
1

Recursive Learning:  A New Implication Technique for

Efficient Solutions to CAD-problems: Test, Verification and

Optimization

Wolfgang Kunz*

Max-Planck-Society

Fault-Tolerant Computing Group

at the University of Potsdam

Am Neuen Palais 10

14415 Potsdam, Germany

Dhiraj K. Pradhan

Fault-Tolerant Computing Lab

Computer Science Department

Texas A&M University

College Station, TX 77843

email: pradhan@cs.tamu.edu

(appeared in IEEE Transaction on Computer-Aided Design, Vol. 13, No. 9,
September 1994, pp. 1143 - 1158.)

* The preliminary research was initiated while both the authors were at the University of

Massachusetts, Amherst   and  subsequently, essential parts of the reported research have

been conducted while the  first   author  was   with  Institut  für  Theoretische

Elektrotechnik, University of Hannover, Germany. Research reported was supported, in

part, by NSF MIP 92-18238.



2

Keywords: Recursive Learning, Unjustified Gates, Precise Implications, Necessary
Assignments, Boolean Satisfiability, Design Verification



3

Abstract

Motivated by the problem of test pattern generation in digital circuits, this paper presents
a novel technique called recursive learning, able to perform a logic analysis on digital
circuits.  By recursively calling certain learning functions, it is possible to extract all
logic dependencies between signals in a circuit and to perform precise implications for a
given set of value assignments.  This is of fundamental importance because it represents
a new solution to the Boolean satisfiability problem. Thus, what we present is a new and
uniform conceptual framework for a wide range of CAD problems including, but not
limited to, test pattern generation, design verification as well as logic optimization
problems. Previous test generators for combinational and sequential circuits use a
decision tree to systematically explore the search space when trying to generate a test
vector.  Recursive learning represents an attractive alternative.  Using recursive learning
with sufficient depth of recursion during the test generation process, guarantees that
implications are performed precisely; i.e., all necessary assignments for fault detection
are identified at every stage of the algorithm so that no backtracks can occur.
Consequently no decision tree is needed to guarantee the completeness of the test
generation algorithm.  Recursive learning is not restricted to a particular logic alphabet,
and can be combined with most test generators for combinational and sequential circuits.
Experimental results that demonstrate the efficiency of recursive learning are compared
with the conventional branch-and-bound technique for test generation in combinational
circuits.  In particular, redundancy identification by recursive learning is demonstrated to
be much more efficient than by previously reported techniques. In an important recent
development, recursive learning has been shown to provide a major progress in design
verification problems. Specifically, one recursive learning-based technique was able to
verify the formidable multiplier c6288 against the non-redundant version c6288nr in only
17seconds on a Sparc workstation 10/51 [22].



4

1. Introduction

The problem of test generation has been proven to be NP-complete [1]. Test generation

for combinational circuits has been viewed [2] as implicit enumeration of an n-

dimensional Boolean search space, where n is the number of primary input signals.

Traditionally, a decision tree is used to branch and bound through the search space until a

test vector has been generated or a fault has been proven redundant.  Efficient heuristics

have been reported to guide the search [3], [4], [5].  However, it is the nature of this

classical searching technique that it is often very inefficient for hard-to-detect and

redundant faults; i.e., in those cases where only few or no solutions exist.

What we propose here is a fundamentally new searching technique that can handle these

pathological cases in test generation much more efficiently than the traditional search.  It

is important to note that, while results presented here are in the context of test generation,

they possess a wide range of applications to many important areas in compter-aided

circuit design such as logic verification and optimization [22 - 25]. Specifically, for the

first time, it provides a uniform framework for both CAD and test problems. Using this,

it has been shown [22] that the non-redundant initial MCNC versions were not equivalent

to the original ISCAS 85 benchmarks -- a surprising result! Further application of

recursive learning to design verification has recently been reported by the authors [23].

Also, the potential application of recursive learning to logic optimization and other

related problems is currently under investigation by the authors.  First results clearly

show that recursive learning can be used to design very powerful techniques for multi-

level logic optimization [24, 25].



5

In this paper, we motivate our new approach in the context of test generation.  Along the

process of generating a test vector for a given fault, some assignments of signal values

are found to be necessary; i.e., they can be implied from the existing situation of value

assignments in the circuit.  Other assignments are optional and their assignment

represents a decision in the decision tree.  Significant progress has been made, especially

in redundancy identification, since techniques have been developed which are able to

identify necessary assignments [5], [7], [8].  However, all these techniques are limited in

that they fail to produce all necessary assignments.  What we propose here is a technique

that, for the first time, generates all necessary assignments.

Knowledge about necessary assignments is crucial for the number of backtracks which

must be performed.  Backtracks occur if wrong decisions have been made, decisions

considered wrong if they violate necessary assignments.  Hence, it is important to realize

that if all necessary assignments are known at every stage of the test generation process,

there can be no backtracks at all.  All methods presented in the past, such as [5], [6], [7],

[8] were not able to identify all necessary assignments, based, as they are, on polynomial

time-complexity algorithms.  The problem of identifying all necessary assignments is

NP-complete and a method which guarantees identifying all necessary assignments must

be exponential in time complexity.

This work develops a new method called recursive learning which can perform a

complete search to identify all necessary assignments.  The search for all necessary

assignments, as opposed to the traditional search for one sufficient solution of the test

generation problem, is of a totally different nature; recursive learning, therefore,

represents a fundamentally new alternative alternative to all traditional techniques.



6

Our technique is based on performing learning operations.  First introduced in [6], [7]

and further developed in [12],  learning is defined to mean the temporary injection of

logic values at certain signals in the circuit, to examine their logical consequences.  By

applying simple logic rules, certain information about the current situation of value

assignments can be learned.

This work generalizes the concepts of learning in various ways: in previous learning

methods [6], [7], learning is restricted to a 3-valued logic alphabet.  The method here is

not restricted to any particular logic alphabet, and can be used for any logic value system

such as 5-valued logic [11], 9-valued logic [9] or 16-valued logic [8], [10]. Secondly, our

learning routines can be called recursively and thus provide for completeness.  The

maximum recursion depth determines how much is learned about the circuit.  The time

complexity of our method is exponential in the maximum depth of recursion, rmax.

Memory requirements, however, grow linearly with  rmax .  As noted before, any method

which identifies all necessary assignments must be exponential in time complexity

because this problem is NP-complete.

In broader terms, recursive learning can be understood as a general method to conduct a

logic analysis, deriving a maximum amount of information about a given circuit in a

minimum amount of time.  This paper examines the ability of recursive learning to derive

necessary assignments, of fundamental importance for many applications throughout the

field of computer-aided circuit design [22].  The performance of recursive learning is

evaluated here by applying it to the problem of test generation.

Because most state-of-the-art test generation tools, like [5], [7], [17], are further

developments of the well-known FAN algorithm [3], we, therefore, present and discuss

recursive learning with respect to FAN-based test generation. Other approaches to test



7

generation can also make efficient use of this new searching scheme. Other work

includes an algebraic method based on Boolean difference [15] and the use of transitive

closure in [16] which allows for parallelization of test generation.  It should be noted that

these methods, unlike our technique, rely on a decision tree when conducting a complete

search. Thus, they are likely to benefit from the searching scheme presented here.

2. A simple illustration of recursive learning

This section introduces the recursive learning concept by first presenting a simplified

(preliminary) learning technique.  The basic motivation here is to illustrate concepts and

show what may, or may not lead to complete recognition of all necessary assignments.

The formal procedure in Section 3 will be rooted in the observations made in the

following example. Table 1 shows a learning procedure for unjustified lines [3], which

is called recursively.

