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RECURSIVE LABELLING SYSTEMS AND
STABILITY OF RECURSIVE STRUCTURES IN

HYPERARITHMETICAL DEGREES

C. J. ASH

ABSTRACT. We show that, under certain assumptions of recursiveness in 21,
the recursive structure 21 is A^-stable for a < wfK if and only if there is
an enumeration of 21 using a E^ set of recursive EQ infinitary formulae and
finitely many parameters from 21. This extends the results of [1].

To do this, we first obtain results concerning A^ paths in recursive labelling
systems, also extending results of [1]. We show, more generally, that a path
and a labelling can simultaneously be defined, when each node of the path is
to be obtained by a A^ function from the previous node and its label.

Introduction. We say that a recursive structure 21 is A\\-stable if, for every
recursive structure 03 = 21, every isomorphism from 03 to 21 is A° in Kleene's
hyperarithmetical hierarchy. We shall show that, under certain assumptions, 21 is
A°-stable iff there exists a "formally A° enumeration of 21."

The basic outline of our argument is as in [1], where such a result was obtained
for finite a. However, certain technicalities prevent the generalization to infinite
a from being as straightforward as might be expected. The argument seems most
easily described in terms of recursive labelling systems, which were introduced in
[1] for a similar purpose.

The two basic results for a-systems are obtained in §1 and applied in the suc-
ceeding sections to the question of A°-stability. These basic results are also used
in the related topic of A°-categoricity [2].

In §1 we define the notion of a recursively a-guided recursive labelling system,
or a-system, and in Proposition 1 state the desired result similar to that of [lj
involving the existence of r.e. points of 2N and of labellings of A^ paths in an
a-system. To obtain this result for a > w, we need to deal with limit ordinals,
and we frame an analogous result [Proposition 2] for (7„)-systems where (^n) is an
increasing sequence of ordinals. Propositions 1 and 2 are then established by the
Main Lemma.

In §2 we show how the results of §1 apply to showing that structures are not A°-
stable, which is the "difficult direction" of our result. We show in Theorem 1 that
under suitable conditions on 21 there is a recursive structure 03 and an isomorphism
from 03 to 21 which is not A°. In the case where a is a limit ordinal, we also give
in Theorem 2 conditions under which there exists such a 03 and an isomorphism
which is not A^ for any ß < a.
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498 C. J. ASH

The method of proof for Theorems 1 and 2 is a little simpler than that given in
[1]. We comment that the method of [1] allows the assumptions of Theorems 1 and
2 to be slightly weakened.

In §3 we relate the results of §2 to recursive infinitary formulae. Theorem 4 shows
that, under the conditions of Theorem 1, a recursive structure 21 is A°-stable iff 21
has a formally A° enumeration. Theorem 5 gives a similar result for the notion of
A°-stability introduced for Theorem 2.

Theorem 4 can also be expressed in terms of the Scott rank of a structure. For a
suitable notion of rank, we observe in Theorem 6 that a recursive structure 21 sat-
isfying the assumptions of Theorem 4 is A°-stable iff 21 has < 2N° automorphisms
and, for some finite p, (21, p) has rank at most a. Lastly in §3, we define 21 to
be Hyp-stable if for each recursive 03 = 21, each isomorphism is hyperarithmetical.
We note in Theorem 7 that we do not need methods such as those of §1 to deal
with this notion because a recursive structure 21 will be Hyp-stable iff it has fewer
than 2N° automorphisms. It follows that, without further assumptions, a recursive
structure 21 is Hyp-stable iff it is A°-stable for some a < ufK.

Our main interest in this paper is the theoretical problem of finding general
conditions under which a structure is not A°-stable. The examples of conventional
algebraic structures which we have considered do not provide examples of A°-
stability for a > u. However, the notions of §§2 and 3 may be illustrated by
considering structures based on the ordinal numbers, such as (a, <) and (a, <, +).
In §4 we summarize some of the results concerning the stability of such structures.

More details about recursion theory are to be found in [6] and about recursive
structures in [1]. We shall use Kleene's system 0 of ordinal notations and the
related notions <0, +o, and | |o [or just | |] which are described in §11.7 of [6]. The
A° functions are as defined in §16.8 of [6].

We use the phrase "recursive transfinite induction" to indicate Kleene's method
for defining a partial recursive function on 0. This consists of taking a partial
recursive function / and using the Recursion Theorem to obtain an e for which
<ße(a) = f(e,a). The definition of f(n,a) normally involves the restriction <ßk{n,a)
of (j>n to {b: b <o o}. If this definition guarantees that f(n,a) is defined whenever
<Afc(n,a)(i>) is defined for all b <o a, then it follows by classical transfinite induction
on |o| that 4>e(a) is defined for every a G 0.

1. Recursive labelling systems. For applications in this paper, we are inter-
ested only in the metric space 2N. But without much trouble we can obtain the
results of this section for any suitably recursive complete metric space and so we
shall do so.

DEFINITION. A recursive metric space consists of a metric space X, a family
B(X) of nonempty open subsets of X, forming a basis for X, and an enumeration of
B(X) with respect to which the relations o <r [the closure of a is a subset of r] and
8(a) < 1/n [the diameter of o is less than 1/n] are r.e. relations on B(X) x B(X)
and B(X) x N, respectively.

DEFINITION. An r.e. point of a recursive metric space X is an element x of X
such that {ex G B(X) : x G o} is r.e.

An easily verified equivalent condition is that {x} = C\on for some recursive
sequence (on) from B(X) such that 8(on) —> 0 as n —> oo.
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RECURSIVE LABELLING SYSTEMS 499

We note that, for the space 2 with its usual basis, the r.e. points are the
recursive subsets of N, not the r.e. subsets. This will be the case whenever B(X)
consists of clopen sets and the relation a n r = 0 on B(X) is r.e., because then
x G" o iff, for some r G B(X), iEt and a C\r = 0.

By a complete recursive metric space, we mean a recursive metric space which
is also complete in the classical sense, without further recursive assumptions. We
need to use only the fact that if (on) is a recursive sequence from B(X), 8(on) —> 0
and for each n, on+i ~< °~n, then Ç\on = {x} where x is an r.e. point. This follows
since x G o iff there exists n for which on<o.

When discussing trees, we need to refer frequently to the levels of the nodes, so
we give our definitions in terms of levels and of the predecessor function.

DEFINITION. A tree T consists of disjoint sets {o}, To,Ti,... and a predecessor
function p for which p: Tn+f —> Tn, p: Tq —► {a}, and, say, p(a) = a. If p(x) — y
then y is the predecessor of x and x is a successor of y. The set of nodes of T is the
set {a} U (Un Tn)- The apex of T is the node o, and the nodes of T of level n are
the elements of Tn.

[Thus no level is assigned to the element a. In fact, with our present conventions,
the element a plays no essential part in any construction and could be omitted.]

A recursive tree is one for which the set of nodes forms an r.e. set of natural
numbers and the function p is partial recursive. In this case, each set Tn will be
r.e., uniformly in n.

Since the function p completely specifies T, we may define an index for a recursive
tree to be an index for the partial recursive function p.

A path in T is a sequence un,ui,... [finite or infinite] for which un G Tn and
P(Un+l) = un-

A recursive labelling system on a recursive metric space X is a quintuple (T, L, S,
N, F) for which T is a recursive tree, L is an r.e. set, S is an r.e. subset of T x L,
N is an r.e. subset of T x L x T x L, and F is a function from L to subsets of X
for which the relation F (I) n a ^ 0 on L x B(X) is r.e.

