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Abstract

Joint Cramér-Rao lower bound (JCRLB) is very useful for the performance evaluation of
joint state and parameter estimation (JSPE) of non-linear systems, in which the current
measurement only depends on the current state. However, in reality, the non-linear
systems with two-adjacent-states dependent (TASD) measurements, that is, the current
measurement is dependent on the current state as well as the most recent previous state,
are also common. First, the recursive JCRLB for the general form of such non-linear
systems with unknown deterministic parameters is developed. Its relationships with the
posterior CRLB for systems with TASD measurements and the hybrid CRLB for regular
parametric systems are also provided. Then, the recursive JCRLBs for two special forms
of parametric systems with TASD measurements, in which the measurement noises are
autocorrelated or cross-correlated with the process noises at one time step apart, are
presented, respectively. Illustrative examples in radar target tracking show the effective-
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1 | INTRODUCTION

To assess the performance of parameter estimators, we can
resort to the lower bound and the upper bound. They assess
estimation performance from two different aspects. The lower
bound puts a limit to the best estimation performance, whereas
the upper bound [1] puts a limit to the worst estimation pet-
formance. For lower bound, the most well-known one is the
Cramér-Rao lower bound (CRLB). For upper bound, a lot of
work has been investigated. For example, a multi-innovation
stochastic gradient algorithm and the corresponding param-
eter estimation errors upper bound were proposed in [2] for
time-invariant stochastic systems. For systems with time-
varying parameters, a finite data window stochastic gradient
identification algorithm was proposed in [3], in which the
minimum parameter estimation error upper bound was ob-
tained by choosing the data window length. A desirable
property for estimators is the consistency [4] if their estimation
errors converge to zero in a certain sense. For example, a hi-
erarchical least squares identification algorithm was proposed

ness of the JCRLB for the performance evaluation of parametric TASD systems.

in [5] by decomposing a dual-rate system model into several
subsystems model for dual-rate linear systems with noises. This
algorithm is consistent and has low computational complexity.
For general dual-rate sampled-data systems, a computationally
efficient algorithm was proposed in [6] using hierarchical
identification principle, in which the parameter estimates can
converge to their true values. When the measurements of the
systems are scarce, a gradient-based parameter identification
method [7] was proposed and its convergence property was
also analysed.

Recursive state estimators for non-linear systems have
been widely used in signal processing and control. The non-
linear filters can be designed by using the Bayesian estimation
approach. However, in general, only suboptimal filters can be
obtained for non-lineat systems due to complicated non-linear
multiple integrals. Among the suboptimal filters, the extended
Kalman filter (EKF) [8, 9] is probably the eatliest and most
well-known one. Its main idea is to approximate the non-linear
systems as linear systems by first order Taylor series expansion
and ignore the higher order terms. So far, a large number of
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advanced non-linear filters have been developed, for example,
the unscented filter (UF) [10, 11], quadrature Kalman filter
(QKF) [12, 13], cubature Kalman filter (CKF) [14-16], and so
forth. All these non-linear filters aim to approximate the first-
two moments used in the linear minimum mean-squared error
(LMMSE) estimation. The UF approximates the first-two
moments based on the unscented transformation of well-
designed sigma-points. The QKF calculates the first-two
moments using the Gauss—Hermite quadrature integration
rules, but the number of integral points increases exponentially
as the dimension of state increases. The CKF transforms the
integral problem into a summation problem using a third-
degree spherical-radial cubature rule, by which it can
approximate the first-two moments needed in the LMMSE. In
the recent years, another well-known non-linear filter is the
particle filter (PF) [17, 18]. The PF uses sequential Monte
Carlo method to generate a large number of samples to
characterize the posterior probability density. For the state
estimation of special systems, for example, bilinear systems,
the standard Kalman filter is not applicable. A state filtering
method was developed in [19] by using delta operator to
minimize the covariance matrix of state estimation errors for
single-input—single-output and multiple-input—multiple-output
bilinear systems. For linear systems with multistate delays,
extended state Kalman filter will suffer from heavy compu-
tational burden. To overcome this, a highly computationally
efficient state filter was proposed for such systems in [20]
following the same idea of [19].

All the above estimators mainly deal with the regular non-
linear systems, in which the current measurement only depends
on the current state. However, in many real applications, the
non-linear systems are more complex [19, 20]. For example,
non-linear systems with two-adjacent-states dependent
(TASD) measurements are also common. Actually, non-linear
systems with autocorrelated measurement noises or with cross-
correlated process and measurement noises at one time step
apart [21] are two typical cases of such systems. To handle
these two cases, one way is to reformulate the measurement
equation as a new measurement equation which is dependent
on the current state as well as the most recent previous state. In
many real applications, the whiteness assumption for noise as
in the regular non-linear systems cannot be completely satis-
fied, where the measurement noise is either autocorrelated or
cross-correlated with the process noise. In the radar tracking
system, the measurement noises are always autocorrelated,
which usually influences the maneuvering target tracking per-
formance [22, 23]. In the global navigation satellite system,
suffering from signal outages and multi-path error, the mea-
surement noise becomes autocorrelated [24-206]. Parameters
estimation is an important subject in modern signal processing
where the measurement noises involved is often autocorrelated
[27, 28]. The systems with dependent process and measure-
ment noises is also very common in practice [29]. Particle fil-
ters were proposed in [30] for these cases in which the process
and measurement noises are dependent. Some practical ap-
plications of models with dependent noises, for example,
sensor fusion and econometrics, have been shown in [31]. To

assess the performance of non-linear filters, the posterior
CRLB (PCRLB) is proposed. In [32], a recursive approach to
compute the PCRLB was developed for filtering of regular
non-linear dynamic systems. To evaluate the performance for
filtering of non-linear systems with TASD measurements, a
recursive CRLB was developed in [33] for non-linear systems
with the coloured noise, in which the first-order coloured
measurement noise case is a typical TASD system, and a
recursive PCRLB was proposed in [34] for the non-linear
systems with cross-correlated process and measurement noises
at one time step apart. In [35], a conditional PCRLB for TASD
systems was proposed, which depends on the measurement
history up to now. Because it relies on a specific imple-
mentation, it can be used to guide online sensor selection.
Actually,
incorporate some parameters which can be random or non-