Fig. 1 shows an example to introduce the basic framework of recursive learning refered

to as demo_recursive_learning() in Table 1.  For the time being, disregard the pads xe,

xg, xh, ye, yg and yh. These will be used later to insert additional circuitry, to illustrate

other key points.  Consider signals i1 and j, where i1=0 and j=1 are two unjustified lines.

Given this, the reader can derive that k=1 and i2=0 are necessary assignments.  This is

easy to observe as the nodes are labeled in a special way in Fig. 1.  Signals that are

labeled by the same character (excluding pads) but different indices always assume the

same logic value for an arbitrary combination of value assignments at the inputs. Thus,

nodes labeled with the same character, except the x, y nodes, are functionally equivalent.

(e.g., e1 and e2, f1 and f2)



8

We will now explain, step by step, how recursive learning derives the necessary

assignments i2=0 and k=1 for the given value assignments i1=0 and j=1 in Fig. 1.  This is

done in Table 2, which lists the different learning implications performed when

demo_recursive_learning is performed for the unjustified line i1 = 0.

The first column represents the situation of value assignments before and after recursive

learning has been performed.  When learning is performed at the unjustified line i1

(column 2), we first assign the controlling value at g1.  Assigning the controlling value to

a gate with an unjustified line represents a justification, as will be defined more generally

in Section 3.  With the implications for g1=0, we obtain the unjustified lines e1 and f1 in

the first learning level.  These signals are treated by recursively calling learning again

(column 3 representing learning level 2).  Now for the unjustified line e1=0, we examine

the justifications a1=0 and b1 =0.  In both these cases, we obtain e2=0. Consequently this

value assignment becomes necessary to justify the unjustified line e1.  Now we proceed

in the same way with unjustified line f1, learning that f2=0 is also necessary.  Returning

to the first learning level, the implications can be completed to yield the necessary

assignments k=1 and i2=0, completing the learning.

Two key points to be noted include that: (1) all signal assignments that have been made

during learning in each level have to be erased again as soon as learning is finished in the

current level of recursion and (2) only those values that are learned to be necessary are

transferred to the next lower level of recursion. Furthermore, one important aspect of this

procedure is that the unjustified lines are considered separately.  At each unjustified line,

we try the different justifications and then move to the next unjustified line. A natural

question arises as to how one takes into account that some necessary assignments result

from the presence of several unjustified lines, if the justifications at one unjustified line



9

are not tried in combination with the justifications at the other unjustified lines?  Note

that the necessary assignment, k=1, in the above example is due to both unjustified lines

i1=0 and j=1, and is correctly derived by demo_recursive_learning(). Specifically, the

interdependence of different unjustified lines is accounted for because forward

implications are performed, which check the consistency of the justification attempts

against all other unjustified lines.  However, the completeness of the forward

implications is not always guaranteed, and therefore this preliminary version of the

recursive learning routine demo_recursive_ learning() may fail to identify all necessary

assignments. To understand what extension has to be made to identify all necessary

assignments, consider  Fig. 2, which provides an example of how forward implications

can be incomplete.

Consider signals x and d in Fig. 2.  No forward implication can be made for signal d after

the assignment x=0 has been made.  However, it is easy to see that, if x=0, both

assignments d=0 and d=1 result in y=0.  Hence, the forward implication x=0 => y=0 is

true.

In practice, incompleteness of forward implications seems a minor problem.  When

learning is performed for a particular unjustified line, and when necessary assignments

are missed because of incomplete forward implications, then there is often some other

unjustified line for which these necessary assignments can be learned.

This above incompleteness of forward implications can be illustrated using Figs. 1 and 2.

If we add the circuitry of Fig. 2 between the pads xe and ye in Fig. 1, such that signal x

of Fig. 2 is connected to xe and y is connected to ye, it can be observed that learning for

unjustified line i1 will no longer yield the necessary assignments k=1 and i2=0.



10

However, (as the reader may verify) the necessary assignments k=1 and i2=0 can still be

identified when learning is performed for unjustified line j.  Experiments show that this is

a frequent phenomenon which can be accounted for as explained in Section 5.

Nevertheless, procedure demo_recursive_learning() can miss necessary assignments

because of incomplete forward implications.  The reader may verify, as an exercise, that

also, learning at line j will fail to identify k=1 and i2=0, if we add similar circuitry as in

Fig. 2 (remove the inverter and replace NOR by OR) between the pads xg, yg and xh, yh.

The reason for this incompleteness is that unjustified lines are not the only logic

constraints at which learning has to be initialized. To overcome this problem, the concept

of unjustified lines will be generalized. Consider the previous example if recursive

learning -- as explained -- is applied to signal d, then the forward implication x=0 => y=0

will be the final result. Hence, from this we can deduce that recursive learning should be

applied not only to  the unjustified lines but also to certain other signals, to make it

complete. This problem is addressed in the next section, by defining unjustified gates, on

which recursive learning should be applied to make it identify all the necessary

assignments.

3. Recursive Learning to Determine all Necessary Assignments

In a FAN- type algorithm, necessary assignments are derived in two different ways.  The

first is based on a structural examination of conditions for fault detection [3], [4].

Secondly, it is the task of an implication procedure to derive necessary assignments

which result from previously made signal assignments.  The concept of recursive

learning allows to design methods able to identify all necessary assignments for both

cases.  In section 3.1, a technique is presented that can make all implications for a given

situation of value assignments with absolute precision, time permitting.  Section 3.2



11

introduces a technique to derive all necessary assignments resulting from the requirement

to propagate the fault signal to at least one primary output.

3.1 The Precise Implication Procedure

It was pointed out in the previous section that the concept of unjustified lines must be

generalized to guarantee the completeness of the algorithm.  Here, we  introduce the

more general concept of unjustified gates.  Def. 1 uses the common notation of a

"specified signal", by which we understand a signal with a fixed value.  In the common

logic alphabet of Roth [11] , B5=(0, 1, D, D , X), a signal is specified, if it has one of the

values '0', '1', 'D', or 'D '.  It is unspecified if it has the value 'X'.

Def. 1:  Given a gate G that has at least one specified input- or output signal:  Gate G is

called unjustified, if there are one or several unspecified input- or output

signals of G for which exists a combination of value assignments that yields a

conflict at G.  Otherwise, G is called justified.

The concept of unjustified gates can be used to give a definition of  precise implications

and necessary assignments:

Def. 2: For a given circuit and a given situation of value assignments, let f be an

arbitrary but unspecified signal in the circuit, and V some logic value.  If all

consistent combinations of value assignments for which no unjustified gates

are left in the circuit contain the assignment f=V, then the assignment f=V is

called necessary for the given situation of value assignments.  Implications are



12

called precise or complete when they determine all necessary assignments for a

given situation of value assignments.

To determine necessary assignments, we will consider justifications:

Def. 3: A set of signal assignments, J = {f1=V1, f2=V2, ... fn=Vn}, where f1, f2, ... fn are

unspecified input- or output signals of an unjustified gate G, is called

justification for G, if the combination of value assignments in J makes G

justified.

The left column of Fig. 3 shows examples of unjustified and justified gates.  The right

column depicts the corresponding justifications.

Def. 4:  Let GC be a set of m justifications J1, J2, ... Jm for an unjustified gate G.  If

there is at least one justification Ji∈GC, i=1,2...m for any possible justification

J* of G, such that Ji⊆J*, then set GC is called complete.

For a given unjustified gate, it is straightforward to derive a complete set of

justifications.  In the worst case, this set consists of all consistent combinations of signal

assignments representing a justification of the given gate.  Often though, the set can be

smaller, as shown in Fig. 4.

The following represents a complete set of justifications:  C={J1, J2, J3, J4, J5} with

J1={a=1}, J2={b=1}, J3={c=1}, J4={d=1}, J5={e=1}. Note, that for example the



13

justification J*  = {a=1, b=0} does not have to be in C since all assignments in J1 are

contained in J* .