A labelling of the path uq,ui,. .. in T is a sequence lo, h, ■ ■ ■ from L of the same
length such that, for each n, S(un, ln) and N(un, ln, un+f,ln+l). An adherent point
of a labelling (ln) of an infinite path (un) is a point x G X such that, for every open
set U for which x€U, there exists N such that for all n > N, F(ln) CiU ^ 0.

[Usually, for a correct labelling, we shall have F(l0) 2 F(lf) D ■ ■ -, in which case
x G X is adherent iff x G Ç\n F(ln). This will be the case for the a-systems about to
be considered whenever a > 1. The above definition of an adherent point removes,
to some extent, the need to treat the case where a = 1 as a special case.]

We proceed to find sufficient conditions under which a nonrecursive path in T
nevertheless has a [nonrecursive] labelling with an r.e. adherent point. For some of
our applications, however, such a result, generalizing that of [1], is not sufficient.
We need also to consider situations where the desired path is determined at each
level, not just by the previous node, but also by its label. We therefore make the
following definitions.

DEFINITIONS. A path-generating function [or instruction] in a recursive labelling
system is a function from T x L to T mapping each (u, I) for which S(u, I) holds to
some successor of u in T.
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500 C. J. ASH

A labelling of an instruction, p, is an infinite path un, tti,... in T together with
a labelling lo, l\, ■. ■ of this path such that, for each n, p(un,ln) = un+f.

We shall show that the existence of suitable relations on L provides a sufficient
condition for every A° instruction to have a A° labelling with an r.e. adherent
point.

DEFINITION. Let a < ojfK and let a = ß + 1. A recursively a-guided recursive
labelling system [or a-system] is a recursive labelling system (T, L, S, N, F) together
with a notation a G 0 for a and a family {^ : 1 < 7 < a} of uniformly r.e. binary
relations on L, indexed by {c: c <n a}, for which conditions (1) to (7) below are
satisfied. [Here <o denotes the partial ordering on 0, so that {c: c <o a} is an r.e.
linearly ordered set of order type a. Or course, we do not use in this instance the
notation for 0.]

(1) For each u G To and each o G B(X) there exists l G L such that S(u,l) and
F(On<7^0.

(2) If S(u, I) and N(u, I, v, m), then S(v, m).
(3) Each <i-, is reflexive and transitive.
(4) If N(u, /, v, m), then / <ß m.
(5) If 1 < -71 < 72 < oí and / <3l2 m, then / <lt m.
(6) If I «1 m, then F (I) 2 F(m).
(7) Suppose that S(u,l), F (I) Do ^ 0, and v is a successor of u. [Suppose also

that a > Qfc > • • ■ > ai > «o > 1 and that I = Ik <ak ■ ■ ■ <1q2 '1 <Ql h where
F(lo) n cr ^ 0.]* Then there exists m for which N(u,l,v,m) and F(m) n tr 7^ 0
[and f <3ai m for i = 0,1,..., k]*.

* Notes. The two parts of condition (7) in parentheses are to be omitted in the
cases where a = 1 or a = 2. In the case where a = 1, the sequence of «^'s is to be
regarded as the empty sequence and only conditions (1), (2), and (7) are relevant.
In the case where a = 2, we have ß — 1 and we need only the single relation <f, so
condition (5) is irrelevant.

The following result will be established by the Main Lemma.

PROPOSITION 1. If 1 < a < oJfK, a is a successor ordinal and T is an a-
system over a complete recursive metric space, then for every A° instruction in T
there is a A° labelling having an r.e. adherent point.

In order to prove this, we introduce similar notions for the case where a is a
limit ordinal. In this case, we restrict our attention to certain particular classes of
A° instructions.

DEFINITION. A special sequence for a limit ordinal a is an increasing sequence
(~fn) of successor ordinals whose limit is a and for which there is a recursive sequence
(c„) of notations from 0 such that cq <o ci <n c2 <o • • ••

In such a case, there will be a notation a G 0 for a such that each c„ <o a,
namely a = 3.5e where e is an index for the recursive sequence (cn). Conversely, if
a < ujfK is any limit ordinal, then one may always obtain a special sequence (-yn)
for a, for example by taking any notation 3.5e for a and letting 7„ = \<ße(n) +0 1\-

DEFINITIONS. Let a be a limit ordinal and let (-yn) be a special sequence for a.
A special A^-instruction w.r.t. ("/„} [or ("yn)-instruction] in a recursive labelling

system is an instruction p such that, for some recursive sequence (e„), each e„ is a
AiJ   index for the restriction of p to {(u,l): u GTn}.
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RECURSIVE LABELLING SYSTEMS 501

A special a-system w.r.t. (7«) [or \*yn)-system] is a recursive labelling system
together with, first, a notation a G 0 for a, second a recursive sequence (cn) of
notations for the (7«), where cq <q ci <o ■■■ <o &, and third, a family {<1: 1 <
7 < q} of uniformly r.e. binary relations on L indexed by {c : c <o a} which satisfy
conditions (1), (2), (3), (5) and (6) above and conditions (4)' and (7)' below.

(4)' If N(u, I, v, m) where u €Tn and if 7„ — ßn + 1 where ßn > 0, then l<ßn m.
(7)' Suppose that S(u, l), o G B(X) and that v is a successor of u where u G Tn.

Suppose also that 7„ > a¡t > ■ • ■ > ai > an > 1 and that / = Ik <ak • • • <o2 'i<ai ¿0
where F(l0) Ha ^ 0. Then there exists m for which N(u,l,v,m), F(m) do ^ 0
and ij <Qi m for i = 0,1,..., (k — 1).

For a (^-instruction in a (-yn)-system, we may well expect a corresponding
special sort of A° labelling.

DEFINITION. A (7«)-labelling of an instruction p in a recursive labelling system
is a labelling (un), (ln) oí p such that, for some recursive sequence (en), each e„ is
a A°n index for the pair (un+f,ln+1).

The following result will also be established by the Main Lemma.

PROPOSITION 2. Let (7«) be a special sequence for a limit ordinal a, where
a < ujfK, and let T be a (in)-system over a complete recursive metric space. Then
for every (^n)-instruction in T there is a (7«)-labelling having an r.e. adherent
point.

COMMENTS ON THE MAIN LEMMA. Before proceeding to the statement and
proof of the Main Lemma, we comment that a more intuitive line of argument to
establish Proposition 1 [and similarly Proposition 2] would be as follows.

Given an a-system 7^, we would construct a uniformly recursive sequence (T,:
1 < 7 < a) for which each T-¡ is a 7-system in such a way that for each A°
instruction pQ in Ta we could find a sequence (p1 : 1 < 7 < a) where each p~¡ is
a A° instruction in T,. These instructions would be arranged so that each A°
labelling of p1 would determine a A°+1 labelling of p-,+ i having the same adherent
points.

The TT^'s for which 7 is a limit ordinal would be special (7„)-systems w.r.t. some
special sequence (7„) for 7. Then p~, would be a (7„)-instruction and a labelling of
p1 would be obtained by referring, at the (n + l)th level of T~¡, to the labelling of
Pin in Tln.

The path pi in Ti would first be labelled to have an r.e. adherent point and
then, proceeding by recursive transfinite induction, a A° labelling with the same
adherent point would be obtained for each p1, in particular for pa.