most discrete-time dynamic systems may
random. Joint state and parameter estimation (JSPE) has got
a growing interest in various applications, such as target
tracking [36], signal processing [37], sensor registration [38].
The main approaches for JSPE include joint filter [39, 40],
dual filter [41, 42] expectation maximization method [43, 44]
and so forth. Joint filter schemes usually augment the pa-
rameters into a state vector and use various kinds of filters,
for example, EKF, UKF, and so forth, to simultaneously
estimate both. Dual filter schemes use two separate filters
for state and parameter estimation. It decouples parameters
and states and ignores the relevant information between
them. Expectation maximization schemes solve the joint
estimation problem by two iterative steps, in which the E-
step assumes that the parameters are known and estimates
the states, and the M-step uses the estimated states to
identify the system parameters. To assess the performance
for JSPE, hybrid CRLB (HCRLB) is introduced in [45-49].
A unified framework for HCRLB applied to the joint esti-
mation of random and non-random parameters was sum-
marized in [50]. Then the asymptotic tightness of the
HCRLB was analysed in [51]. For the purpose of compu-
tational efficiency, the recursive form of HCRLB was pro-
posed for the ground moving extended target tracking
problem [52], and the more general form of it was obtained
for the discrete-time systems involving unknown time
invariant deterministic parameters in [53]. Furthermore, the
HCRLB was extended to the non-linear systems with time-
variant measurement parameters in [54].

Performance evaluation of JSPE for parametric TASD
systems has not been studied yet. This article studies this
problem and aims at proposing a recursive performance bound
for the JSPE of parametric systems with TASD measurements.
The contributions of this paper are as follows.

1. We develop a recursive joint CRLB (JCRLB) for the general
form of parametric TASD systems.

2. Its relationships with the PCRLB for the TASD systems
and the HCRLB for parametric regular systems are dis-
cussed. It is found that both the PCRLB for TASD systems
and the HCRLB for regular parametric systems are special
cases of the JCRLB for parametric TASD systems.
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3. We present specific JCRLBs for two special cases of para-
metric TASD systems, including non-linear systems with
autocorrelated measurement noises or with cross-correlated
process and measurement noises at one time step apart.

The rest of this article is organized as follows. Section 2
formulates the JCRLB problem and presents the non-linear
TASD systems with unknown deterministic parameters. Then,
a recursive JCRLB to evaluate the performance of JSPE for
these systems is proposed in Section 3. Section 4 develops the
JCRLBs for two specific non-linear parametric systems. In
Section 5, some illustrative examples in radar target tracking
are provided to verify the effectiveness of the proposed
JCRLB. Section 6 concludes this paper.

2 | PROBLEM FORMULATION

As we know, the classical CRLB is suitable for the estimation of
non-random parameters, whereas the Bayesian CRLB is appli-
cable to random parameters. In joint parameter estimation
problem, one wishes to estimate an unknown joint parameter
vectory= (X,0") given the measurement z, where Xis a random
parametet vector and @ is a non-random parameter vector. The
joint Fisher information matrix (JFIM) for y is then

J = E[-Xlnp(x, z|0)]

where p(x, z|60) is the joint conditional probability density
function (PDF), A denotes the second-order derivative oper-
ator, that is, Aﬁ = VﬂV;, and V denotes the gradient operator.

Let ¥ (z) be an unbiased estimator of . The JCRLB on the
mean squared error (MSE) is defined as the inverse of the
JFIM [49]:

E{[x(z) - 22 (2) —x)'} 27

Consider the following general form of non-linear para-
metric systems with TASD measurements.

:fk(xkaamwk) (l)

Zp :bk(xknxk—l?aza V/e) (2)

Xkt1

whete 6, and 0, are unknown as the deterministic parameter
vectors, the process noise (W) and the measurement noise
(vp) are mutually independent white noises with PDFs p(w|
B) and p(vp|y), tespectively, which depend on unknown
deterministic parameter vectors ff and ¥, and the initial state X is
independent of the process and measurement noises with PDF p
(%0 | @), which depends on the unknown deterministic parameter
a. The joint estimand (quantity to be estimated) consists of the
system state Xp € R” and non-random parameter vector

=[a,p,7 ,0;,0;] € R™, composed of all unknown detet-
ministic parameters.

Unlike in regular parametric systems, the measurement z
in TASD systems depends on both the current state X; and the
most recent previous state Xz_;. The main goal of this paper is
to obtain a recursive JCRLB for filtering of non-linear para-
metric systems with TASD measurements.

3 | JCRLB FOR PARAMETRIC TASD
SYSTEMS

31 | JCRLB

From Equations (1) and (2), the joint conditional probability
distribution of x**' =[x, ..., x{41] and 2" = (2], ..., z}y1]
given the parameter @ at arbitrary time & + 1 is

Pens ép(xkﬂ,zkﬂ‘ﬂ)
:p(xk,zkla) -p(xk+1|xk,zk70)

' p(Z/e+1 |X/e+l ) Xka Zka 0)

:pk : p(xk+l |X/€’ 0) : p(zk+1 |X/€+17X/ea 0)

(3)

Definition 1 Define )/(\k and X}, as estimates of joint
estimands * = [, 0] and e = [, 07,

respectively.

Definition 2 The MSE of ;?k at time & is defined as

MSE(Z") 2 EZ* (")) = [7" () pyded

and the MSE of ), at time k is defined as

El ()] P(Xp, 2°(0)dxd ¢

MSE(x) £ = [2:)'p

where 7* *;?k x* and ¥, = 7, — x,, are the associated esti-
mation errors, p(Xg, £ |0) is the joint conditional probability
distribution of x; and 2° given 0

Definition 3 Define the JFIM f about the joint esti-
mand sequence ;(Ie as

A k k
JRE-Knp| == [ (happdedy

:01) =Vo

where 0, is the true value of the unknown non-random
parameter 6.

Lemma 1 The MSE of a joint unbiased estzmate 7
is bounded from below by the inverse of the J* [49] as



224

LI ET AL

£ER G2 0h

Definition 4 Define J; ! kk as the (n + m) X (n + m)
right-lower block of (J¥) " and J; as the JFIM about
X, and 6,

MSE(Z")

Lemma 2 The MSE of a joint unbiased estimate ), is
bounded from below by the inverse of J, [51, 53] as

MSE(xs) £ Epe ()1 2 J%

We aim to obtain a recursive forrn to calculate J7! » without
manipulating the large matrix ]

Theorem 1 Given the Fisher information matrix
Jr about x and 0 as

Jx,x Jxﬂ
']k - /;,x /;,9 (4)
J T,

the recursion from Ji to Ji41 can be obtained as
: xy—1
Ji = DR = DD} + T D
T =07 - DD + ) (D) + ) =

/e+1 +~]€€

Uk+1)

(Dp +Jy )

(3)