The concept of justifications for unjustified gates is essential toward understanding how

learning is used to derive necessary assignments.  Assignments are obviously necessary

for the justification of a gate, if they have to be made for all possible justifications.  By

definition, all assignments which have to be made for all justifications that represent a

complete set of justifications, also have to be made for any other justification at the

respective gate.  Hence, for a given gate, it is sufficient to consider a complete set of

justifications in order to learn assignments which are necessary for all justifications.

All learning operations rely on a basic implication technique.  As in [12], we shall call

these implications direct implications:

Def. 5:  Direct implications are implications which can be performed by only

evaluating the truth table for a given gate with a given combination of value

assignments at its input- and output signals and by propagating the signal

values according to the connectivity in the circuit.

A well-known example of direct implications in combinational circuits are the

implications performed in FAN [3].

Notation:



14

r:  integer number for the depth of recursion

0U = { G1, G2, G3 ....} is the set of all unjustified gates as they result from the current

state of the test generation algorithm.

    GxJr = { f1=V1, f2=V2,.... } is a set of assignments that represents a justification for some

gate Gx in a given recursion level r.

GxCr = { J1, J2, J3,...} is a complete set of justifications for a given gate Gx in a given

recursion level r.

JxUr = { G1, G2, G3,...} is a set of unjustified gates in recursion level r as it results from

a given justification Jx .

rmax:  maximum recursion depth

Table 3 depicts procedure make_all_implications(), which is able to make precise

implications for a given set of unjustified gates.  Note that the list of unjustified gates

being set up in every level of recursion contains all new unjustified gates but must also

include unjustified gates of a previous recursion level if these gates have had an event in

the current level of recursion.

Theorem 1: The implication procedure in Table 3 makes precise implications; i.e., a

finite rmax always exists such that make_all_implications(0,rmax)

determines all necessary assignments for a given set of unjustified gates,

0U.



15

Proof:

Preliminary Remarks: Making precise implications means to identify all signal values,

which are uniquely determined due to the unjustified gates contained in the set 0U.

Let V be a logic value and let us assume for some signal f that the assignment f=V is

necessary for the justification of a gate Gx in an arbitrary recursion level r. What this

means is that one of the following two cases must be fulfilled for each justification

GxJir ∈GxCr:

Case1: The direct implications for the set of assignments Ji at Gx yield f=V

Case2: The assignment f=V is necessary for the justification of at least one gate in the

set of unjustified gates JiUr+1 .

In the first case, the necessary assignment is recognized and learned when learning in

level r+1. In the latter, deeper recursion levels are entered.

Complete Induction:

1)  Take  r = rmax-1 :

The more recursions performed, the more assignments are made; i.e., for all

unjustified gates in 0U, the recursive call of make_all_implications() will always

reach a level max, such that JiUmax =∅ for all justifications Ji ∈GxCmax-1and for all

gates Gx in Umax-1.  This is the case when the implications have reached the primary

inputs or outputs. If there is a necessary assignment f=V in level r=max, we will

always recognize it, since Umax = ∅ and for any necessary assignment Case 1 must



16

be fulfilled. This means that all necessary assignments have been learned for all gates

in all Umax-1 that result from arbitrary Jimax-2 ∈ Cmax-2 which  belong to an

arbitrary Gx ∈ Umax-2.

 2) Assume that we know all necessary assignments for all unjustified gates in  all sets

Un for arbitrary  Jin-1 ∈ Cn-1 for arbitrary  Gx ∈ Un-1.

3) Then, since it is guaranteed with the above assumption, that all uniquely

determined values be known that can be implied for all justifications in GxCn-1,

procedure make_all_implications() will correctly identify all necessary assignments

for the corresponding gate Gx ∈ JUn-1.  (These are the signal values common for all

justifications GxCn-1.) The above is true for any gate Gx ∈ JiUn-1, where Ji is some

justification Jin-2 for some gate in Un-2. Hence, all necessary assignments are

recognized for all unjustified gates in all sets Un-1 for arbitrary  Jin-2 ∈ Cn-2 for

arbitrary  Gx ∈ Un-2.  By complete induction we conclude that we learn all necessary

assignments for all unjustified gates Gx in 0U.

q.e.d

Fig. 5 shows some combinational circuitry to illustrate make_all_implications.  Table 4

lists the single steps to perform the implication p=1 => q=1.  Note that the learning

techniques [6], [7], [11] cannot perform this implication.

Fig. 6 depicts a scheme useful to better understanding the general procedure of recursive

learning and the proof of Theorem 1:



17

During the test generation process, optional assignments are made.  After each optional

assignment, the resulting necessary assignments must be determined.  This is the task of

the implication procedure.  Many necessary assignments can be determined by

performing direct implications only.  Direct implications can handle the special case

where there is only one possible justification for an unjustified gate.  (Note that this

represents another possibility to define "direct" implications.)  The left column in Fig. 6

shows the situation as it occurs after each optional assignment during the test generation

process.  After performing direct implications we have obtained a situation of value

assignments where only those unjustified gates (dark spots in Fig. 6) are left that allow

for more than one justification.  These are examined by learning.  Recursive learning

examines the different justifications for each unjustified gate which results in new

situations of value assignments in the first learning level.  If value assignments are valid

for all possible justifications of an unjustified gate in level 0; i.e., if they lie in the

intersection of the respective sets of value assignments in learning level 1 (shaded area),

then they actually belong to the set of value assignments in level 0.  This is indicated

schematically in Fig. 6.  However, the sets of value assignments in learning level 1 may

be incomplete as well because they also contain unjustified gates and the justifications in

level 2 have to be examined.  This is continued until the maximum recursion depth rmax

is reached.

This immediately leads to the question: how deep do we have to go in order to perform

precise implications?  Unfortunately, it is neither possible to predict how many levels of

recursion are needed to derive all necessary assignments, nor is it possible to determine if

all necessary assignments have been identified after learning with a certain recursion

depth has been completed.   The choice of rmax is subject to heuristics and depends on

the application for which recursive learning is used.  For test generation, an algorithm to

choose rmax will be presented in section 4.1.



18

In general, it can be expected that the maximum depth of recursion to determine all

necessary assignments is relatively low.  This can be explained as follows: Note, that

value assignments in level i+1 are only necessary for level i if they lie within the

intersection in level i+1.  In order to be necessary in level i-1 they also have to be in the

intersection of level i and so forth.  It is important to realize however, that we are only

interested in the necessary assignments of level 0.  It is not very likely that e.g. a value

necessary in level 10 also lies in the corresponding intersections of level 9, 8, 7,... 1 and,

hence, is not likely to be necessary in level 0.  Necessary assignments of level 0 are

usually determined by only considering few levels of recursion.  This corresponds to the

plausible concept that unknown logic constraints (necessary assignments) must lie in the

"logic neighborhood" of the known logic constraints by which they are caused.

Intuitively, a lot of recursions are only needed, if there is a lot of redundant circuitry.

Look at the circuits in Fig. 1, Fig. 2 and Fig. 5:  Necessary assignments are only missed

by direct implications because the shown circuits contain sub-optimal circuitry.  In the

scheme of Fig. 6 the intersections of justifications (shown as shaded areas) indicate logic

redundancies in the circuit.  In fact, making precise implications and identifying sub-

optimal circuitry seem to be closely related.  This observation has motivated the research

reported in [24], [25].

Use Fig. 6 to understand the proof of Theorem 1:  It is important to realize that the

process of recursive learning terminates, even if the parameter rmax in

precise_implications(r, rmax) is chosen to be infinite.  At some point the justifications

must reach the primary inputs and outputs so that no new unjustified gates requiring

further recursions can be caused.  In Fig. 6, such justifications are represented by circles

that do not contain dark spots.  If the individual justifications for a considered unjustified



19

gate do not contain unjustified gates, it is impossible (because of Def. 1) that these sets of

value assignments produce a conflict with justifications of some other unjustified gates.