A complication which arises in following precisely this outline, when a is infinite,
is that each 7T, must be defined in terms of later T^'s and eventually in terms of Ta.
Thus, the definition of the T~¡ and similarly the p1 is not by recursive transfinite
induction on 7. Rather, the systems T, need not be defined simultaneously one
level at a time. Thus the nodes of T-, of level n and associated parts of T7 must
be defined by recursive transfinite induction on some ordinal p(i,n). The function
p depends on some choice of a suitably nested family of special sequences for the
limit ordinals 7 < a.

So it seems preferable, for the sake of examining the details carefully, to consider
a slight generalization which can be proved more straightforwardly by recursive
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502 C. J. ASH

transfinite induction on a. We no longer need to construct the sequence of systems
7/3 explicitly, although this remains the intuitive guide and could be constructed
by the same induction.

The generalization which we prove is that for each a-system Ta and each ß < a
one can obtain a /3-system Tß for which the problem of labelling A° instructions
in Ta is reducible to that of labelling A¡g instructions in Tß. We make this precise:

DEFINITION. Let Ta be an a-system and let ß < a. A ß-precursor of Ta consists
of:

(A) a /3-system Tß,
(B) a partial recursive function which assigns to each index for a A°-instruction

pa in Ta an index for a A^-instruction pß,
(C) a partial recursive function which for each pß obtained from pa as in (B)

assigns to each index a AS labelling of pß and index for a A° labelling of pa having
at least the same adherent points.

AToie. In the case where a [or similarly ß] is a limit ordinal, it is understood
here that by a A°-instruction or A°-labelling we mean a (7„)-instruction or ^re-
labelling, where (7„) is the associated special sequence.

PROOF OF PROPOSITIONS 1 AND 2. If 7i is a 1-precursor of an a-system
Ta and Pa is a A° instruction in 7^,, then the corresponding recursive instruction
Pi in Tf may easily be recursively labelled, as in Lemma 17 of [1], to have an r.e.
adherent point. Thus, Propositions 1 and 2 follow from the existence of precursors,
to be proved in our Main Lemma.

MAIN LEMMA. // Ta is an a-system, ß < a and ß < 70, in the case where a
is a limit ordinal with special sequence (7«), then Ta has a ß-precursor.

Proof.
1. Method of proof. We define, by recursive transfinite induction on a G 0, a

recursive function which we call the precursor operator which assigns to each index
for an a-system using the notation a for a and to each b G 0 for which iXjo [and
b <o Co in the case where a is a limit ordinal and (cn) is the sequence of notations
for the special sequence] an index for a /3-precursor, where ß = \b\.

Thus it is sufficient to describe how to obtain a /3-precursor Tß of an a-system
Ta in terms of given precursors of 7-systems 7^ for 7 < a.

We need to carry various properties of our precursors through the transfinite
induction. The labels of the precursor of an a-system and the associated definitions
will be obtained from the corresponding notions in the a-system. More generally

DEFINITIONS. An a-set is a system £ = (L,F,<~f)1<a satisfying conditions (3),
(5), and (6) of the definition of an a-system.

A determining function for a /3-system Tß — (Tß,Lß,Sß, Nß,Fß,<@)~l<ß is a
function g: Lß —► L for some a-set £ = (L,F, <~,)1<a, where a > ß such that, for
all l G Lß, Fß(l) = F(g(l)) and, for all l, m G Lß, 7 < ß, l<@ m iff g(l) <7 g(m).

We now add to the desired ingredients of a precursor, the inductive assumption
that our precursor operation also yields:

(D) a determining function gaß from Tß to the a-set of Ta-
We also need to use the fact that our construction of a precursor of Ta is inde-

pendent of those labels of Ta which are suitable for no nodes of Ta ■
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DEFINITION. Let g be a determining function from an a-system Ta to an a-set
£., with the notation as above. We say that Ta is an a-system w.r.t. g if it satisfies
the following strengthening of condition (7).

(7)* Suppose that Sa(u,l), Fa(l) l~l o = 0, and v is a successor of u. [Suppose
also that a > a^ > ■ • • > ao > 1, that g(l) — Ik <ak • • ■ <m h, where F(lo) D a ^ 0
and each /¿ G L rather than LQ]. Then there exists m G La for which JVa(u, /, i», m)
and FQ(m) n <r ̂  0 [and Z¿ <Qj ff(m) for * = 0,1,..., fc].

In the case where a is a limit ordinal, condition (7)' is modified in the same way.
We add to our inductive assumptions:
(E) If g is any determining function for 7^ such that Ta is an a-system w.r.t. g,

then 7/3 is a /3-system w.r.t. the composite g o gaß.
We need to use the fact that our precursors and the associated operations depend,

at each level of the tree, only on this level and preceding levels of the corresponding
features of the original a-system.

Notation. For each 7-system T, let Tk denote the system consisting of the nodes
of T of levels < k, the labels suitable for these nodes, and the restrictions to these
nodes of S, N and (<¿)^<^.

We add to our inductive assumptions:
(F) For a-systems Ta and their /3-precursors Tß, each Tß depends only on Tk.
(G) Similarly, the restriction of the function gaß, in (D), to Tß depends only on

Tfc

(H) Likewise, the restriction of pß, in (C), to Tßk depends only on the restriction
of pa to Tk-

COMMENT. So, in principle, the precursor operator acts on partial systems Tk
to yield, in (A), the partial system Tßk, in (D) a determining function from the labels
of Tßk to those of Tk and, in (B) a partial recursive function acting on restriction
of instructions pa to Tk- However, no such requirement is necessary [or indeed
possible] for (C).

We add further to our inductive assumptions two simplifications:
(I) The level 0 nodes and their labels are exactly the same for Tß as for Ta ■ The

function g aß is the identity function for such labels.
(J) The labelling of pa given in (C) always has the same level 0 node with the

same label as in the labelling of pß.
Finally, we note that if 7 < ß < a, Tß is a /3-precursor of 7Ta and 7T, is the 7-

precursor of Tß, then 7T, is a suitable choice for a 7-precursor of Ta, the associated
operations being obtained by composition. It is therefore sufficient to describe how
to obtain a /3-precursor of an a-system Ta first when a = ß + 1 [for which we
consider the two cases where ß is or is not a limit ordinal] and then when a is a
limit ordinal and b = cq, where (cn) is the associated sequence of notations. We
now do this in parts 2, 3, and 4 below.

In the case where a = ß + 1 and ß is a limit ordinal, in order to obtain a 7-
precursor for Ta where 7 < ß, we must obtain a 7-precursor for the /3-precursor
of Ta. Thus, the special sequence (7«) for ß must have 7 < 70- We therefore
show in this case that any special sequence for ß can be used. [This is why, in our
definitions, we did not restrict attention only to the fundamental sequence given
by the notation for ß.]
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2. The case a = ß + 1 where ß is a successor ordinal. Let Ta = T =
(T,L,S,N,F,<1)1<a. If a = ß + 1, we let the /3-precursor of T be the system
V = (T',L',S',N',F',«'1)1<0 defined as follows.

The tree T' consists of all the sequences (urj, ui,..., un) from T for which each
Uk has level k in T and each Uk+i is a finite successor of uo- The predecessor of
(u0,ui,...,un) is (u0,Ul,...,U„_i).

If u — (uo, Uf,..., un) and the path in T with last node un is rn,ri,..., rn [so
Tn = Un], then we define S'(u, I) to hold when Z = (l0, If,..., ln) is a labelling in T
of this path. The set L' consists of all such sequences Z. The determining function
g for T' is defined by g(l) = ln, and F' and the <f are defined according to the
definition of a detrmining function. When all else is done, we may replace (un) and
(lo) by uo and Iq for the sake of assumptions (I) and (J).