(D} + 70D} +

where

D} = Ej, {03 Inp(Xp1|Xp,0) + 10 p( 2k [ Xes1, Xz, 0)]}
Dy =Ep, {05 lop(Xp 1] Xp, 0) + 10 p(Zpy1 [ Xps1, Xz, 0)]}
D = Ep, {05 [Inp(Xgi1|Xe, 0) + Inp( 2411 [ Xps1, X2, 0)]}
Dg = Ep, (=05 lnp(Xp41|X4,0) + Inp(Zp41| Xpi1, X, 0)]}

DP =Ep, {-1, [np(Xps1|Xe, 0) + I p(Zps1| Xis1, X5, )]}

D}’ =E, {-Mglnp(Xpy1|X5,0) + Inp(Zp | X1, X2, 0)]}

(6)

/ ! / ..
and D> = (D7), D =(D}'), DY =(D}*). The initial
information J can be obtained from the prior probability
distribution p(X;| @) as

Jo" = E[-A% Inp(xola)]

J5* = E[=2%, Inp(xo|ar)]

7o’ = E[-g1np(xole)]

=0 (7)

Proof See Appendix 1.

Remarkl If p(xo|a) 1s not available, then J;* =0,
J = ex) =0, and J2% = 0. Next, we discuss two
commonly encountered cases in practice, including the
additive Gaussian noise case and linear additive
Gaussian noise case.

Corollary 1 Suppose that the discrete-time non-linear
system (Equations (1) and (2)) is driven by additive
Gaussian noises as

Xp1 = [ (X8, 0:) + Wy (8)
zp = by (X, X3-1,0,) + vy, 9)

where the noises (W) and (vg) are mutually independent
white Gaussian processes with zero mean and invertible
covariance matrices Q and Ry, respectively. Then Equation (6)
will be simplified to

DY = E{[Vf1(x1.00)] Q3 [V 1 (X2, 0]}

+ E{[kab;eJrl (X/eJrl y Xk 02)]

Ry [Viohls (Xesr, X1,0,)]'}
D = —E{[Vxfy(x1,0.)] } Qi
+ E{ [V st (Xey1, X1, 02)]
RV Dyt (Xesr, X1, 0 )]/}

D = E{[Vxf1(x£,0.)] O [Vof s (x2,02)]'}

+ E{[vth;eJrl (XkJrl s Xk 02)]

/

x Riei 1 [Voby 1 (Xni1, X2, 0,)]'} (10)
D = Q' + E{[V by (Xp11, X2, 6,)]

R Vi B (Xt %0,00)]
D} = = Q' E{[Vof (x4, 0.)]'}

+ E{[VXk+1b;e+1 (X/e+1vxk7 02)]

_ i
'R/eil [Vob;e+1 (Xpt1, X2, 0,)] }

!/

D = E{[Vof .(xx,0:)] Q5 [Vof 1 (x,0:)] }

+ E{[Vah;eJrl (X/e—H y Xk 02)]

_ !
X Ry [Voby ) (Xp1, X5, 0,)] }
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where 6 = [0, 0}]
Proof See Appendix 2.
Corollary 2 Suppose that the discrete-time system
(Equations (8) and (9)) is further reduced to a linear

system with additive Gaussian noises as

Xpp1 = Fixp + Fil, + wy, (11)

zp = HpxXp + CpoyXpog + HQO, + vy (12)

where the noises (W) and (v) are mutually independent
white Gaussian processes with zero mean and invertible

covariance matrices Qp and Rp, respectively. Then Equa-
tion (10) will be simplified to

Dy = Fl.Q;'F + CLR;.,, C,

D = ~F,Q;' + CLR ! Hy. = (DY)

Dy = F Q' [Ff. 0] + R [0, HY ) = (D)
Diz = lel + HL+1R/;Jlr1H/€+1

_ _ /
D/? == kl[FZ,O} + H;e+1R/eJlﬁl [07HZ+1} = (D22>

3 0 o1 ~=1710 0 1 p— 0
D?e% = [Fk,O] le[Fk,O] + [OvH/e—H] Rkil [07H/e+1]
(13)
where 0's are zero matrices with appropriate dimensions.

Proof See Appendix 3.

3.2 | Relationship with the PCRLB for
TASD systems

Corollary 3 Suppose that the discrete-time system

(Equations (1) and (2)) is reduced to the following non-
parametric non-linear TASD system

Xpsr = [1(Xp, Wi) (14)

zp = hp(Xp, X1, Vi) (15)

where the process noise (W) and the measurement noise ()
are mutually independent white noise sequences. The initial

state X is independent of the process and measurement noises.
Then the recutsion for Jp in Theorem 1 will be reduced to

-1
Jen = D¢ = DY/ [D + 4] D (16)

where

Dy = E,, {=AFnp(Xps1|Xk) + Inp(Zpst [ Xpi1, X2)]}
Dllez = Epk,l{_A?Z“ (Inp(Xpr1|X) + 10p(Zps | Xpsr, X))

=}

DY = Ep, {=A% [Inp(Xp 1] x8) + Inp(Zps | Xp 1, x2)]}
(17)

Doy 2p(xFH, 2H) (18)

This is exactly the FIsM for non-parametric TASD systems
proposed in [33, 34]. Obviously, Equation (16) is a special case
of the JCRLB in Theorem 1.

3.3 | Relationship with the HCRLB for
regular parametric systems

In regular parametric systems, the current measurement Z
only depends on the current state X, that is, Z, = bp(Xp, Vi,
0,). This is a special case of Equation (2). For such systems,
the likelihood PDF p(Zg41|Xe+1, Xz, ) in Equation (3) will
be reduced to p(Zpi1|Xpt1, 0). As a result, in Equation (6)
we have

Ep A-0% Mnp(Zp i1 |Xpr1, Xz, 0)]}

= Epkﬂ{_A;: Inp(Zg1|Xp11,0)]} =0

Similarly,

Epk_1{_A§:“ [lnp(zkH |Xp i1, Xp, 0)]} =0

EpH{_A?z,c (I0p(Zp 1| Xpr1, Xe, 0)]} = 0

Then, Equation (6) will be simplified to

D} = E, {~A%[inp(xp11|x2.0)]}

D = E,, {~A%[Inp(x|x;,0)]}

DY =E, {29 [lnp(x4i|x;.0)]}

Dy = Ep, A-0% 0 Inp(Xpy1 Xk, 0) + 1np(Zp 11 [Xp11,0)]}

Xbt1

Dy = Epk+[{_Aik+1 (Inp(Xps1| Xk, @) + 10 p(Zpy1 | Xpr1,0)]}

Df = Epkﬁ{_Ag[lnP(X/eH Xk, 0) + 10 p(Zpy1 | Xps1,0)]}

(19)
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The JFIM J in Equation (5) with Equation (6) replaced by
Equation (19) is exactly the FIM for regular parametric systems
proposed in [53]. Therefore, Equation (19) is a special case of
the JCRLB in Theorem 1.