Since a complete set of justifications is examined and the same argument applies to every

unjustified gate in the previous recursion level, it is guaranteed that all necessary

assignments for the previous recursion level are identified.  Think carefully why this

must be true.  This is used in Step 1 of the complete induction for Theorem 1.  If all

necessary assignments are known in a given recursion level, the intersections of the

complete sets of justifications yield all necessary assignments for the previous recursion

level and step 2 and 3 of the complete induction are straightforward.

3.2 Determining all Necessary Assignments for Fault Propagation

In principle, the problem of test generation is solved with a precise implication technique

as given in section 3.1.  Observability constraints can always be expressed in terms of

unjustified lines by means of Boolean difference.  However,  most atpg- algorithms use

the concept of a "D- frontier" [2].  This makes it easier to consider topological properties

of the circuit [4].  In this section, we present a technique to identify all necessary

assignments which are due to the requirement of propagating the fault signal to at least

one primary output.  In analogy to the previous section where we injected justifications at

unjustified gates in order to perform precise implications, this section shows how

recursive learning can derive all conditions for fault propagation by injecting

sensitizations [3] at the D- frontier.

The D- frontier in a recursion level r shall be denoted Fr and consists of all signals which

have a faulty value and a successor signal which is still unspecified.  Fig. 7 shows an



20

example for a D- frontier.  If we set up the fault signal D for the stuck-at-0 fault at signal

a we obtain F0={b, e, g, h}.

Table 5 lists procedure fault_propagation_learning().  In Table 6, it is explained step by

step, how fault_propagation_learning is used to determine the necessary assignment n=0

in Fig. 7.

Procedure fault_propagation_learning() which calls procedure make_all_implications(),

correctly learns all assignments which are necessary to sensitize at least one path from

the fault location to an arbitrary output.  Note, that we are not only considering single

path sensitization.  Along every path which is sensitized in procedure

fault_propagation_learning(), gates become unjustified, if there is more than one

possibility to sensitize them.  This is demonstrated in Table 6 for gate G in Fig. 7.

Procedure fault_propagation_learning() as given in Table 5 does not show how to handle

XOR- gates.  However, the extension to XOR- gates is straightforward.  XOR- gates as

well as XNOR- gates always allow for more than one way to sensitize them.  Therefore,

the fault propagation has to stop there and the different possibilities to propagate the fault

signal have to be tried after the usual scheme for unjustified gates.

4. Test Generation with Recursive Learning

4.1  An Algorithm to Choose the Maximum Recursion Depth rmax

There are many possibilities to design a test generation algorithm with recursive learning.

There is unlimited freedom to make optional assignments.  We are not bound to the strict



21

scheme of the decision tree in order to guarantee the completeness of the algorithm.  It is

possible to "jump around" in the search space as we wish.  Note that this allows attractive

possibilities for new heuristics.  In order to guarantee completeness, we only have to

make sure that the maximum recursion depth is eventually incremented. Of course, it is

wise to keep the maximum recursion depth rmax as small as possible in order not to spend

a lot of time on learning operations.  Only if the precision is not sufficient to avoid wrong

decisions, it is sensible to increment rmax.

There are many possibilities to choose rmax.  In order to examine the performance of

recursive learning, we combined it with the FAN- algorithm and used the following

strategy to generate test vectors:  the algorithm proceeds like in FAN and makes optional

assignments in the usual way.  In the same way as for the decision tree, all optional

assignments are stored in a stack.  Whenever, a conflict is encountered we proceed as

shown in Fig. 8.  By a conflict we mean that the previous decisions have either led to an

inconsistent situation of value assignments or that there is no more possible propagation

path for the fault signal (X-path-check failed).  The idea behind the routine in Fig. 8 is

that we use learning only to leave the non-solution areas as quickly as possible.  After a

conflict has occurred the previous decision is erased, i.e. the signal at the top of the stack

is removed and its value is assigned to 'X'.  Now the resulting situation of value

assignments is examined with increased recursion depth.  If this leads to a new conflict,

another decision has to be erased.  If there is no conflict this can mean two things:  Either

the current precision rmax is not sufficient to detect that there is still a conflict or we have

actually returned into the solution area of the search space.  Therefore, it is checked if the

opposite of the previous (wrong) assignment is one of the assignments that have been

learned to be necessary.  This is a good heuristic criterion to determine if the precision

has to be increased any further or not.  It also makes sure that we can never enter the



22

same non-solution area twice and the algorithm in Fig. 8 guarantees the completeness of

test generation and redundancy identification without the use of a decision tree.

Note that the procedure in Fig. 8 is only one out of many possibilities to integrate

recursive learning into existing test generation tools.  This algorithm has been chosen

because it allows a fair comparison of recursive learning with the decision tree.  With the

algorithm of Fig. 8 we initially enter exactly the same non-solution areas of the search

space as with the original FAN- algorithm.  The point of comparison is how fast the non-

solution areas are left either by conventional backtracking or by recursive learning.

One disadvantage of the above procedure is that in some cases of redundant faults the

algorithm may initially traverse very deep into non-solution areas and recursive learning

has to be repeated many times until all optional value assignments (those will be all

wrong) are erased step by step.  Our current implementation therefore makes use of the

following intermediate step (not shown in Fig. 8 for reasons of clarity):  when the

algorithm of Fig. 8 reaches the point where the maximum depth of recursion has to be

incremented, we perform recursive learning with incremented recursion depth first only

to the situation of value assignments that results, if all optional value assignments are

removed.  If a conflict is encountered, the fault is redundant and we are finished.

Otherwise, we proceed as shown in Fig. 8, i.e., we perform recursive learning, with the

optional value assignments as given on the stack.

4.2 Compatibility and Generality of the Approach

A lot of heuristics have been reported in the past to guide decision making during test

generation.  Most of these techniques are equally suitable in combination with recursive



23

learning.  In the same way as they reduce the number of backtracks in the decision tree,

they reduce the number of recursions needed when recursive learning is performed.  In

particular, it seems wise to consider the static learning technique of [6], [7] to pre-store

indirect implications. Furthermore, a method to identify equivalent search states [13] and

dominance search states [14]  can also be applied to recursive learning.  This is due to the

fact that the formulation of a search state as E-Frontier [13] can also be applied to the

different sets of value assignments that occur during recursive learning.

Note that recursive learning in this paper has been based on the common procedure to

perform direct implications.  It is also possible to use other implication procedures as the

basic "working horse" of recursive learning.  Finally, it is possible to use recursive

learning and the decision tree at the same time to combine the advantages of both

searching methods.

In this work, we have examined the performance of recursive learning only for

combinational circuits.  However, the approach is also feasible for sequential circuits.

Even for hierarchical approaches recursive learning can be used as an alternative to the

decision tree. Although all considerations in this paper have been based on the gate level,

it is straightforward to extend the concept of justifications for unjustified gates to high

level primitives.  A large logic block which is unjustified may have a lot of justifications.

However note, that we only have to keep trying justifications for a given unjustified gate

(or high level primitive), as long as there is at least one common value for all consistent

previous justifications.  Therefore,  a lot of justifications have to be tried only, if there

are actually common values for many justifications.

It is beyond the scope of this paper to examine the application of recursive learning in

other fields such as design verification and logic synthesis [22 - 25].  However, since



24

recursive learning is general scheme to solve Boolean satisfiability, it promises to be

useful in many different applications. Specifically, excellent results using recursive

learning have been already reported [22-25].

