zkþ1

¼ ∇xkh
0
kþ1ðx kþ1;x k; θzÞR−1

kþ1∇xkhkþ1ðx kþ1;x k; θzÞ

− Δxk
xk
h0kþ1ðx kþ1;x k; θzÞðzkþ1 − hkþ1ðx kþ1;x k; θzÞÞ

ð49Þ

By substituting Equation (49) into Equation (6), we have

D11;b
k ¼ Epkþ1½−Δ

xk
xk
lnpðzkþ1jx kþ1; x k; θzÞ�

¼ Epkþ1

�
∇xkh

0
kþ1ðx kþ1;x k; θzÞ

� R−1
kþ1∇x khkþ1ðx kþ1;x k; θzÞ

− Δxk
xk
h0kþ1ðx kþ1;x k; θzÞðzkþ1 − hkþ1ðx kþ1;x k; θzÞÞ�

¼ Epkþ1½∇xkh
0
kþ1ðx kþ1;x k; θzÞ

� R−1
kþ1∇x khkþ1ðx kþ1;x k; θzÞ�
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where the following identity has been used
Epðzkþ1jx kþ1;x k;θzÞ½zkþ1 − hkþ1ðx kþ1;x k; θzÞ� ¼ 0

Similarly, D12
k , D13

k , D22
k , D23

k and D33
k can be obtained.

Appendix 3: Proof of Corollary 2

From the assumptions that the noises are additive Gaussian
noises, we can get

ln pðx kþ1jx k; θxÞ ¼ c3 −
1
2
ðx kþ1 − F kx k − F θ

kθxÞ
0

⋅ Q−1
k ðx kþ1 − F kx k − F θ

kθxÞ

ð50Þ

ln pðzkþ1jx kþ1; x k; θzÞ

¼ c4 −
1
2
½zkþ1 − H kþ1x kþ1 − Ckx k − H θ

kþ1θz�
0

⋅ R−1
k ½zkþ1 − H kþ1x kþ1 − Ckx k − H θ

kþ1θz�

ð51Þ

where c3 and c4 are constants and

D12;a
k ¼ Epkþ1½−Δ

xkþ1
xk

lnpðx kþ1jx k; θxÞ�

¼ Epkþ1

�
1
2
∇xk∇xkþ1 x 0kþ1Q

−1
k x kþ1 − x 0kþ1Q

−1
k F kx k

�

− x 0kþ1Q
−1
k F θ

kθx − x 0kF
0
kQ

−1
k x kþ1

þ x 0kF
0
kQ

−1
k F kx k − ðF θ

kθxÞ
0
Q−1

k x kþ1

�
0
�

¼ Epkþ1

�
1
2
∇xk 2Q−1

k x kþ1 − Q−1
k F kx k

�

− Q−1
k F kx k − Q−1

k F θ
kθx
�0�

¼ Epkþ1
1
2
∇xk½−2x

0
kF
0
kQ

−1
k �

� �

¼ −Epkþ1fF
0
kQ

−1
k g

¼ −F 0kQ
−1
k

D12;b
k ¼ Epkþ1½−Δ

xkþ1
xk

lnpðzkþ1jx kþ1; x kÞ�

¼ Epkþ1 ∇xk∇
0
xkþ1

1
2

x 0kþ1H
0
kþ1R

−1
kþ1Ckx k

�
��

þx 0kC
0
kR

−1
kþ1H kþ1x kþ1

��

¼ Epkþ1 ∇xk

1
2
½H 0kþ1R

−1
kþ1Ckx k þH 0kþ1R

−1
kþ1Ckx k�

0

� �

¼ Epkþ1f∇xk½x
0
kC
0
kR

−1
kþ1H kþ1�g

¼ Epkþ1fC
0
kR

−1
kþ1H kþ1g

¼ C 0kR
−1
kþ1H kþ1

Similarly, D11
k , D13

k , D22
k , D23

k and D33
k can be obtained.