4 | JCRLB FOR TWO SPECIAL TYPES OF
NON-LINEAR SYSTEMS

The non-linear parametric systems, in which the measurement
noises are either autocorrelated or cross-correlated with the
process noises at one time step apart, are two special types of
TASD systems. Specific JCRLBs for these two types of systems
will be presented next.

4.1 | JCRLB for non-linear systems with
autocorrelated measurement noises
Consider the following non-linear system:

=f(xp,0:) + Wy (20)
0,) + e (21)

Xht1

Yie= l/é(xlm

whete 0, and 6, are unknown deterministic parameter vectors,
the process noise (Wy) is white, the measurement noise (e) is
autocorrelated satisfying the following first-order autore-
gressive(AR) model [23].

e, =W 1€ +8& (22)

where the driven noise (E;_1) is white, (W) and (E,_) are
mutually independent, and both independent of the initial state
X as well.

The difference of two adjacent measurements yields

=¥~ Y1 Vi (23)

By treating z, as a pseudo measurement, we have the
following TASD measurement equation

zp = L (x3,0,) = P Ly (Xp1,0,) + &
= hp(xp, Xp—1,0,) + v (24)
where
he(Xp, Xp_1,0,) = 1p(x,0,) = Pp_1lp_i (xp_1,0,)

Vi =&,

Obviously the pseudo measurement noise (vz) is white,
and independent of {wp) and x;.

Applying Theotem 1 to the equivalent TASD system
(Equations (20) and (24)), we can obtain the recursive JCRLB for
non-linear systems with autocorrelated measurement noises.

Next we discuss some specific forms of the JFIM for non-
linear systems with autocorrelated measurement noises when
the noises are Gaussian and the systems are linear.

Theorem 2 For the non-linear system (Equations (20)

and (22)), if wi, ~ N (0, Q) and &, ~ N (0, Ry,), then
Equation (6) in Theorem 1 will be simplified to

/

[V (x2,0:)]'}

VWLIRE [Vl (x2. 6,

Dy = E{[Vx fi(x2,0:)]Q;' [
+ E{[V Ly (x2,0, AR
Dy = —E{[Vx /3 (x£,0:)1} Q;'

- E{ [kal;e (X, az)‘PﬁREl [vXk+1l,,€+l (xp11,0,)] }

)] Q% ! [Vof (x4, 0.)]'}

- E{ [kal;e (xk, 0.) W Ry Vel;e-&-l (%41, 0:)

DY = E{[Vy[}(x:,0
— Voly,(x,0,)%,

DY = Qi + E[Vax Ly (X111, 0,)]
Ry Vi Lo (%41, 0)] }

DP = —Qy'E{[Vef y(x£,0.)] } + E[Vi,, [ (Xp:1,0,)]

Ry [Volyyy (x3:1,0) = Voly(x4,0,)%,]'}

)15 [Vof (x4, 0:)]'}

+ E[Vﬂl;e+1(xle+1702) -

DY = E{[Vof},(x:,0

Voli (X1, 0,) PR}

[Volyy i (X11,0,) — Vol (x1.0,) W]}

(25)

0% 0]

where 0 =

Proof See Appendix 4.

Remark 2 Suppose that the non-linear system (Equa-
tions (20) and (22)) does not depend on any non-
random parameters, that is, @ €@. By applying Cor-
ollary 3, we can obtain the PCRLB for non-linear
systems with autocorrelated measurement noises,
which is the same as Corollary 3.5 in [33].

Corollary 4 If the non-linear system (Equations (20)
and (22)) is further reduced to a linear system
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Xpp1 = Fipxp + Fif, + wy,
yi=Lx, + L0, + e (26)

e, =W e +&

then Equation (25) in Theorem 2 will be further simplified to

D} = FLQ;'Fi + LYY, R, Wi Ly

DY =-F,Q;' — LY,R;' Ly, = (D}')

DY = F,Qp [F), 0] — LW, R, ([0, 10, ] — W, [0, %))
Diz = Qk + LkHR/;lLkH

DP = —-Q;'[F},0] + L, Ry ([0, L0, ,] — W, [0, L7])
D = 14,0 Q7' [FL,0) + (0,2{,,] - Wilo, £{)) Ry’

'([OvLZJrl] - lIl/e[Olege])

(27)

where 0's are zero matrices with appropriate dimensions.

4.2 | JCRLB for non-linear systems with
noises cross-correlated at one time step apart

Consider the following non-linear system:

=fe(X2,0) + Wy (28)

X1

Vi =l(x,0,) + e (29)

where 0, and 0, are unknown deterministic parameter vectors,
<W/e> and (ek
one time step apart [30] and independent of the initial state Xp
as well, satisfying

) ate zero-mean white noises cross-correlated at

cov(wy) = Qy
cov(ek) = Ek

E[lwie] = Updpj

where 8;;_; is the Kronecker delta function.
As in [35], the following TASD measurement equation can
be obtained

= (X1, 0,) + e + Ge(X — [ (Xp—1,0x) — W)
= lp(x4,02) + Gi(Xp = [ (Xp-1,05)) + € — Gpwy_y
= b (Xp, Xp_1,0) + vy

(30)

where

he(Xp, Xp_1,0) = (X2, 0,) + Gp(xp = fr_; (Xp—1,0x))

V=6~ Gy W

G,=U, ,Q}'
0=10,.0)

and the pseudo measurement noise (V) and (Wp_;) are mutu-
ally independent white noises, and the mean and covariance of
(Ve) are zero and Ry = E}, — U),_, Q;,, Uy, respectively.

Applying Theorem 1 to the equivalent TASD system
(Equations (28) and (30)), we can obtain the recursive JCRLB
for non-linear systems with cross-correlated process and
measurement noises at one time step apart.

Next we discuss some specific forms of the JFIM for non-
linear systems with noises cross-correlated at one time step
apart when the noises are Gaussian and the systems are linear.