For u, v G T', l, m G L', we define N'(u, I, v, m) as follows. Let u = (un, ui,...,
un). We require that v = (un,ui,... ,un,un+l) for some un+f and that S'(u,l) and
S'(v, m). Thus Z = (lo, If,... ,ln) and m = (mo, mi,..., mn, mn+i) are labellings
in T of paths rn,...,rn and ro,..., ra_i, Sf,..., sn+i, where r„ = un and either
sa / r„ or a = n I 1. Then we let N'(u,l,v,m) hold if, additionally, mo = lo,
nif = If,... ,ma-f = la-\, and ln <7 mn+i where ß = 7 + 1. We note that, here,
a > 1, by the definition of T'.

Conditions (1) to (6) for a /3-system are straightforward. To see that T' is a
/3-system w.r.t. g also satisfying assumption (E), suppose that T is an a-system
w.r.t. some determining function h from T to an a-set (L+,F+,<¡f)1<a- We must
verify condition (7)* for T' and hog.

Suppose, then, that v is a successor of u in T', l G L', S'(u, Z), ß > ak >
••• > a0 > 1, and that /i(g(Z)) = Z^ <+fc ••• <+t if, where each Z/" G L+ and
F+(Zq") n o ^ 0. If /3 = 7 + 1, then we may assume that ak — 7, since Z^ <¡f Z~¿~.
Using the notation above, we must find a labelling m = (lo, • • •, Za_i, ma,..., mn+i)
of the path r0,... ,ra-i,sa,... ,sn+1 in T.

Since Z = (Zo, •.., Z„) is a labelling of a path in the a-system T, we have Za_i <ß ln
and so h(la-f) <ß h(ln) = l£ <¡^k l£_f ■ • ■ <+ Iq . Now by condition (7)* for T
and h, we may find ma G L for which A^ra-ijZa-ijSajma), F(ma) n o / 0,
ri(Za_i) <t /i(ma), and Zt+ <iQi h(ma) for 0 < i < k. We may then choose the
remaining m¿ in turn using (7) for T, so that F(mn+i) C\ o ^ 0. Then, since
h(ln) = Ik ^ h(ma) and ak = 7, we have Z„ <37 mQ <ß mn+i, so Zn <^ mn+i
and N'(u,l,v,m). For 0 < i < k, since if <3+, Zi(ma) and ma <ß m„+i, we have
h(ma) <t h(mn+\) and so if <+  Zi(mn+i) = h(g(m)), as required.

For condition (B), given any A° instruction p in T, we obtain a corresponding A°
instruction p' in T' as follows. Since a = ß + 1, we may let p(u, I) = lims p(u, Z, 5)
where p is a A°0 function. For u' G V, l' G L' such that S'(u',l'), let u' =
(uo, • • •, un) and Z' = (Z0,..., Zn). Then Z' is a labelling of the path r0,..., rn in T,
where rn = un. We consider the least i for which i = n or p(ri,U,n) / í*¿+i, and
let p'(u',l') be (uo,... ,un,u„+i) where un+i is any level (n + 1) node of T which
is a finite successor of p(r¿> h,n)-

Then, for condition (C), suppose that (u'n) and (l'n) form a labelling of p' in T'.
Let u^ = (un0,uni,...,unn), Z^ = (Z„o,Zni,...,Znn), and let rn0,rnl,... ,rnn be
the path in T for which rnn = unn-   We may then see, by induction on n, that
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for each n the limits un = lims ran and ln = Hms lsn exist and that (un) and (ln)
constitute a labelling of p in T. If x is an adherent point of the labelling (l'n) and
U is an open set where x G U, there exists N such that F'(l'n) f~)U ^ 0 for all
n > N. Then for a > n > A we have lsn <ß lS3, so F(Zan) D F(Za3) = F'(Z3) and
so, for n> N, we have F(Zn) l~l Z7 ̂  0. Thus a; is also an adherent point of (Z„).

3. The case a = ß + 1 where ß is a limit ordinal. Let (7„) be any special
squence for ß. Then we may obtain a (7„)-system as a /3-precursor of Ta = T in
very much the same way as in the previous case. The only modifications needed
are the following.

In the definition of N'(u,l,v,m), the stipulation ln <-, mn+f where ß — 7 + 1
is replaced by ln <ßn mn+i where 7„ = ßn + 1. In the verification that T' is a
(7„)-system satisfying condition (E), ß and 7 are replaced by the appropriate 7„
and ßn, respectively.

To obtain a (7n)-instruction p' for T' corresponding to the instruction p for T,
we first obtain a recursive sequence (en) where en is an index for a A^n function
pn(u, 1) and such that p(u, I) = lim„ pn(u, I). The instruction p' is now obtained in
the same way as before except that p(u,l,n) is replaced by pn(u,l).

4. The case where a is a limit ordinal. Let

Ta = T = (T, L, S, N, F, <1)~t<a
be an a-system and let (7«) be the associated special sequence for a. We must
construct a 70-precursor of T. We do this by constructing a sequence To, T\,...,
where each Tn is a 7„-system. Then To will be the desired 70-precursor of T.

The Tn are defined simultaneously as follows. The level 0 nodes of Tn are exactly
the level n nodes of T, with the same suitable labels. The level k + 1 nodes of Tn
and their suitable labels are those of level k of the 7„-precursor T^+i of T^+i. By
assumption (I), the level 0 nodes of Tn'+1 are those of 7^+1 and so are level n+ 1
nodes of T. Thus we may define the predecessor in Tn of each level 1 node to be
as in T. For nodes of T„ of levels greater than 1, the predecessors are as in 7^'+i.

In this way, each Tn is defined in terms of T and Tn+i- However, the definition
is justified since each Tnk+X depends only on Tn and (7^'+i)fe and, by assumption
(F), (Tn'+i)fc depends only on Tnfc+i. Thus the Tk are well defined by induction
on k. [Moreover, each Tk depends ultimately only on Tk+n, so T0k depends only
on Tk, as required by condition (F) for a precursor.] The other ingredients of our
construction are defined by the same form of induction.

Each Tn will have a determining function, gn, to the a-set of T. The set, Ln, of
labels for Tn consists of the labels of T suitable for level n nodes of T, on which gn
is the identity function, together with the labels öf 7^'+i on which gn is gn+i ° hn,
where hn is the determining function from Tn'+i to T^+i.

The relations Sn(u, I) and Nn(u, Z, v, m) for Tn are defined to be as in T if u has
level 0 and as in 7^'+1 otherwise. The function F and the relations (<1)-1<ln are
defined in the unique way which makes gn a determining function for Tn-

To show that To is a 70-system w.r.t. go and satisfies condition (E), we sup-
pose that T is an a-system w.r.t. a determining function h to an a-set £+ =
(L+, F+, <f)1<a and prove simultaneously that each Tn is a 7„-system w.r.t. hogn.

The arguments are, in principle, by induction on the largest level of labels or
nodes involved in each condition for a 7„-system.   The effect of this is that we
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may show that Tn is a 7„-system w.r.t. ho gn under the assumption that 7^+i is
a 7Ti+i-system w.r.t. hogn+1. Conditions (1) to (6) follow immediately from the
definitions.