Appendix 4: Proof of Theorem 2

From the assumptions that the noises are additive Gaussian
noises, we can get

ln pðzkþ1jxkþ1; x k; θzÞ

¼ c5 −
1
2
½zkþ1 − lkþ1ðx kþ1; θzÞ þΨklkðx k; θzÞ�

0

⋅ R−1
k ½zkþ1 − lkþ1ðx kþ1; θzÞ þΨklkðx k; θzÞ�

ð52Þ

where c5 is a constant.
The proof of D11;a

k can refer to the proof of Corollary 1.
By substituting Equation (47) into Equation (6), we have

D11;a
k ¼ Epkþ1½−Δ

x k
x k
lnpðx kþ1jx k; θxÞ�

¼ Epkþ1f ∇xkf
0
kðx k; θxÞ

� �
Q−1

k ½∇xkf
0
kðx k; θxÞ�

0
g

For calculating the D11;b
k , the partial derivatives of ln p(zk

+1|xk+1,xk, θz) is
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− ∇xk ln pðzkþ1jx kþ1;x k; θzÞ

¼ ∇xk

1
2
½zkþ1 − lkþ1ðx kþ1; θzÞ þΨklkðx k; θzÞ�

0

�

⋅ R−1
k ½zkþ1 − lkþ1ðx kþ1; θzÞ þΨklkðx k; θzÞ�

�

¼ ∇xk

1
2
�
z 0kþ1R

−1
k Ψklkðx k; θzÞ − l0kþ1ðx kþ1; θzÞ

� R−1
k Ψklkðx k; θzÞ

þ l0kðx k; θzÞΨ0kR
−1
k zkþ1 − l0kðx k; θzÞ

�Ψ0kR
−1
k lkþ1ðx kþ1; θzÞ

þ l0kðx k; θzÞΨ0kR
−1
k Ψklkðx k; θzÞ

�

¼ ∇xkl
0
kðx k; θzÞΨ0kR

−1
k zkþ1 − ∇xkl

0
kðx k; θzÞ

�Ψ0kR
−1
k lkþ1ðx kþ1; θzÞ

∇xkl
0
kðx k; θzÞΨ0kR

−1
k Ψklkðx k; θzÞ

¼ ∇xkl
0
kðx k; θzÞΨ0kR

−1
k ðzkþ1 − lkþ1ðx kþ1; θzÞ

þΨklkðx k; θzÞÞ

ð53Þ

− Δxk
xk
lnpðzkþ1jx kþ1;x k; θzÞ

¼ −∇xk∇
0
xk
lnpðzkþ1jx kþ1;x k; θzÞ

¼ ∇xk

�
½z 0kþ1 − l0kþ1ðx kþ1; θzÞ þ l0kðx k; θzÞΨ0k�

⋅ R−1
k Ψk∇xklkðx k; θzÞ

�

¼ ∇xkl
0
kðx k; θzÞΨ0kR

−1
k Ψk∇xklkðx k; θzÞ

þ Δxk
xk
l0kðx k; θzÞΨ0k

⋅ R−1
k ðzkþ1 − lkþ1ðx kþ1; θzÞ þΨklkðx k; θzÞÞ

ð54Þ

By substituting Equation (49) into Equation (6), we have

D11;b
k ¼ Epkþ1½−Δ

xk
xk
lnpðzkþ1jx kþ1; x k; θzÞ�

¼ Epkþ1½∇xkl
0
kðx k; θzÞΨ0kR

−1
k Ψk∇xklkðx k; θzÞ�

¼ Epkþ1f½∇xkl
0
kðx k; θzÞΨ0k�R

−1
k ½∇xkl

0
kðx k; θzÞΨ0k�

0
g

where the following identity has been used

Epðzkþ1jx kþ1;x k;θzÞ½zkþ1 − lkþ1ðx kþ1; θzÞ þΨklkðx k; θzÞ� ¼ 0

Similarly, D12
k , D13

k , D22
k , D23

k and D33
k can be obtained.