4.3  The Intuition behind Recursive Learning

What is the intuition behind this approach and why is it faster than the traditional

searching method?  At first glance, recursive learning may seem similar to the search

based on the decision tree as applied in the D-algorithm [11].  Note, that also the decision

tree can be used to derive all necessary assignments:  for a given set of unjustified gates

the justifications can be tried by making optional value assignments, which are added to a

decision tree.  We exhaust the decision tree; i.e., we continue even after a sufficient

solution has been found and obtain all necessary assignments by checking what

assignments are common to all sufficient solutions.  In analogy to limiting the depth of

recursion for recursive learning, we can limit the number of optional decisions that we

put into the decision tree so that we only examine the neighborhood of the given

unjustified gates.

However, there is a fundamental difference between this approach and recursive learning.

As pointed out in section 2, recursive learning examines the different unjustified gates

separately, one after the other, whereas the decision tree (implicitly) enumerates all

combinations of justifications at one gate with all combinations of justifications at the

other gates.  This results in an important difference between the two methods:  Recursive

learning only determines all necessary assignments; in contrast to the decision tree, it

does neither have to derive all sufficient solutions explicitly nor implicitly in order to

obtain all necessary assignments.  Consequently, the behavior of recursive learning is



25

quite different from a decision tree based search.  In recursive learning, signal values are

only injected temporarily.  Only value assignments which are necessary in the current

level of recursion are retained.  With the decision tree, however, all assignments which

are not proved to be wrong are maintained.  If a wrong decision has occurred, it can

happen that this decision is "hidden" behind a long sequence of subsequent good

decisions so that the conflict occurs only many steps later.  At this point a lot of

enumeration is necessary with the decision tree until the wrong decision is finally

reversed.  For the precise implication however, a lot of searching is only needed, if

necessary assignments are "hidden" by large redundant circuitry.  Roughly, it is possible

to state that the computational costs to perform precise implications depend on the size of

the redundant circuit structures.  The relationship between redundancy in the circuit and

the complexity of performing precise implications, at this point, is only understood at an

intuitive level and is subject to current research.

5. Experimental Results

In order to examine the performance of recursive learning we use the FAN- algorithm.

Our goal is not to present a new tool for test generation but to compare the performance

of two searching schemes.  For comparison, we use the original FAN- algorithm with the

decision tree and a modified version, where we replaced the decision tree by recursive

learning.  No additional techniques were used.  Recursive learning is performed as was

shown in section 4.1.

There are two general aspects of recursive learning in a FAN- based environment which

we use for better efficiency: first, as discussed in section 2, there are very few cases in



26

practical life, where it is necessary to perform learning at unjustified gates with an

unspecified output signal.  Therefore,  learning for unjustified gates with an unspecified

output signal shall be done with a maximum recursion level of rmax = 5 if the current

maximum recursion level rmax is bigger than 5.  Otherwise, no learning is performed for

such gates.  '5' was chosen intuitively to suppress the unnecessary recursions so that they

contribute only little to the total CPU-time but still guarantee the completeness of the

algorithm.  Second, in a FAN- based algorithm there are two possibilities how the

decision making can fail: inconsistency and X-path check failure.  In the first case we

initially perform only procedure make_all_implications().  Only, when the maximum

recursion level exceeds 3 we also perform fault_propagation_learning().

In order to illustrate the different nature of the two searching schemes, we first compare

recursive learning to the traditional search, by only looking at redundant faults.  In our

first experiment, we only target all redundant faults in the ISCAS85 [19] benchmarks and

the seven largest ISCAS89 [20] benchmarks.  The results are given in Table 7.  The first

column lists the circuit which is examined, the second column shows the number of

redundant faults of the respective circuit.  Only these are targeted by the test generation

algorithm.  First, we run FAN with a backtrack limit of 1000, i.e., the traditional

searching scheme is used and the fault is aborted after 1000 backtracks.  The third

column shows the number of backtracks for each circuit.  The next two columns show

the CPU-time in seconds and the number of aborted faults.  In the second run, we use

recursive learning instead of the decision tree.  Column 6 and 7 give the CPU-time and

the number of aborted faults for recursive learning.  The next 4 columns show for how

many faults which highest depth of recursion was chosen by the algorithm in Fig. 8.  For

example for circuit c432, one redundancy could be identified without any learning.

Three redundancies were identified in the first learning level.



27

The results impressively show the superiority of recursive learning for redundancy

identification when compared to the decision tree.  Look for example at circuit c3540:

With the decision tree 5 faults are aborted after performing 1000 backtracks each.  There

is a total of 5000 backtracks for this circuit.  Obviously, for 132 redundancies there have

been no backtracks at all.  We observe an "all-or-nothing-effect" which is typical for

redundancy identification with the decision tree.  If the implications fail to reveal the

conflict the search space has to be exhausted, in order to prove that no solution exists.

This is usually intractable.

Recursive learning and the search based on the decision tree are in a complementary

relationship:  the latter is the search for a sufficient solution, its pathological cases are the

cases where no solution exists (redundant faults).  The former is the search for all

necessary conditions.  If recursive learning was used to prove that a fault is testable

without constructively generating a test vector, the pathological cases are the cases where

no conflict occurs, i.e. we have to exhaust the search space if a solution exists (testable

faults).

Although recursive learning is always used in combination with making optional

decisions to generate a test vector such as given in Fig. 8, it is not wise to use it in cases

where many solutions exist that are easy to find.  In those cases it is faster to perform a

few backtracks with the decision tree as we have shown already by the results in [18].

There are many efficient ways to handle these "easy" faults.  In this paper, we choose to

perform 20 backtracks with the decision tree.  These are splitted into two groups of 10

backtracks each.  For the first ten backtracks we use the FAN-algorithm with its usual

heuristics.  When ten backtracks have been performed the fault is aborted and re-targeted

again.  The second time we use orthogonal heuristics.  This means that we always assign

the opposite value at the fanout objectives [3] of what FAN's multiple backtrace



28

procedure suggests.  This time we explore the search space in orthogonal direction

compared to our first attempt.  For testable faults this procedure has shown to be very

effective.  As an example,  in circuit c6288, if test generation is performed for all faults,

225 faults have remained undetected after the first ten backtracks.  After the following

ten backtracks with orthogonal heuristics, only ten faults were left.  Faults which remain

undetected after these 20 backtracks are aborted in phase 1.  They represent the difficult

cases for most FAN-based atpg-tools.  These pathological faults are the interesting cases

when comparing the performance of the two searching techniques.

Table 8 shows the results of test generation for the ISCAS85 benchmarks and for the 7

largest ISCAS89 benchmarks.  After each generated test vector, fault simulation is used

to reduce the faultlist (faultdropping).  No random vectors are used.  The first two

columns list the circuits under consideration and the number of faults which have been

targeted.  Columns 3 to 5 show the results of the first phase, in which FAN is performed

using its original and orthogonal heuristics with a backtrack limit of ten for each pass.

Column 3 gives the number of faults which are identified redundant and column 4 lists

the CPU-times in seconds.  Column 5 gives the figures for the aborted faults.  All faults

aborted in phase 1 are re-targeted in the second phase, in which we compare the

performance of recursive learning to the search based on the decision tree.  The meaning

of columns 6 to 15  is analogous to Table 7.

Table 9 shows the results if all faults are targeted.  There is neither a random phase nor

faultdropping.

The results in Table 8 and Table 9 clearly show the superiority of recursive learning to

the traditional searching method in test generation.  There are no more aborted faults and

the CPU-times for the difficult faults are very short when recursive learning is used.  A



29

closer study of the above tables shows that the average CPU-times for each difficult fault

is nearly in the same order of magnitude as for the easy faults (with few exceptions).

The results show that recursive learning can replace the "whole bag of tricks" which has

to be added to the FAN algorithm, if full fault coverage is desired for the ISCAS

benchmarks.  The implementation of our base algorithm is rather rudimentary, so that a

lot of speedup can still be gained by a more sophisticated implementation.  Since the

focus of this paper is on the examination of a new searching method and not on

presenting a new tool, no effort has been made to combine recursive learning with a

selection of state-of-the-art heuristics as they are used for example in [17].