For condition (7)* for Tn and h o gn, suppose that Sn(u,l), Fn(l) n o ^ 0, and
v is a successor of u in Tn. Suppose also that a > a^ > ■ ■ • > ao > 1 and that
h(gn(l)) = h <tk • • ■ «^ lo where F+(Z0) n a ¿ 0 and each U G L+.

First, if u has level 0, then u,v GT, gn(l) = I, and, by (7)* for T and h, there
exists m G L such that N(u,l,v,m), F(m) Ho ^ 0 and, for 0 < t < k, lt <+ /i(m).
But then, by our definitions, m G Ln, Nn(u,Z,u,m), Fn(m) Do = F(gn(m)) Ho =
F(m) n a t¿ 0 and, for 0 < i < k, lx «+  h(m) = h(gn(m)).

Now suppose that u has level greater than 0. Then u, v are nodes of Tn'+1 =
{Tñ+i^L'n+i,Sn+f,Nn+f,Fn+f,<'^<ln. By our assumption, T„+i is a 7„+1-
system w.r.t. /i o gn+1, so by the transfinite induction hypothesis 7^'+1 is a 7„-
system w.r.t. hogn+l ohn- Thus there exists m G L^+i such that Nn+1(u,l,v,m),
K+i(m) n<T ̂  0 and, for 1 < i < k, Z¿ <+ h(gn+i(hn(m))) = h(gn(m)).

For (B), suppose that p is a (7n)-instruction for T. We obtain a corresponding
A®0 instruction po for To by simultaneously defining for each n a AiJn instruction
pn for Tn. On level 0 nodes of Tn, pn acts as p does on level n nodes of T. On
other nodes of Tn, we let pn act as does p^+i, where p^+i is the instruction for
7^'+i assigned to the instruction p„+i for 7^+i according to (B) of the inductive
hypothesis.

For (C), suppose that Ao is a A°o labelling of po in To- We obtain by straight-
forward induction on n a A°n labelling A„ of each pn having the same adherent
points. Having obtained An, we obtain A„+i as follows. We note that An consists
of a level 0 node, un, of Tn and a label, Z„, for this, followed by a A° labelling
^n+i 0I Pn+i m ^i-f-i- Part (C) of the inductive hypothesis for Tn+i thus yields a
labelling An+i of pn+i. The sequence of first nodes, un, of the An and their labels,
ln, then form [using assumption (J) for the 7^+i] a labelling A of p in T.

If x is an adherent point of Ao, then it is so for each A„, by (C) of the inductive
hypothesis, and so certainly for n > 1 we have x gÇ\ Fn(l) for each label Z occurring
in An. In particular, x G f)Fn(ln) for n > 1, so x is an adherent point of A.

This concludes the proof.

2. Conditions for instability. Our constructions depend on the "back-and-
forth" relations <ß between finite sequences, of the same length, of elements of a
structure 21, where ß is an ordinal number.

DEFINITION. For each structure 21 we define <ß by transfinite induction on
ß > 1. We define ä <i b if each finitary universal formula true for ä in 21 is true
for b. We define S </j+i b if, for each sequence d there exists a sequence c such
that 5, c >ß b,d. If 8 is a limit ordinal, we define 5 <ß b if a~ <ß b for all ß < 8.

DEFINITION. For each structure 21, each finite sequence p from 21 and each
ordinal a > 2, we define the subset cla(p) of A as follows. If a = ß + 1, then
x G clQ(p) if for some 5, whenever p,x,U <ß p,x',a', then x = x'. If 8 is a limit
ordinal then clg(p) = f)0<6 clp(p).

In all the simple examples where 21 is Aa-stable we have A = clQ (p) for some p.
We can prove this in general, provided that we make certain additional assumptions
about the recursiveness of 21.
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THEOREM 1. Let 21 be a recursive structure such that for no p is A = clQ(p).
Then 21 is not Aa-stable whenever the following conditions are satisfied.

(1) The existential diagram o/2l is recursive.
(2) For some notation a for a, the relations <ß on 21 for 1 < /3 < a are uniformly

r.e. when indexed by {b: b <o a}.
(3) There is a recursive procedure which chooses, for each p, an element lë^l

for which x $. clQ (p).

PROOF. If the domain, A, of 21 is finite, then clearly A = clQ(p) where A = {p}.
So we may suppose that A = {ao, ai,...} and let B = {bo, bf,...} be any recursive
set. Let L be the language for 21 and let {0o,0f,...} be an enumeration of the
atomic sentences of L(B). We obtain a recursive structure 03 whose domain is B
by enumerating, during our construction, the atomic diagram D(03) of 03, or, in
the terminology of §1, by obtaining an r.e. point x of the metric space X = 2N
with the usual basis as B(X), which yields 0(03) by

0fcGD(O3)      iix(k) = l,
-A G D(03)    if ¡t(jfc) = 0.

Thus, the nonempty basic open sets o G B(X) correspond to consistent finite
subsets S((t) of {6k : k G N} U {-.0fc : k G N}.

Let P be the set of all finite partial one-one functions from B to A. We define
/ G P to be coherent w.r.t. o G B(X) if there is a bijection g D / from B to A such
that, for each 6(bil,..., 6¿fc) G S(rr) we have 21 N o[g(6¿1),..., ff(&ifc)]. It follows
from assumption (1) that this is a recursive relation between / and o.

The relation <ß needed to apply the results of §1 are obtained from similar
relations on P defined as follows.

DEFINITION. For f,g G P and ß > 1, let / <ß g if dom(/) Ç dom(g) and
af,...,an <ß bf,...,bn, where {ai,...,an} = ran(/) and each 6¿ = g(f~x(ai)).

We may now prove the following [similarly to Lemmas 3, 4, 5, 6, 7 of [1] and
using the definition of clQ].

LEMMA 1. If f G P is coherent w.r.t. o G B(X) then for each a G A, b G B,
and for each n = 1,2,... there exists g G P and o' G B(X) for which g 2 /,
â G ran(g), b G dom(g), 8(0') < 1/n, and g is coherent w.r.t. o'.

LEMMA 2.   If f <ß g and g is coherent w.r.t. a, then f is coherent w.r.t. 0.

LEMMA 3. /// <Q g, g is coherent w.r.t. o, g(y) = x, and x ^ cla(ran(/)),
then for each ß < a there exists a coherent h 2 / for which g <\ß h and h(y) ^ x.

LEMMA 4. If ak > ■ ■ ■ > Qi > a0 > 1 and fk <aic fk-i <k-i ■ ■ ■ <a2 fi <a¡ /o
where /o is coherent w.r.t. o G B(X), then there exists g D fk, coherent w.r.t. o,
such that fi <ai g for i= 1,2,..., (k — 1).

To resume the proof, we define an (a + l)-system as follows. The nodes of the
tree of level n consist of sequences of the form (uo(mo) = fco, • • ■, Wn-i(^n-i) =
fc„_i) where the pe are symbols corresponding to the partial functions <ß1 for some
notation a for a. The predecessor function is the usual one for sequences, that is,
the function which deletes the last term of a sequence. In this tree there is, as
well as the apex, a single node of level 0, namely the empty sequence.  A suitable
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label for such a node is a pair (/, x) for which / G P, x G A, and x £ clQ(ran(/)).
A correct next label on the successor node (uo(mo) = fco, • • • ,/Jn(mn) = fcn) is a
suitable label (g,y) such that g Ç /, an,x G ran(g), bn G dom(g) and if mn — x,
then g~x(x) ^ kn- For each label (/,x), F(f,x) is defined to be the set of points
of 2N which correspond to structures 03 for which there is an isomorphism from 03
to 21 extending /. This means that F(f, x) Pi a ^ 0 iff f is coherent w.r.t. o.