Appendix 5: Proof of Theorem 3

From the reconstructed pseudo‐measurement Equation (30),
we can get the likelihood PDF:

ln pðzkþ1jx kþ1; x k; θÞ

¼ c6 −
1
2
½zkþ1 − lkþ1ðx kþ1; θzÞ

− Gkþ1ðx kþ1 − f kðx k; θxÞÞ�
0

⋅R−1
kþ1½zkþ1 − lkþ1ðx kþ1; θzÞ

−Gkþ1ðx kþ1 − f kðx k; θxÞÞ�

ð55Þ

where c6 is a constant.
The proof of D11;a

k can refer to the proof of Corollary 1.
By substituting Equation (47) into Equation (6), we have

D11;a
k ¼ Epkþ1½−Δ

x k
x k
lnpðx kþ1jx k; θxÞ�

¼ Epkþ1f ∇xkf
0

kðx k; θxÞ
� �

Q−1
k ½∇xkf

0

kðx k; θxÞ�
0
g

When calculating the D11;b
k , the partial derivatives of ln p

(zk+1|xk+1,xk, θ) is

− ∇x k ln pðzkþ1jx kþ1;x k; θÞ

¼ ∇xk

1
2
½zkþ1 − lkþ1ðx kþ1; θzÞ − Gkþ1ðx kþ1 − f kðx k; θxÞÞ�

0

�

⋅ R−1
kþ1½zkþ1 − lkþ1ðx kþ1; θzÞ − Gkþ1ðx kþ1 − f kðx k; θxÞÞ�

�

¼ ∇xk

1
2

z 0kþ1R
−1
kþ1Gkþ1f kðx k; θxÞ þ f 0kðx k; θxÞG

0
kþ1R

−1
kþ1zkþ1

�

− l0kþ1ðx kþ1; θzÞR
−1
kþ1Gkþ1f kðx k; θxÞ

− x 0kþ1G
0
kþ1R

−1
kþ1Gkþ1f kðx k; θxÞ

− f 0kðx k; θxÞG
0
kþ1R

−1
kþ1lkþ1ðx kþ1; θzÞ

− f 0kðx k; θxÞG
0
kþ1R

−1
kþ1Gkþ1x kþ1

þ f 0kðx k; θxÞG
0
kþ1R

−1
k Gkþ1f kðx k; θxÞ

�

¼ ∇xkf
0
kðx k; θxÞG

0
kþ1R

−1
kþ1zkþ1

− ∇xkf
0

kðx k; θxÞG
0
kþ1R

−1
kþ1Gkþ1x kþ1

− ∇xkf
0

kðx k; θxÞG
0
kþ1R

−1
kþ1lkþ1ðx kþ1; θzÞ

þ ∇x kf
0

kðx k; θxÞG
0
kþ1R

−1
kþ1Gkþ1f kðx k; θxÞ

¼ ∇xkf
0

kðx k; θxÞG
0
kþ1R

−1
kþ1 zkþ1 − lkþ1ðx kþ1; θzÞ½

− Gkþ1ðx kþ1 − f kðx k; θxÞÞ
�

ð56Þ
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− Δx k
x k
lnpðzkþ1jx kþ1;x k; θÞ

¼ −∇x k∇
0
x k
lnpðzkþ1jx kþ1;x k; θÞ

¼ ∇x k ½z
0
kþ1 − l0kþ1ðx kþ1; θzÞ − ðx 0kþ1 − f 0kðx k; θx ÞÞG

0
kþ1�

�

⋅R−1
kþ1Gkþ1∇x k f kðx k; θxÞ

�

¼ ∇x k f
0

kðx k; θxÞG
0
kþ1R

−1
kþ1Gkþ1

� ∇x k f kðx k; θxÞ þ Δxk
xk

f 0kðx k; θxÞ

⋅ G0kþ1R
−1
kþ1½zkþ1 − lkþ1ðx kþ1; θzÞ

− Gkþ1ðx kþ1 − f kðx k; θxÞÞ�

ð57Þ

By substituting Equation (57) into Equation (6), we have

D11;b
k ¼ Epkþ1½−Δ

x k
x k
lnpðzkþ1jx kþ1; x k; θÞ�

¼ Epkþ1½∇xk f
0
kðx k; θx ÞG

0
kþ1R

−1
kþ1Gkþ1∇xk f kðx k; θxÞ�

¼ Epkþ1f½∇xk f
0
kðx k; θxÞG

0
kþ1�R

−1
k ½∇x k f

0
kðx k; θxÞG

0
kþ1�

0
g

where the following identity has been used:

Epðzkþ1jx kþ1;x k;θÞ zkþ1 − lkþ1ðx kþ1; θzÞ½

−Gkþ1ðx kþ1 − f kðx k; θxÞÞ
�
¼ 0

Similarly, D12
k , D13

k , D22
k , D23

k and D33
k can be obtained.
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