Recursive learning does not affect the speed and memory requirements of atpg-

algorithms as long as it is not invoked;  there is no preprocessing or pre-storing of data.

This is an important aspect, if test generation is performed under limited resources as

pointed out [21].  If recursive learning is actually invoked, some additional memory is

necessary in order to store the current situation of value assignments in each recursion

level.  The different flags which steer the implication procedure and store the current

signal values at each gate have to be handled separately in each level of recursion.  As a

rough estimate, this results in an overhead of 25 Bytes for each gate in the circuit, if we

assume that there are 5 flags to steer the implications and a maximum recursion depth of

5.  For a circuit with 100,000 gates we obtain an overhead of 2.5 Mbyte, which is usually

negligible.



30

Conclusion

We have presented a new technique called recursive learning as an alternative search

method for test generation in digital circuits and with potential application to other CAD

problems.  Results clearly show that recursive learning is by far superior to the traditional

branch-and-bound method based on a decision tree.  This is a very promising result,

especially if we keep in mind that recursive learning is a general new concept to solve the

Boolean satisfiability problem; it therefore has potential for a uniform framework for

development of both CAD and test algorithms.  Recursive learning can therefore be seen

under more general aspects. It is a powerful concept to perform a logic analysis on a

digital circuit.  By recursively calling the presented learning functions it is possible to

extract the entire situation of logic relations between signals in a circuit.  This promises

the successful application of recursive learning to a wide variety of problems in addition

to the test generation problem discussed in this paper.

Already, a recursive learning-based technique as provided fundamental progress in

design verification problems [22,23]. Current research also focuses on the application of

recursive learning to logic optimization and other related procedures.  First results for

logic optimization [24, 25] are very promising.

Acknowledgments

The authors are particularly grateful to Prof. Joachim Mucha, head of Institut für

Theoretische Elektrotechnik, Universität Hannover, Germany for his support of this

work.



31

References

[1] Ibarra O.H., Sahni S.K.: "Polynomially complete fault detection problems", IEEE

Transactions on Computers, vol. C24, March 1975, pp. 242-249.

[2] Goel P.: "An Implicit Enumeration Algorithm to Generate Tests for Combinational

Logic Circuits", IEEE Transactions on Computers, vol. C-30, March 1981, pp.

215-222.

[3] Fujiwara H., Shimono T.: "On the Acceleration of Test Generation Algorithms",

Proc. 13th Int. Symp. on Fault Tolerant Computing, 1983, pp. 98-105.

[4] Kirkland T., Mercer M. R.: "A Topological Search Algorithm for ATPG", Proc.

24th Design Automation Conf., 1987, pp. 502-508.

[5] Mahlstedt U., Grüning T., Özcan C., Daehn W.: "CONTEST: A Fast ATPG Tool

for Very Large Combinational Circuits",  Proc. Intl. Conference on Computer

Aided Design, Nov. 1990, pp. 222-225.

[6] Schulz M., Trischler E., Sarfert T.: "SOCRATES: A highly efficient automatic test

pattern generation system", Proc. Intl. Test Conf., 1987, pp.1016-1026.

[7] Schulz M., Auth E.: "Improved Deterministic Test Pattern Generation with

Applications to Redundancy Identification", IEEE Trans. on Computer-Aided

Design, July 1989, pp. 811-816.



32

[8] Rajski J., Cox H.: "A Method to Calculate Necessary Assignments in Algorithmic

Test Pattern Generation", Proc. Intl. Test Conf., 1990, pp.25-34.

[9] Muth P.: "A Nine-Valued Logic Model for Test Generation", IEEE Trans. on

Computers, vol. C-25, 1976, pp. 630-636.

[10] Akers S.B.: "A Logic System for Fault Test Generation", IEEE Trans. on

Computers, vol. C-25, no. 2, June, 1976, pp. 620- 630.

[11] Roth J. P.: "Diagnosis of automata failures: A calculus & a method", IBM J. Res.

Develop., vol. 10, July 1966, pp. 278-291.

[12] Kunz W., Pradhan D.K.: " Accelerated Dynamic Learning for Test Generation in

Combinational Circuits", IEEE Trans. on Computer-Aided Design, vol. 12, no. 5,

May 1993, pp. 684-694.

[13] Giraldi, J., Bushnell M.: "Search State Equivalence for Redundancy Identification

and Test Generation",  Proc. Intl. Test Conf., 1991, pp. 184-193.

[14] Fujino T., Fujiwara H.: "An Efficient Test Generation Algorithm Based on Search

State Dominance", Proc. Intl. Symp. on Fault-Tolerant Comp., 1992, pp. 246-253.

[15] Larrabee T.: "Efficient Generation of Test Patterns Using Boolean Difference",

Proc. Intl. Test Conf., 1989, pp. 795-801.

[16] Chakradhar S.T., Agrawal V.D.: "A Transitive Closure based Algorithm for Test

Generation", Proc. 28th Design Automation Conf., 1991, pp. 353-358.



33

[17] Waicukauski J.A., Shupe P.A., Giramma D.J., Matin A.: "ATPG for Ultra-Large

Structured Designs", Proc. Intl. Test Conf., 1990, pp. 44-51.

[18] Kunz W., Pradhan D.: "Recursive Learning:  An Attractive Alternative to the

Decision Tree for Test Generation in Digital Circuits", Proc. Intl. Test Conf. 1992,

pp. 816-825.

[19] Brglez F., Fujiwara H.:  "A Neutral Netlist of 10 Combinational Benchmark

Designs and a Special Translator in Fortran", Proc. Intl. Symp. on Circuits and

Systems, Special Session on ATPG and Fault Simulation, June 1985.

[20] Brglez F. et al.:  "Combinational Profiles of Sequential Benchmark Circuits", Intl.

Symp. on Circuits and Systems, May 1989, pp. 1929-1934.

[21] Kundu S. et al.:  "A Small Test Generator for Large Designs"  Proc. Intl. Test

Conf. 1992, pp. 30-40.

[22] Kunz W.: "HANNIBAL:  An Efficient Tool for Logic Verification Based on

Recursive Learning", Proc. Intl. Conf. on Computer-Aided Design (ICCAD), Santa

Clara, Nov. 1993, pp. 538-543

[23]  Reddy S., Kunz W. and Pradhan D.: “Improving OBDD Based Verification using

Internal Equivalencies”, Technical report 94-019, Department of Computer

Science, Texas A&M University, College Station, Texas Jan. 1994 (submited for

publication).



34

[24] Kunz W.: “Ein neuer Ansatz für die Optimierung mehrstufiger logischer

Schaltungen”,  Proc. GI/GME/ITG-Fachtagung Rechnergestützter Entwurf und

Architektur mikroelektronischer Systeme, Oberwiesenthal, Germany, May 1994.

[25] Kunz W., Menon P.: “Multi-level Logic Optimization by Implication Analysis”,

submitted for publication.



35

List of Tables

Table 1:  Preliminary learning routine

Table 2:  Using demo_recursive_learning()

Table 3:  Precise implication procedure

Table 4:  Demonstrating procedure make_all_implications()

Table 5:  Procedure fault_propgagation_learning()

Table 6:  Demonstrating fault_propagation_learning()

Table 7:  Experimental results for redundant faults (Sun SPARC 10/51)

Table 8:  Experimental results for test generation with faultdropping (Sun SPARC

10/51)

Table 9:  Experimental results for test generation without faultdropping (Sun SPARC

10/51)



Table 1: Preliminary learning routine

demo_recursive_learning()

{

for each unjustified line

{

for each input: justification :

 {

- assign controlling value (e.g., '0' for AND, '1' for OR)

- make implications and set up new list of

 resulting unjustified lines

- if consistent: demo_recursive_learning()

  }

if there are one or several signals f in the circuit, such that 

f assumes the same logic value V for all consistent 

justifications, then learn f=V, make implications for all  

learned signal values

if  all justifications are inconsistent: learn that the current 

situation of value assignments is inconsistent

  }

}



0. learning level 1. learning level 2. learning level

(generally valid

signal values)

 i1 = 0 (unjust.)

 j = 1 (unjust.)

  enter

learning ->

k = 1

i2 = 0

unjust. line i1 = 0:

1. justif.: g1 = 0

   => e1= 0 (unjust.)