To show that this is an a+ 1-system, we define (/, x) <\ß (g, y) if / <ß g, in the case
where ß < a, and (/, x) <a (g, y) ii f Q Ç- Clause (7) of the definition then requires
that, given a > ak > ■ ■ ■ > ax > a0 > 1, fk <ak ■ ■ ■ <a2 /i <<«! /o, er G B(X), and
x G" clQ(ran(/fc)), where /o is coherent w.r.t. a, there exists g ~D fk for which g is
coherent w.r.t. a, x,an G ran(g), bn G dom(g), /¿ <ai g for i = 0,..., (k — 1) and
g~x(x) 4" fc- By Lemma 4 there exists a coherent h for which h D fk and /, <Qi h
for i — 0,..., (fc — 1). By Lemma 1 we may choose a coherent hf 2 h for which
x G ran(Zi), say i = h(y). By Lemma 3 there exists a coherent h2 D fk for which
hi <ak-1 h2 [since afc_i < a] and h2(y) ^ x. By Lemma 1 again, we may choose
a coherent g D h2 for which an,x G r&n(g) and bn G dom(g). So fk Ç h2 Ç g and
thus fk C g, and for i < fc, /¿ <Qi h Ç hf <aic-l h2 Ç g and thus /¿ <ai g.

The desired instruction is that which proceeds from a node of level n with label
(/, x) to the successor node (... ,pn(x) = fc) for which

, _ Í 4>n(x)    if this is defined,
( 0 (say) otherwise.

Clearly this is a Aa+Ï instruction and so, by Proposition 1, there is a correct
labelling (g,xo), (fo,Xf), (f\,x2),... of this instruction having an r.e. adherent
point. Let 03 be the structure determined by this point and let / = \Jn /„. Then
/: 03 = 21 and for each e, if 0" is total then fe~x(xe) ^ <ßg(xe). Hence / is not A^.

A logical extension of the notion of stability arises from considering a recursive
structure 21 which is A°-stable, where a is a limit ordinal, but for each ß < a is not
AS-stable. Then, for each ß < a there exists 03/3 — 21 such that no isomorphism
from 03/3 to 21 is A°. We ask whether a single such 03 can be chosen independently
of/3.

DEFINITION. A recursive structure 21 is Aa-stable, where a is a limit ordinal, if
for each recursive 03 = 21 and each isomorphism /: 03 = 21 there exists ß < a for
which / G A°0. [Thus A° represents the class U/3<Q &$■]

THEOREM 2. Suppose that a is a limit ordinal and that, for each ß < a and
each p G A, clß(p) ^ A. Then 21 is not Aa-stable provided that the following
conditions are satisfied.

(1) The existential diagram o/2l is recursive.
(2) For some notation a for a, the relations <ß for 1 < ß < a are uniformly r.e.

when indexed by {b: b <o a}-
(3) For the same notation a for a, there is a recursive procedure which chooses,

for each p, uniformly in a notation b <o a for ß, an element x G A for which
x<£cl0(p).

PROOF. We use the same terminology as for the proof of Theorem 1. Let a be
the notation for a given in assumptions (2) and (3), and let (dn) be a recursive
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sequence of notations for ordinals (ßn) such that do <o df <o ■ ■ ■ <o a and
limn ßn = a. For simplicity we may assume that /3o > 2. Let 7„ = ßn + 1.

We define a special a-system w.r.t. (7„) as follows. The nodes of the tree of level
n are those sequences of the form

(M(o)Ô(mo) =ko,---,p{fnZ\]l0(mn-i) = fcn-i)

where the pi are symbols corresponding to the partial functions <ßgT and n =
((n)o, (n)f) is a recursive pairing function for which (n)i < n.

A suitable label for such a node is a pair (/, x) for which / G P, x G A and
x & cl/3n(ran(/)). A correct next label on the successor node (... ,/¿["^(m«) = fcn)
is a suitable label (g, y) such that g I) /, o,n, x G ran(g), bn G dom(/), and if mn = x,
then g~x(x) ^ fcn. The function F is again defined so that F(f, x) H o ■£ 0 if and
only if / is coherent w.r.t. o.

For ß < a, we define (/, x) <ß (g, y) if / «g g. The verification that the result is
a (7„)-system is much as for the proof of Theorem 1.

The desired instruction is that which proceeds from a node of level n to the
successor node (..., pfy-f (x) = fc) for which

k= I <f>fn)o (x)    if this is defined,
[ 0 (say) otherwise.

Since d(n)i <o co, we can find a A°n index for this value of fc, so we have defined
a (7„)-instruction. By Proposition 2, there is a correct labelling of this having an
r.e. adherent point giving, as in the previous proof, a recursive structure 03 and an
isomorphism /: 03 = 21 which is not A°n for any n.

COMMENTS ON THE PROOFS. Theorem 1 could instead be proved as in [1]
using "binary patterns" as labels for an a-system. The proof given here seems
simpler and, incidentally, shows that we could equally construct a recursive 03 and
an isomorphism not in any uniform family of total A° + 1 functions. On the other
hand, the method of [1] shows that the conditions of Theorem 1 can be weakened
to those given in [1]. Assumption (3) can be replaced by:

(3)' There is a A2 function which assigns to each p an element of A — clQ(p).
A more complicated argument, following the proof of the Main Lemma, shows

that Theorem 2 can similarly be modified, replacing assumption (3) by
(3)' There is a A2 function which yields, for each p and each notation b <o a

for /3, an element of A — clß(p).

3. Infinitary formulae. We define the SQ and Fla formulae of LWlW as follows.
The So and Ho formulae are the quantifier-free formulae of LUÜ1. The £Q+i formulae
are those of the form \JneS ^Vn^n where each <pn as in Fla formula and yn is a finite
sequence of variables. The nQ+i formulae are those of the form Angs ^Vn^n where
each (ßn is a EQ formula. If 8 is a limit ordinal, the S¿ formulae are \JneS <pn where
each (ßn is E/3 for some ß < 8 and the Fis formulae are f\neS (ßn where each (ßn is
Uß for some ß < 8.

For a G 0, we define the (recursive) SQ and na formulae and simultaneously,
by recursive transfinite induction, their Gödel numbers. If a — 2b and if, for each
n G We, (ße(n) = (in,jn) where in is a Gödel number for a Fib formula 6n and jn
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is a canonical index for a finite sequence of variables yn, then (a, e,0) is a Gödel
number for the Ea formula \fnew ^Vn^n- Similarly, if instead each in is a Gödel
number of a £;, formula 0n, then (a, e, 1) is a Gödel number for the na formula
A„eWe ^Vn^n- If a = 3.5fc where (ßk(n) = an and if, for each n, <¡>e(n) is a Gödel
number for a E0n formula 6n, then (o,e,0} is a Gödel number for the Ea formula
Vn€W"„ ̂ ™- If> instead, each 9n is Flan, then (o, e, 1) is a Gödel number for the ïïa
formula A„eVVe 0n-

We define a recursive £a formula to be one which is EQ for some a G 0 such that
|a| = a. We note that, similarly to §16.8 of [1], if |Zj| < |a| then we can effectively
find, from a Gödel number of a £& formula, a Gödel number of a logically equivalent
£a formula.

We make the following definition as seeming a natural condition under which 21
will be A°-stable.