Theorem 3 For the non-linear system (Equations (28)
and (29)), if wi, ~ N(0, Q) and e, ~ N (0, Ey,), then
Equation (6) in Theorem 1 will be simplified to

xf1(x2,0:)]'}

Dy = E{[Vxf1(x1.0.)] Q' [V

"‘E{[VX;fk X, 0 Gk+1 R/e+1 th/e X, 0 Gk+1] }
Dy = —E{ [V [} (x2,00)] } Qi = E[V i f1 (%1, 0:) Gl ]
— !
: R/e}ﬂ [ka+1l;e+l (X/e+1702) + Gl,e+1} } = (D/il),

DllezzE{[ X/f/e X, 0

_E{ X/fk Xy, 0

[V0Zk+1 (xp11,0

)] Q¢! [Vofi(xi.0.)]'}
)Gl | R
— Vof (x4, 0 )G;e+1]l} = (D}
DY = Q' + E{[Vxy [y (Xp41,02) + G ]
R Vol (%010.0,) + G ')
DY = - Q' E{[Vof u(x2,6:)]'}
+E{ [V Jopr (Xes1,02) + Gy [Ry
~ Vof 4 (x4,0:) Gl ]} =
Q% [Vof (x4, 6:)] }
Vof (X, 0:) G

)= Vof;e(xfﬁox)G;H—l]/}

(31)

Vol (Xp11,6,) (D)
DP = E{[Vof(x,0x

+ E{ [Vf)l;eﬂ (Xk11,02) —

. R/;_L [Vellk+1 (X/e+1 ’ 02

Proof See Appendix 5.

Remark 3 Suppose that the non-linear system (Equa-
tions (28) and (29)) does not depend on any non-random
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parametets, that is, @ € @. By applying Corollary 3, we
can obtain the PCRLB for non-linear systems with
noises cross-correlated at one time step apart, which is
the same as Theorem 4 in [34].

Corollary 5 If the non-linear system (Equations 28
and 29) is further reduced to a linear system,
Xp1 = Fpxp + FiO. + wy, (32)

yi = Lxp, + L0, + e (33)

then Equation (31) in Theorem 3 will be further simplified to

Dllel = F;telek + F;eG;e+lR/;J1rl G Fp,
D’ = ~F,Q;' = FyGl R} (L, + Giyy) = (DF)
Dy = F,Q}'[F}, 0] - Fi G}y Ry,
([0, £0,] = G [FE,0)) = (D))
Diz = Q/;1 + (L;e+1 + G;eJrl)R/;il (L;eﬂ + G;e+1)/
D? = /;1 [F27 0] + (L;eJrl + G;eﬂ)Rl;lrl
-([O,LZH] - Gk+1[FZ,0]) = (Diz)'
D = [F{, 0 Qi [F{. 0] + (0. L, ] = Gun [FL. 0)) R

k+1
'([Oleitl] - Gk+1 [F/270])

(34)

where 0's are zero matrices with appropriate dimensions.

5 | ILLUSTRATIVE EXAMPLES

In this section, numerical examples in the radar target tracking
are provided to demonstrate the effectiveness of the proposed
recursive JCRLB for JSPE of non-linear parametric systems
with TASD measurements. However, to the best of our
knowledge, there does not exist any unbiased joint estimator
for this problem. So we design the following numerical ex-
amples to show how hard it is to jointly estimate the target
motion state and radar measurement biases.

Consider a single target with coordinated turn motion in
the two-dimensional plane [14, 16, 29, 33].

sinwT coswT — 17
0] 0]
Xp, = 0 coswT 0 —sinoT Xo+w, (35)
0 1—coswT sinwT
0] 0]
LO sinwT 0 coswT

. NV .

where X} = [xk,xk,yk,yk] is the state vector, T =1 s is the
sampling interval, @ = 2°s7! is the turning rate, Wy is a zero-
mean white Gaussian process noise with covariance Qp = cov

(Wp) = diag(gM, gM), ¢ = 0.01 m” s> and

7 7

M= ; 2 (36)
o7
2

A two-dimensional radar located at the origin is used to
track the motion of the target

Y Xt T
Tht1 A,
Zen1 = | = + A + €t
k+1 tan! <yk+1> 0

Xk+1
(37)

where Zp4 is the radar measurement vector consisting of the
range measurement 74 and the bearing measurement Gy,
A, and Ay are range and bearing measurement biases, which
are unknown non-random parameters with ground truth
20 m and 5 mrad, tespectively, and (€p,;) is the measure-
ment noise.

5.1 | Example 1: autocorrelated
measurement noises

In this example, we assume that the measurement noise (€p11)
in Equation (37) is autocorrelated and governed by

epy =0.5Ie, + &, (38)

where I'is a 2 X 2 identity matrix, (Ez) is a zero-mean white
Gaussian driven noise with covariance Ry, = diag(c2(), 65(€)).
Morteovert, (W) and (€z) are mutually independent, and both
of them are independent of the initial state Xj. The distribution
OfX) is Xy NN(X(),P(;) with

X = [2000 m, 10 ms~"', 4000 m, 10 ms™']’
Py, = diag(500* m?, 200* m?s™2, 500* m?, 15% m%s~2)

We consider three different settings for o,(€) and op(€) in
Table 1. Experiments over 1000 Monte Carlo runs are used to
show how the proposed JCRLB can be used to evaluate the

TABLE 1 Settings of 0,(€) and 6y(€) in Example 1
Case 1 6,6 =10m 096 = 3 mrad
Case 2 6, =15m o9(€) = 5 mrad
Case 3 6,6 =20m o9(€) = 7 mrad
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estimation performance in this radar target tracking example
with autocorrelated measurement noises.

According to Equation (24), the equivalent TASD mea-
surement equation for this example is

\/ x/i+1 + yi+1 =0.5 \/ xi + y/i

Zpy =
tan”! <y/e_+1> —0.5tan”" ( k) (39)
Xk+1 Xk

+05[A’} +E
. Ag A

=
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FIGURE 1
different pseudo measurement noise level in Example 1
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FIGURE 2 Joint Cramér-Rao lower bound for velocity under different
pseudo measurement noise level in Example 1

Figures 1-4 show that the JCRLBs of position, velocity,
range bias A, and bearing bias Ay increase as the covatiance of
the pseudo measurement noise (&) increases. From Equa-
tion (39), we know that the uncertainty of the pseudo mea-
surement 2z, is only dependent on the uncertainty of the
white noise (€;) owing to its independence of state Xz, and
X and that the uncertainty of Xz and Xz is fixed. So if the
covariance Rp increases, then the uncertainty of the pseudo
measurement noise increases and the pseudo measurement
7., is more uncertain. Thus the JCRLB of the non-linear
system gets larger when Rp gets larger. That is, the larger the
pseudo measurement noise level is, the more difficult it is to
jointly estimate the target motion state and radar measurement

biases.
350 r
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FIGURE 3 Joint Cramér-Rao lower bound for range bias under
different pseudo measurement noise level in Example 1
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FIGURE 4 Joint Cramér-Rao lower bound for bearing bias under
different pseudo measurement noise level in Example 1
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5.2 | Example 2: cross-correlated process
and measurement noises at one time step apart