   => f1= 0 (unjust.)

   enter next

recursion ->

   e2 = 0

f2 = 0

    => g2 = 0

    => i2 = 0

    => k = 1

2. justif.: h1 = 0

    => h2 = 0

    => i2 = 0

    => k = 1

<======

unjust. line j = 1:   

...

unjust. line e1 = 0:

1. justif.: a1 = 0

    => a2= 0

    => e2 = 0

2. justif.: b1 = 0

    => b2 = 0

    => e2 = 0

<======

unjust. line f1 = 0:

1. justif.: c1 = 0

    => c2 = 0

    => f2 = 0

2. justif.: d1 = 0

    => d2 = 0

    => f2 = 0

<======

Table 2:  Using demo_recursive_learning



initially: r=0;

make_all_implications(r, r max)

  {

     make all direct implications and set up a list Ur of

     resulting unjustified gates 

     if r<r max : learning

       {

for each gate Gx, x=1,2.., in Ur: justifications

{

   set up list of justifications GxCr

   for each justification Ji ∈  GxCr:

          {

  -  make the assignments contained in Ji

     -  make_all_implications(r+1, r max )

   }

if  there is one or several signals f in the circuit, which 

assume the same logic value V for all consistent 

justifications Ji ∈GxCr then learn: f=V is uniquely 

determined in level r, make direct implications for all 

learned values in level r

if  all justifications are inconsistent, then learn: given 

 situation of value assignments in level r is inconsistent

}

     }

 }

Table 3: Precise implication procedure



0. learning level 1. learning level 2. learning level

(generally valid
signal values)

 p = 1 (unjust.)

  enter
 learning ->

q=1
r=1

for unjust. gate G6 :

1. justif.: q = 0, r = 0
    => k = 0
         (G1 unjust.)
    => l = 0
         (G2 unjust.)
    => m = 0
         (G3 unjust.)
    => n = 0
         (G4 unjust.)

      enter next
recursion ->

1. justification
inconsistent

2. justif.: q = 1, r = 1

    r=1: G5 unjust.

  enter next recursion ->

q=1 and r = 1 are
common for all
consistent justifications
(there is only one)
<======

for unjust. gate G1:

1. justification c = 0
    => e=1
    => f=0 (since l=0)
    => i=1
    => j=0 (since n=0)
    => inconsistency
         at b

2. justification d = 0
    => g=1
    => h=0 (since m=0)
    => j=1
    => i=0 (since n=0)
    => inconsistency
         at a

current situation of value
assignments inconsistent
<======

for unjust. gate G5:

1. justification k = 1
    => ...
2. justification l = 1
    => ...
3. justification m = 1
    => ...
4. justification n = 1
    => ...
(no new information
learned)
<======

Table 4: Demonstrating procedure make_all_implications()



fault_propagation_learning(r, r max)

{

for all signals fD ∈ Fr : sensitization

    {

  successor_signal = fD;

  while ( successor_signal has exactly one successor 

            (no fanout stem))

       {

fault_value := value of successor_signal;

successor_signal := successor of successor_signal

if (successor_signal is output of inverting gate )

     assign: value of successor_signal := INV(fault_value)

else

        assign: value of successor_signal := fault_value

       }

make_all_implications(r+1, r max);

set up list of new D- frontier Fr+1;

if ( r< rmax  and current sensitization is consistent )

fault_propagation_learning(r+1, r max);

    }

if  there is one or several signals f in the circuit, which each

assume the same logic value V for all non-conflicting  

sensitizations, then learn: f=V is uniquely determined in

level r, make direct implications for learned values in level r

if  all sensitizations result in a conflict, then learn:

fault propagation in level r impossible (conflict)

}

Table 5:  Procedure fault_propagation_learning()



0. learning level 1. learning level 2. learning level

(generally valid
signal values)

F0 = {b,e,g,h}
  enter

learning ->

n = 0

D- frontier signal b:
1. sensitization:
   successor of b:
    => j = D, c = 1
   successor of j:
    => s = D, (unjust.)

    enter next recursion ->

1. sensitization failed

D- frontier signal e:
2. sensitization:
   successor of e:
    => k = D , d=0
   successor of k:
    => s = D (unjust.)

enter next recursion ->

 2. sensitization failed

D- frontier signal g:
3. sensitization:
   successor of g
    => l = D, f = 1
   several successors
   of l:
    => F1 = {o, p}

   enter next recursion ->

n = 0

D- frontier signal h:

4. sensitization:
   successor of h
    => m = D , i=1
   several successors
   of m:
    => F1 = {q, r}

   enter next
recursion ->

<======     n = 0

for unjust. gate G:
1. justification k= 1
    => inconsistent
          with e = D
2. justification k=D
    => inconsistent
         with e = D

<======

for unjust. gate G:
1. justification j = 1
    => inconsistent
         with b = D

2. justification j=D

    => inconsistent

         with b = D

<======

D- frontier signal o:
1. sensitization:
   successor of o:
    => t = D , n =0

D- frontier signal p:

2. sensitization:
   successor of p:

    => u = D, n =0

<======

D- frontier signal q:

1. sensitization:
   successor of q:
    => v = D, n =0

D- frontier signal r:

2. sensitization:
   successor of r:
    => w = D
         n =0
<======

Table 6:  Demonstrating fault_propagation_learning()



Results  for
collapsed faultlist

1. PHASE  (eliminate
easy faults)

2. PHASE for
DIFFICULT  FAULTS  (aborted in 1. phase)

no faultdropping,
all faults are
targeted

FAN with  backtrack
limit of 10+10

FAN with
DECISION  TREE
(bt. limit of 1000)

FAN with
RECURSIVE LEARNING

learning levels:

circuit no. faults
targeted

red. time
[s]

aborted red. time
[s]

ab. red. time
[s]

ab. r1 r2 r3 r4

c432 524 1 7 3 0 12 3 3 0.2 0 3 - - -

c499 758 8 19 0 - - - - - - - - - -

c880 942 0 14 0 - - - - - - - - - -

c1355 1574 8 117 0 - - - - - - - - - -

c1908 1879 7 81 2 2 5 0 2 0.1 0 2 - - -

c2670 2747 98 132 19 8 243 11 19 98 0 8 0 4 7

c3540 3428 127 231 8 0 289 5 5 5 0 7 1 - -

c5315 5350 59 453 0 - - - - - - - - - -

c6288 7740 34 1231 10 0 295 3 0 23 0 7 3 - -

c7552 7550 67 1045 64 0 3676 64 64 24 0 64 - - -

s5378 4090 39 189 0 - - - - - - - - - -

s9234 6164 389 877 56 19 3449 37 54 73 0 22 28 0 6

s13207 8622 133 1320 21 15 1109 1 16 16 0 16 5 - -

s15850 10263 374 2038 10 8 331 2 10 7 0 10 - - -

s35932 34144 3728 16112 0 - - - - - - - - - -

s38417 27582 153 17401 8 4 1074 4 8 15 0 8 - - -

s38584 32125 1321 18932 24 22 3128 2 24 87 0 16 8 - -

Table 9:  Experimental Results for test generation without faultdropping (Sun Sparc Workstation 10)