DEFINITION. A formally Aa enumeration of 21 consists of a finite sequence p
from A, an ordinal notation a G 0 for a and a E° set 5 of Gödel numbers for a set
of recursive Ea formulae such that, if </>n denotes the formula with Gödel number
n, then, for each n G S, 21 1= </>„[c,p] for at most one element c of A and for each
element c of A there exists at least one n G S such that 21 N (ßn[c,p].

COMMENT. Given a formally Aa enumeration of 21, we may convert it into one
for which S is recursive and such that, for each n G S, 21 h (ßn[c,p] for exactly one
cG A.

It is easy to see that the existence of such an enumeration is a sufficient condition
for A°-stability.

THEOREM 3. If a recursive structure 21 has a formally A° enumeration, then
21 is Aa-stable.

PROOF. First we note that, by recursive transfinite induction, from a Gödel
number for a recursive Ea formula, we can compute an index for the Y¡a relation
which it determines on a recursive structure.

Now suppose that 03 is a recursive structure and /: 03 = 21. Then for some
q G B we have /: (03, q) = (21, p) and /(c) = d iff there exists n G S for which
211= 4>n[c,p] and 03 1= (ßn[d,q]. But this relation is E°, and so / is Aa.

The results of §2 allow us to prove the converse of Theorem 3 under certain
assumptions. First, the following may be proved, substantially as for Lemmas 1
and 2 of [1].

LEMMA 5. Suppose that the relations <ß on 21 for 1 < ß < a are uniformly r.e.
when indexed by {b: b <o a} for some a G 0 with \a\ = a and that the existential
diagram of 21 is recursive. Then, from each c G A, we can effectively find a Gödel
number for a recursive na formula 4>" such that, for alldG A,c <a d ¿¿f 211= <ß^[d].

LEMMA 6. Under the same assumptions, if, for some p, clQ(p) = A, then 21
has a formally Aa enumeration.

Thus, the results of Theorems 1 and 3 may be combined as follows, using Lemma
6. We incorporate the improvements stated in §2.

THEOREM 4. Suppose that the existential diagram of 21 is recursive, that the
relations <ß for 1 < ß < a are uniformly r.e. when indexed by {b: b <o a} for
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some a G 0 where \a\ = a and that the relation x G clQ(p) is A2.   Then 21 is
Aa -stable iff 21 has a formally Aa enumeration.

Similarly, Theorems 2 and 3 give

THEOREM 5. Suppose that the existential diagram of 21 is recursive, that the
relations </3 for 1 < ß < a are uniformly r.e., and that the relations x G clß(p) for
ß < a are uniformly A2. Then 21 is A0 -stable iff 21 has a formally AÎ enumeration
for some ß < a.

This establishes the following result, involving only the notions of §2.

COROLLARY. Under the assumptions of Theorem 5, 21 is Aa-stable iff 21 is
Aß-stable for some ß < a.

Another re-statement of these results concerns the Scott rank of a structure
21. For sequences 3 and b of the same length from A, define 3 ~ 6 if there is an
automorphism of 21 which maps each entry of 3 to the corresponding entry of b.
From several slight variations, we choose to define the rank of 21 to be the least
ordinal a for which, for each 3 G A, there exists c G A and ß < a such that, for all
b,d of the same lengths as 5,c, if 3,c </3 b, d, then 3 ~ b. Equivalently, the rank
is the least ordinal a such that, for each 5 G A, there is a £Q formula 9 such that
b ~ 3 iff 21 N 0[5]. If the rank of 21 is a, then there exists a na+i sentence ip such
that for each countable 03, 03 = 21 iff 03 N xp.

In the presence of our other assumptions a recursive structure 21 has a formally
A„ enumeration iff, for some p, the structure (21, p) has rank at most a and is rigid,
that is, has no automorphism other than the identity function. Thus we have:

THEOREM 6. Under the assumptions of Theorem 4, 21 is Aa-stable iff, for some
finite sequence p from A, (21, p) is rigid and has rank at most a.

Similarly, under the assumptions of Theorem 5, 21 is Aa-stable iff, for some finite
sequence p from A, (21, p) is rigid and has rank strictly below a.

COMMENT. The statement of Theorem 6 could be varied using the facts that if
21 has 2N° automorphisms then so has each (21, p), while if 21 has fewer than 2N°
automorphisms then, for some p, (21, p) is rigid.

Hyp-STABILITY. A final notion along the lines of this paper would be to define
the recursive structure 21 to be Hyp-stable if, for each recursive 03 = 21, every
isomorphism from 03 to 21 is hyperarithmetical, that is, A°-recursive for some
a < ujfK. However, this matter is quickly disposed of, using the results from [4]
that the rank of a recursive structure is at most uifK and that if its rank is equal
to uif K, then the structure has 2N° automorphisms.

Thus, if 21 has rank wfK, then 21 is not Hyp-stable. Now suppose that the rank
of 21 is a < ujfK. From the definition of rank, we have 5 <Q b =>■ 3 ~ b. Without
further assumptions, we do not have the conclusion of Lemma 6. However, we can
show instead, by recursive transfinite induction, that, uniformly in 5 G A and a
notation for a limit ordinal 8, one can find a Gödel number for a recursive n¿+2n
formula (p such that 3 <s+n b iff 21 1= 4>[b]. Thus, if (21,p) is rigid, then 21 has a
formally A^+2n+i enumeration, and so by Theorem 3 is A£+2n+1-stable. We have
shown the following theorem.
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THEOREM 7. A recursive structure 21 is Hyp-stable iff 21 has fewer than 2K°
automorphisms. In this case, if the rank of 21 is 8 + n, where 8 is a limit ordinal
or zero, then 21 is A\J+2n+l-stable.

4. Examples. For many examples of recursive algebraic structures, such as
Boolean algebras and abelian groups, the relations <Q can be shown to be uni-
formly recursive. However, those examples of this kind which we have considered
and which have infinite rank also have 2N° automorphisms and so do not provide
examples of A°-stable structures for a infinite. [They do provide examples of
A°-categorical strucrtures, but this is not our present topic] We may, however,
illustrate the notions of this paper by considering briefly the structures (a, <) and
their expansions. These will always be rigid and have arbitrarily large ranks.

We make the following definition.
DEFINITION. A recursive structure is strictly Aa-stable if it is A°-stable and

notA9j-stable for any ß < a.
We comment that this notion depends only on the classical isomorphism type of

the structure, and that in view of Theorem 7, every recursive structure with fewer
than 2H° isomorphisms is strictly Aa-stable for some unique a < u>fK. In all our
examples, by Theorem 2 and its consequences, the structures which are strictly
A^-stable for some limit ordinal a are also not A^-stable.

In what follows, 8 will always denote a limit ordinal or zero and n will denote a
finite ordinal.

EXAMPLE 1. In the case where 21 = (a, <) for some ordinal number a, we
note that, if 3 <-, b for 7 > 1, then the elements of the sequence 3 will be in
the same order as those of b. We need therefore consider only the case where
a = af,a2,... ,an, üf < a2 < ■■ < an,b = bf2b2,.. .,bn, and bf < b2 < ■ ■ ■ < bn,
and we may easily see that the relation 5 <-^ b depends only on the order types of
the intervals [0, ai), [01,02),..., [a„, 00), and those of the corresponding intervals
for b.