In this example, we assume that the measurement noise
e, ~N(0, E) in Equation (37) is cross-correlated with the
process noise (W) in Equation (35) at one time step apart.
The cross-correlation between Wwp and epyq s
/
Elwiel,,|= Uy = O(.)S 0(.)5 O(.)Z O(.)Z .
ment noise covariance is B = diag(c%(e), o5(€)). Also, the
distribution of X is X ~ N (X, Py) with

The measure-

X = [2000 m, 10 ms™", 4000 m, 10 ms™']’
Py, = diag(500* m?, 100* m?s™%, 500* m?, 15% m?s™2)

We consider three different settings for o,(€) and oy(€) in
Table 2. Experiments over 1000 Monte Carlo runs are used to
show how the proposed JCRLB can be used to evaluate the
estimation performance in this radar target tracking example
with cross-correlated process and measurement noises at one
time step apart.

According to Equation (30), we can obtain the covariance
of the equivalent TASD measurement noise for this example as

R, =Ep — U,Q;' Uy (40)

TABLE 2 Settings of o,(€) and op(€) in Example 2

Case 1 o, (€) =15m op(€) = 3 mrad

Case 2 o,(€) =20 m og(€) = 5 mrad

Case 3 o (€ =25m og(€) = 7 mrad

300

250

200

150

100

JCRLB of the position (m)

50

FIGURE 5 Joint Cramér-Rao lower bound for position under
different measurement noise level in Example 2

Figures 5-8 show that the JCRLBs of position, velocity,
range bias A, and bearing bias Ay increase as the covatiance of
measurement noise (€g) increases. From Equations (30) and
(40), we know that if the covariance Epy; of the measurement
noise (ep) increases while U, and Qg are fixed, then the
covariance Ry of the equivalent TASD measurement noise
(vi) increases and the equivalent TASD measurement is more
uncertain. Thus the JCRLB of the non-linear system gets larger
when Epyq gets larger. In other words, the larger the mea-
surement noise level gets, the more difficult it is to estimate the
target motion state and radar measurement biases.
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FIGURE 6 Joint Cramér-Rao lower bound for velocity under different

measurement noise level in Example 2
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FIGURE 7 Joint Cramér-Rao lower bound for range bias under
different measurement noise level in Example 2
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35
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JCRLB of the bearing bias (mrad)

FIGURE 8 Joint Cramér-Rao lower bound for bearing bias under
different measurement noise level in Example 2

6 | CONCLUSIONS

We have developed a recursive JCRLB for JSPE of dynamic non-
linear parametric systems with TASD measurements, that is, the
current measurement depends on both the current state and the
most recent previous state. Its connections with the PCRLB for
the systems with TASD measurements and the HCRLB for
regular parametric systems, in which the current measurement
only depends on the current state, have been studied as well. Itis
found that both the PCRLB for TASD systems and the HCRLB
for regular parametric systems are special cases of the JCRLB for
the TASD parametric systems. The main difference between
them is due to the use of different likelihood functions. Mean-
while, specific and explicit forms of JCRLBs for commonly
encountered Gaussian noise case and linear Gaussian case have
been presented. The recursive JCRLBs for two typical forms of
the systems with TASD measurements, that is, systems with
autocorrelated measurement noises or cross-correlated process
and measurement noises at one time step apart, have also been
investigated. Moreover, simplified and explicit forms of the
recursive JCRLBs have been obtained for these two types of
systems for the Gaussian noise case and the linear Gaussian case
as well.
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The matrix inversion formula [55] is
A B [ D! —A"'BE™!
B C| |-E'BA’ E™!

(41)

where A, B and C are submatrices and D = A—BC™'B/,
E=C-B'A™'B.

Since J;! is equal to the (7 + m) x (n + m) right-lower

block of (J*)~', and by using Equation (41) we have

]Z,x ]Z,a

]Z,x ]Z,a

RGN RO,
JE-TRONTTE TP =R
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Similarly, decompose}(/€+l as )(kH = [(Xk_l)/, (xp), Xes1),
0] and f+l as

-
Asiilnpy g A§2—1 Inpy,

<k
bt Axk Inp, A;: Inp, 4
-] = _EP/e+1 bt

x X,
AXle+1 lnpk‘H AX//:JH lnkaﬁl

k-1
LA lnppy  Aptlnp.,
0
Aiiinp,. A% Inp,.

k-1

X 0

Agtnp Ay lnpy,
X 0

Agilnp, Ay Inpe

0
A;kﬂ Inp, 4 Dglnpy

where pryq is defined in Equation (3). Therefore, we have

Inpy, | = Inpy + l0p(Xpi1[ X, @) + 10p(Zp 1 | Xpy1, X2, 0)

Hence, we have

_ b
Epk+1 (_Axk‘1 hlp/e) Epk+1 (_Aiz‘llnpk)
k1
]/e+1 EPk+1 (_Axk lnpk) EPkH (—Aiilnl’/e) + D/1e1
0 D!

E

L= Pr+1

0 Ep,. (=A%, lnp,)

(—a5 " 10p) E

Pl

(—Ay*1np,) + DY

DY Ep (=4 lop,) + D

22 23
Dy Dy

32

Pr+1

(—Aglopy,) + D |

whete DZ, 1=1,2,3,7=1,2, 3 are defined in Equation (G).
Then,

E,, (A% Inp,)
Xle—l
== /pk+l ’ ( xk—1 Inpk)dxk“ dz’Hl
== /Pk P(Xpi1|Xp, 0) - p(Zpi1 | Xpesr X, 0)
(AR Inpy)d e d s
= — [ pu(AX 0 Inpy)d ed
=7}

Similatly,

Ep,, (=A% Inpy) =Ji
Ep,. (=A% 1np,) =J¢
Ep (=00 Inpy) = I}
Ep, (=05 Inp,) = J7
Ep, (=051npy) =T
Hence,
K o Jy

21 3 3
APy | pf J7 D)

k+1
J =

21 22 23
0 D} D? D}

31 .

Sy TP+ Dy
(A | B
|CID

32 33 33
D? Jp + Dy |

Then, using the matrix inversion formula (Equation (41)),
the information matrix Ji,;, about Xz, and @ is

]zax ]’/:H
Jem=D-calp= """ T (43)
Jo= g0
k+1 k+1
Substituting Equation (42) into Equation (43), the recursive
form is obtained as Equations (5) and (6).