Results  for
collapsed faultlist

1. PHASE  (eliminate
 easy faults)

2. PHASE  for
DIFFICULT  FAULTS  (aborted in 1. phase)

with
faultdropping

FAN with  backtrack
limit of 10+10

FAN with
DECISION  TREE
(bt. limit of 1000)

FAN with
RECURSIVE LEARNING

learning levels:

circuit no. faults
targeted

red. time
[s]

aborted red. time
[s]

ab. red. time
[s]

ab. r1 r2 r3 r4

c432 93 1 1 3 0 12 3 3 0.2 0 3 - - -

c499 122 8 4 0 - - - - - - - - - -

c880 95 0 2 0 - - - - - - - - - -

c1355 185 8 12 0 - - - - - - - - - -

c1908 178 7 11 2 2 5 0 2 0.1 0 2 - - -

c2670 343 98 26 19 8 243 11 19 98 0 8 0 4 7

c3540 392 127 47 5 0 278 5 5 2 0 5 - - -

c5315 460 59 37 0 - - - - - - - - - -

c6288 80 34 15 0 - - - - - - - - - -

c7552 533 67 210 64 0 3676 64 64 24 0 64 - - -

s5378 460 7 34 0 - - - - - - - - - -

s9234 1230 389 267 56 19 3449 37 54 73 0 22 28 0 6

s13207 1096 133 309 16 15 1070 1 16 16 0 16 - - -

s15850 1295 374 803 10 8 331 2 10 7 0 10 - - -

s35932 4794 3728 1308 0 - - - - - - - - - -

s38417 4021 153 1108 8 4 1074 4 8 15 0 8 - - -

s38584 3301 1321 890 24 22 3128 2 24 87 0 16 8 - -

Table 8:  Experimental Results for test generation with faultdropping (Sun Sparc Workstation 10)



Results  if only
redundant faults
are targeted

FAN with
DECISION  TREE
(bt. limit of 1000)

FAN with
RECURSIVE LEARNING

learning levels:

circuit no. faults
targeted

no. of
backtracks

time
[s]

ab. time
[s]

ab. r0 r1 r2 r3 r4

c432 4 3000 12 3 0.2 0 1 3 - - -

c499 8 0 0.1 0 0.1 0 8 - - - -

c880 0 - - - - - - - - - -

c1355 8 0 0.1 0 0.1 0 8 - - - -

c1908 9 226 5 0 0.2 0 7 - - - -

c2670 117 18862 207 15 112 0 81 25 0 4 7

c3540 137 5000 339 5 2 0 132 5 - - -

c5315 59 0 0.9 0 0.9 0 59 - - - -

c6288 34 0 2 0 2 0 34 - - - -

c7552 131 64733 3858 64 36 0 65 66 - - -

s5378 39 0 1 0 1 0 39 - - - -

s9234 443 55396 4235 35 75 0 305 106 32 - -

s13207 149 7159 1118 1 23 0 131 17 1 - -

s15850 384 2459 367 2 31 0 360 24 - - -

s35932 3728 0 837 0 837 0 3728 - - - -

s38417 161 4056 1207 4 47 0 153 8 - - -

s38584 1345 8137 3277 2 227 0 1300 37 8 - -

Table 7:  Experimental results for redundant faults (Sun Sparc Workstation 10)



List of Figures

Fig. 1:  Circuitry to demonstrate recursive learning

Fig. 2:  Incomplete forward implications

Fig. 3:  Justifications for unjustified gates

Fig. 4:  Determining a complete set of justifications

Fig. 5:  Making precise implications for p=1

Fig. 6:  Schematic illustration of recursive learning

Fig. 7:  Necessary assignments for fault propagation

Fig. 8:  Algorithm for choosing rmax



a

b

c

d

e

f
g

h
i

a

b

c

d

e

f

h

g
i

2

2

2

2

2

2
2

2
2

1

1

1

1

1

1

1

1
1= 0!

j = 1!
k

x y

x

y

gg

ee

x hh

y

Fig. 1: Circuitry to demonstrate recursive learning



a

b

c

x

y

d

Fig. 2:  Incomplete forward implications



a=X

a=X
b=X

a=X

b=1
c=X

b=D
c=1

J  = {a=1, c=1}

J  = {a=0, c=0}

J  = {a=D}
J  = {a=1}

1

1
2

2

justifications

unjustified, 3 valued logic

unjustified, 5 valued logic

justified, 3 valued logic

unjustified / justified gates

justified
c=0

d=0

Fig 3:  Justifications for unjustified gates



 

a=X
b=X
c=X
d=X
e=X

f=1

Fig. 4:  Determining a complete set of justifications



a
b

c
d

e

f

g

h

i

k

l

m

n

p=1 => ?

q

G1

G2

G3

G4

j

G5 G6r

Fig. 5:  Making precise implications for p=1



AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AA
AA

AAA
AAA

AAA
AAA
AAA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AAA
AAA

0. Learning Level 1. Learning Level 2. Learning Level

(test generation)

unjustified gates
unjustified gates

justificationsset of value assignments

Fig. 6:  Schematic illustration of recursive learning



a=D

b

c

d

e

f

g

h

i

j

k

l

m

o

p

q

r

s

t

u

v

w

n

G

s-a-0

Fig. 7:  Necessary assignments for fault propagation



f = V ?

r     = 0

r     := r     +1

r     := 0

optional decisions (stack)
e.g. like in FAN

conflict

let f=V be the previous decision
(top of the stack); assign f=X

make_all_implications(0, r      )

conflict?
yes

no

no

r      := 1

optional decisions

yes

fault_propagation_learning(0, r      )

max

max

max

maxmax

max

max

Fig. 8:  Algorithm for choosing rmax



Biography

Wolfgang Kunz was born in Saarbrücken, Germany, in 1964.  From 1984 to 1989, he

studied at the University of Karlsruhe, Germany where he received the Dipl.-Ing. degree

in electrical engineering.  During 1989, he was visiting scientist at the Norwegian

Institute of Technology, Trondheim, Norway.

In 1989, he joined the Department of Electrical and Computer Engineering at the

University of Massachusetts, Amherst, where he worked as research assistant until

August 1991.  From October 1991 to March 1993, he worked with Institut für

Theoretische Elektrotechnik, at the University of Hannover, Germany, where he obtained

his PH.D. in 1992.  Since April 1993, he is with Max-Planck-Society, Group for Fault-

Tolerant Computing at the University of Potsdam, Germany.  His research interests are in

test generation, logic verification, logic optimization and fault-tolerant computing.  Dr.

Kunz is member of IEEE and Verein Deutscher Elektrotechniker.

Dhiraj K. Pradhan  is holder of the COE Endowed Chair in Computer Science at Texas

A&M University, College Station, Texas. Prior to joining Texas A&M he served until

1992 as Professor and Coordinator of Computer Engineering at the University of

Massachusetts, Amherst. Funded by NSF, DOD and various corporations, he has been

actively involved in VLSI testing, fault-tolerant computing and parallel processing

research, presenting numerous papers, with extensive publications in journals over the

last twenty years. Dr. Pradhan has served as guest editor of special issues on fault-

tolerant computing of IEEE transactions on Computers and Computer, published in April



1986 and March 1980 respectively. Currently, he is an editor for several journals,

including IEEE Transactions on Computers and Computer and JETTA. He has also

served as the General Chair of the 22nd Fault-Tolerant computing Symposium and as

Program Chair for the IEEE VLSI test Symposium. Also, Dr. Pradhan is a co-author and

editor of the book entitled, Fault-Tolerant Computing : Theory and Techniques, Vols. I

and II (Prentice Hall, 1986; @nd ed., 1991).

Dr. Pradhan is a Fellow of IEEE and is a recipient of the Humboldt Distinquished Senior

Award.