So we introduce the corresponding relations <-/ between ordinal numbers, in-
cluding 0, and so between well-ordered sets. Let a <\ /3 if a = /3 = 0 or if
a is infinite and ß > 0 or if a is finite and 0 < ß < a. Define a <-,+ i ß
if, whenever /3 = /3n + l + /3i + l + --- + l + /3Tn, then there exist a¿ such that
a = ao + l + ai + l +-1-1 + am, and a¿ >-, /3¿ for 0 < i < m. Define a <¿ ß
to hold for a limit ordinal 8 if a <~¡ ß for all 7 < 8.

Now we may show, by transfinite induction on 7, that iî af < a2 < ■ ■ ■ < an and
b\ < b2 < ••• < bn, then 3 <-, b iff [0,oi) <7 [0,Z>i), [o„,oo) <-, [6n,oo) and for
1 < t < n, [a¡,a,+ i) <-, [bi,bl+1).

It remains to find the conditions for which a <-, /3, which may be verified by
transfinite induction. We note that each a may be written as a finite decreasing sum
a = £\ ujt -mç where each m^ < w and also, for each £, we may put a — ui^-a^ +p$
where p¿ < w€. [Thus u^ • a¿ = Y.n>£ ^ ' mn and ^i = 5Zr?<i wV ' m??' with tne
sums again taken in decreasing order.] Similarly, let ß = J2 oj^ ■ n$ and for each £
let ß = üj^ ■ ßc + <7£ where each n^ < ui and each o^ < oj^.

LEMMA 7. (i) Ifq — ¿ + 2n-|-l, then a <-, ß iff one of the following conditions
hold.
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(a) a = ß, (b) ps+n = es+n, ots+n+i > 1, and ßs+n 4 0, (c) po+n = os+n,
a¿+n+i = ßs+n+i = 0, and ms+n > n$+n > 0.

(ii) // 7 = 8 + 2n + 2, then a <-, ß iff either
(a) a = ß, or (b) ps+n = os+n, ai+n+i > 1, ßs+n+i > 1> and m¿+n > n¿+„.

(iii) // 7 = 8 ,¿ 0, then a <1 ß iff either
(a) a = ß, or (b) ps = os, oís > 1, arad /3¿ > 1.

To use Theorems 1 and 2, we must also examine the sets cLy(3). It is sufficient
to consider only the cases where a is of the form u>t. Then from Lemma 7 we may
show the following.

LEMMA 8. (i) In (us+n, <) for n > 1, 8 + n > 2 we have cli+2„(0) = ojs+n
while, for all 3, max{a¿} + u/+n_1 ^ cl¿+2n-i(a).

(ii) In (u>s, <) for 8 4 0 we have cl¿(0) = o/ while, for all 3 and all 7 < 8, we
have, for example, max{o,} + ui1 £ cl-,(3).

Thus, from (i), if 8 < wfK then by Lemma 6 (oj6+n, <) has a formally A^+2n
enumeration and so is A$+2n-stable. But, also from (i), for each p, tos+n /
cl¿+2n-i(p), which will show that (u/+n, <) is not A^+2n_1-stable provided that
the conditions of Theorem 1 can be satisfied. This presents no difficulty since for
each notation a G 0 for a < (jjfK we may convert {b G 0 : b <o a} to a recursive
well-ordering of type wa by the process of exponentiation. That is, we let each
sequence bf,... ,bn for which a >o bf >o b2 >n •• • >o bn represent the ordinal
lu131 + lu1*2 + ■ ■ ■ + u}/3n where /3¿ = |6¿|. For this ordering it is clear from Lemma 7
that each relation <«, is recursive, uniformly in the notation c <o a for 7. Thus
condition (2) and similarly, by Lemma 8(i), condition (3) of Theorem 1 are satis-
fied. Condition (1) is also satisfied since, in this ordering, the successor relation is
recursive.

In the same fashion, from Lemma 7 and Lemma 8(ii), we see that (o/,<) is
A°-stable but not A°-stable. Ordinals not of the form w^ are nevertheless finite
sums of such ordinals and each summand can be treated separately. So we obtain
the following.

THEOREM 8. Ifoj6+n < a < us+n+x where 8 + n < 2, then (a, <) is strictly
A«+2n-stoWe-

The result also holds for 8 + n — 1, using Goncharov's Theorem, described in
[!]■

EXAMPLE 2. For structures of the form (a, <,S) where S is the successor rela-
tion, several shortcuts are possible. For example, by arguing in terms of formulae,
we can show that 5 <7 b in (a, <, 5) iff 5 <i+-, b in (a, <). So using the methods
of Example 1 we have

THEOREM 9. Ifujx+s+n < a < ujx+s+n+x where 8 + n > 0, then (a,<,S) is
strictly Aj+(5+2n-siaZjZe.

EXAMPLE 3.   Similarly, for structures (a, <,5, L) where L is the set of limit
ordinals, we have 5 <-, b in (a, <, S, L) iff 3 <2+1 b in (a, <).

This leads to the following theorem.
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THEOREM 10. Ifojx+6+n<a<ujx+6+n+xwhere8 + n>l,then(a,<,S,L)
is strictly A°+2n-stable. [For a < to2, (a, <,S,L) is A^-stable.]

EXAMPLE 4. For structures of the form (a, <,+), it is clearly preferable to
proceed indirectly. We may first [by careful economy with quantifiers] show that in
such a structure the set P$ of ordinals of the form uj" '& is given for each £ by an
infinitary recursive n°+2n formula, where £ = 8 + n [except that Po is n?] and that
the successor relation S$ relative to P^ is given by a recursive Fls+2n+i formula.
This shows that the structure (ww , <, +) has a formally A°+2n+2 enumeration
and so is A¿+2n+2-stable.

To show that this structure is strictly A¿+2n+2-stable, we may use Example 1.
Since u)S+n+1 is strictly A¿+2n+2-stable, there exist recursive orderings of type
^6+n+i wmcn are not A¿+2n+1 isomorphic. As in Example 1, these may be con-
verted by exponentiation to structures of isomorphism type (i/ ,<,+), and
these structures cannot be A¿+2n+1-isomorphic. [Note, however, that this trans-
formation may be used only in this direction, since in a recursive structure of type
(a, <, +), the elements corresponding to the ordinals ujZ may not be recursive.] By
similar arguments we have the following.

THEOREM 11. If us+n < a < us+n+x where 8 +n > 1, then (u>a,<,+) is
strictly A°6+2n-stable. [For a <ui, (u>a, <, +) is A^-stable.]

EXAMPLE 5. For structures of the form (a, <, +, ■), the existential diagram will
not be recursive, so Theorems 1 and 2 as given will certainly not apply. We may,
however, follow Example 4 and show that (w" ,<,+,•) has a formally A¿+2n
enumeration and then apply the same exponentiation construction again, using the
fact that (ww   ",<,+) is strictly A£+2ri-stable, to show the following.

THEOREM 12. 7/V+" < a < wfi+n+1, where 8 + n > 1, then (ww<\ <,+,•) is
strictly A^+2n-stable. [For a < w, (u"'0, <,+, ■) is A^-stable.]

5. Conclusion. The equivalence of A°-stability to the existence of a formally
Aa enumeration does seem to require further assumptions. A counter-example
along these lines for a — 1 was given by Goncharov in [5]. The author does not
know at this stage whether the conditions of Theorems 1 and 2 can be significantly
weakened. Certainly there are many counter-examples yet to be constructed.

The constructions of §1 can also be applied to the notion of A°-categoricity.
These results will be given in [2]. E. Barker has obtained results concerning the
topic of "intrinsically E°" relations, which will be given in [3].
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