Appendix 2: Proof of Corollary 1

From the assumptions that the noises are additive Gaussian
noises, we have

1
Inp(Xpy1|Xg,05) = c1 — E(X/eJrl —f/e(X/evax)),

(44)
Q" (Xt — [ (x,0x))
1ﬂp(Z/€+1 ‘X/e-&-] s Xk, 02)
1 /
=0 — E[Z/e+1 - b/e-H (Xk+1aX/ea 02)] (45)

: R/;Jlrl (Zks1 = D1 (X1, X5, 0,)]

whete ¢; and ¢, are constants.
Therefore, for calculating the D};’ﬂ, the partial derivatives
of Inp(Xpt1|Xe, 0,) ate



234 |

LI ET AL

= Vi lnp(Xpq | Xk, 0x)

= ka %(X/eJrl f/e(xk7 )) Qk (X/e+l f/e(X/e70X)):|

VX’*E [X;€+1 Q/;1Xk+1 - X;e-H Q/?f/e(xkﬁx)

~ (%6, 02) Q' X1 + [z,

1 _
=3 [_vakf;e(xk7 ax)Q/e 1X/e+1

0:) Q% 'f1.(xk,6.))]

+ 2V [ (X0, 02) Qi f 1 (x5, 6]

= vxk/[k X/ev Q/e (f/e(xk, ) X/e+1)

(46)
— A I0p(X g1 [ X, Or)

= =V, Vi 10p(Xp 41X, 0:)
= Vi [(F (X0, 02) = X)) @y Vi 4 (X, 0
= Vi 1 (Xp, 02) Q' Vi f 1 (X2, 62)
+ AT (k. 05) Q' f(x2, 05)
— AT (X, 02) QX
= Vi1 (x2,05) Q¢ Vi f 1 (X2, 65)
— N33 (%0, 0) Q' (Xiey1 = 3 (X,6:))

(47)

By substituting Equation (47) into Equation (6), we have

D = By, [~ I0p(xp 41| X, 0]
=Ep [V (%8, 05) Q¢ ' Vi f (%, 6:)
—Axfk X5, 05) Qi (Xpiy f/e(kaax))]
= Ep, [V 1(x0,00) Q' Vi f 1 (X0, 65)]

in which the following identity has been used

Epi i x00 X1 = fp(Xp,0:)] =0

For calculating the D}el"b,
+1| X1, X, 6)) is

the partial derivatives of Inp(Zz,

=V Inp(Zp i1 | Xp i1, X, 0,)

1
Vx, [Z(ZkH — Dy (Xk+l,Xk7 92))/
R (2 = b (361 %1, 0,))|

_ / —1 / —1
- VX/CE [ZleHR/eH Zpy1 — Zk+1Rk+1b/e+1 (Xk+l.Xk7 02)

/ —1
_hkﬂ (X/e+l,Xk7 OZ)R/eH Zht1

+b;e+l (X/e+1,X/e> OZ)R/:H]%H (Xk+17xka az)}

1

- 5[ — 2V By (Ko Xy 02 Ry Zps

+ vakb;e-&-l (Xk+1.Xka ‘9z)R1;11bk+1 (Xk+l,Xk7 02)}

= kab;e-s-l (Xkt1, Xk 02)R/;i1 (Pp1 (Xp1, X%, 0;) — Zpy1)
(48)
— ATInp(Zgs1 [ Xps1 X, 02)

VXka I0p(Zp1 [ Xpy1, Xk, 02)
= Vxle[(h/e+l (Xes1,Xk,0,) = 2}1)
X R,;ilVXkb/e-‘-l (X/e+1,Xk7 0,)]
= VPt (Xies1 Xe 0) R Vb1 (X X1, 6,)
+ Aﬁ:b;eﬂ (Xes1, X0, 02) R 1 Pior (Xps1 X1, 0)
- A;:b'/@rl (Xps1, X2 az)Rl;lrl Zpt1
= Vb (Xei1 Xe: 0:) Ri Vi1 (Xai1 X, 6,)
A;:hr%JA (Xps1, X2, 02) (Ze1 — b1 (Xpy1 X2, 02))
(49)

By substituting Equation (49) into Equation (6), we have

11,
D, " =E, [-A%np(zpy|Xp 1, X, 6;)]

=Ep,., [kab/e+1 (Xk11,X,6>)
X R Vb (Xps X, 0,)
A;:h;eJrl (Xp1. X%, 02)(Zy 1 — byt (Xpy1 X2, 0,))]
=Ep,,, [kab;e—o—l (Xk11,X,6>)

X R/;il VX/eb/eH (Xk+1,xk7 02)]
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where the following identity has been used
Ep(zkﬁ\xkA“Xk,HZ)[kaLl - b/e+1(xk+1,X/ea 02)] =0
Similatly, D}ez, D};’ R Diz, D? and D;f can be obtained.

Appendix 3: Proof of Corollary 2

From the assumptions that the noises are additive Gaussian
noises, we can get

1 ’
Inp(Xpy1 [ Xp, 0c) = €5 = S(Xpy1 = Fixp — Fi05)
? (50)

- Qp' (xp41 — Frxy, — F0,)

lnp(zk+l |Xk+1 s Xy 02)
1 0 ,
=0 E[Zk“ —Hyp 1 Xpy — Cpxp — Hy 0, (51)
Ry [Zp1 — Hippi Xy — Crxy, — HY, 0]

where c3 and ¢, ate constants and
D" = Ep, -0 Inp(X g1 X, 0]
=E 1V Vi, (X5, O3 —-x,.  O;'F
= Ep 3V Vi (K1 Qk Xkt = Xy Qp Fiexe
- X;e+1Q/;1onx — X, F, Q% Xppy
— !/ _
+ x,F,Q} Fuxy, — (F}0.) Q/e1X/e+1)/}
—£, Iy [2Q;'x1 — Q'F
T e g Xk k Xk e Xk
_ _ !
- Q;'Fix, — Q;'Fi6.] }
—F 1V [_2 ! F! —1]
=LEp 3 Val 2%, FL O

= _Epk+1 {F;e Q/;1 }

—1
=-F,Q;

b
D/? = Ep, [=A3 I0p(Z g1 | Xy 1, X))

X
—E iv,v. [rx Hm, R C
T Ere ) VxR Y xp E(Xk‘“ k1 B CRXE
+X;C2R/;i1H/e+1X/e+1] }
_E 1 ! —1 / —1 !
= Lt VXkE[HIeHR/eMCka+H/e+1R/e+1CkX/e]

=Ep,, {ka[x;ec;eR/;ilHk-‘rl]}
= EPk+1 {C;eR;}rlH/%H}
= C/;R/;lAHkJrl

Similarly, D}el, D* D%, Df;’ and Dz?’ can be obtained.

Appendix 4: Proof of Theorem 2

From the assumptions that the noises are additive Gaussian
noises, we can get

ll’lp(Zk+1 ‘X/e—H y Xk 02)

1
=C5— E[Z/e-H - l/e-H (X/e+1a02) + ‘Pklk(xk,az)]/ (52)

: R/j (Zi1 = lert (Xpy1,02) + Prli(x,0,)]

where c5 is a constant.
The proof of D,lel’” can refer to the proof of Corollary 1.
By substituting Equation (47) into Equation (6), we have

11,a x
D, =E, [-A%Inp(Xpi1|xp,0y)]

= Ep A[Vaf (x4, 02)] Q3 [V 1 (x4 6:)]'}

For calculating the D}el’b, the partial derivatives of In p(z,
41| X1 X, 0,) is
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= Vi Inp(Zpy1 | Xps1 X, 0;) Appendix 5: Proof of Theorem 3

From the reconstructed pseudo-measurement Equation (30),

1
= VXk{E[ZkJrl — L1 (Xp41,02) + Prli(x1,0,)] we can get the likelihood PDF:
R ) 0,) + Wpli(xy,0 0p(Zp 1| Xpy1, X, 0)
Ry 2y = Ly (g1, 0;) + Wili(x,0,)] } bt [ Xk 1, X
1 ) N
= Vsz [Z;e+1R/e1lPklk(ka 0,) - l;e+1 (Xiy1,02) =G 2[2k+1 i1 (Xps1,0y)
(55)
x Ry "Wply(xy,0,) = G (X1 = (%2, 05))]

-1
+ 12(Xk70z)‘1"21?/§12/e+1 - l;e(X/e,oz) Rk+1 [Zk‘H 11€+1 (Xk+1702)
(53) ~ G (Xps1 = f (X%, 0x))]
x ‘P;elelkﬂ (Xk11,602)
where ¢4 is a constant.
+ l;e(Xbez)\P/kR/;l‘Pklk(ka02)] The proof of D};"“ can refer to the proof of Corollary 1.
By substituting Equation (47) into Equation (6), we have

= VXkl;e(X/ev az)lp;eRlzlz/H—l - kal;e(xk, 02)

11,
! p—1 D/e ¢ :EPkH [_A));//:lnp(karl'Xkaax)]
X W R, i1 (X1, 0,)

!

=Ep, A Vo 1(x2:0:)] Q' [V [ (x2,0:)] }

Vlp(Xp, 0,) W, R, Wrli (x4, 0,)

When calculating the D}el’b, the partial derivatives of Inp

' -1
= kalk(xk7 OZ)WLR/@ (Zk-H - Z/e+1 (X/e-Haaz) (Z/e+1 |Xk+l,XIe, 0) is

+ Wl (x1,0,))

— Ve Inp(zp | Xp1 X1, 60
_Aiilnp(zkﬂ‘xkﬂ,xkﬂz) A0 p(Zp 1| Xp 11, Xk, 0)

l i

- _kav;klnp(zkﬂ ‘Xk-*-lvxk’oZ) = ka{é[zk-ﬂ = les1 (X841, 02) = Gyt (Xpgr = f (X2, 65))]

= ka{[z;eJrl - l;e+l (X/e+1702) + l;e(kaez)‘P;e] . Rl;lrl [Zle+1 - l/e+](xk+1702) - GkH(XkJrl —fk(xk,gx))}}
R,V [y (x2,0,) } (54)

1 _ _
= kaé [Z;eHRkLG/erk(kaox) +f;e(xk>0x)G§e+1Rki1Zk+1
= V[ (X5, 0,) WL R, PV [ (x4, 0,)
- l;e+1 (Xpt1, OZ)R/:A G/e-Hf/e (X%, 0:)

- X;e+1 G;eJrlR/;}H Griif 1 (X, 0x)

_f;e (X%, 0x) G;e+lR/;i1 Zk+1 (Xp+1,0;)

+ A% (xk,0,)P,
R (Zkt = et (Xps1,0;) + Wili(x2,6;))
By substituting Equation (49) into Equation (6), we have — fr(x2,0,) G, R G X
+[ (X0, 02) Gl Ry G f (x4, 0]
= Vxxf;e (Xks 0x)G;e+1Rl;1-1Zk+1
- VX/J[;e(X/evox) G;+1R1;i1 Gip1 Xk

- kaf;e(xk’ OX)G;HR/;leH (X41,02)

D = By, [~A30p( 21| Xp s, X4.6,)]
= Ep, [V [l (X4, 0,) W, R, "WV y [ (X1, 0,)]
= Ep, [V li (51, 0)BLR Vi [y (x4, 0.) %'}
whete the following identity has been used + Va4 (X2,0:) Gy Ry Gl i f (X, 62)

= szf;e(xbox)c;eHR/;L (Zks1 = b1 (Xp11,0;)

= Gpyy (X/e+1 —f/e(x/eﬂx)ﬂ
Similarly, D;?, D}>, D;?, D’ and D} can be obtained. (56)

EP(Z/M\XM 7X/€~,02)|:Zk+1 = b1 (X1, 0,) + Prli(x,0,)] = 0
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- A’;’Zlnp( Zp i1 |Xp1 X2, 0) By substituting Equation (57) into Equation (6), we have
==V, Vi 10p(2p 11 [ Xk 11 X, 0) Dllel.b = Ep,., [ 10p(Zi 11 [ Xiy1, X, 0)]
= vxk{[z;eJrl - l;e+1(xk+1302) - (X;H»l _f;e(xkvax))G;e+1] =Ep,,, [kaf;e(xk’a")G;eHR/;lLl Gii1 Vo f (X, 05)]
'R/;-lH Gk+1vxkf/e(xk70x)} = Epkﬂ{[vnﬂe(xka0x)G;e+1]R/;] [kaf;e(xlﬁ 0x)G;e+1]l}

= Vka;e(Xk’ox)G;eHR/;L Gy
X Vi f 1 (X0 0) + A% £, (x2, 05)
’ G;lelR/;lH (Z 1 = L1 (Xiy1,02)
= Gy (X1 — [ (X, 05))]

where the following identity has been used:

EP(ZHMthXkﬂ) [Zk+1 - l/e+1(xk+1702)
— Gt (X _fk(xkaox))] =0

(57) Similarly, D}ez, D}:, Diz, D/2e3 and D,‘? can be obtained.
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