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Recursive Learning for Sparse Markov Models

Jie Xiong∗, Väinö Jääskinen†, and Jukka Corander‡,§

Abstract. Markov chains of higher order are popular models for a wide variety
of applications in natural language and DNA sequence processing. However, since
the number of parameters grows exponentially with the order of a Markov chain,
several alternative model classes have been proposed that allow for stability and
higher rate of data compression. The common notion to these models is that they
cluster the possible sample paths used to predict the next state into invariance
classes with identical conditional distributions assigned to the same class. The
models vary in particular with respect to constraints imposed on legitime parti-
tions of the sample paths. Here we consider the class of sparse Markov chains for
which the partition is left unconstrained a priori. A recursive computation scheme
based on Delaunay triangulation of the parameter space is introduced to enable
fast approximation of the posterior mode partition. Comparisons with stochastic
optimization, k-means and nearest neighbor algorithms show that our approach is
both considerably faster and leads on average to a more accurate estimate of the
underlying partition. We show additionally that the criterion used in the recursive
steps for comparison of triangulation cell contents leads to consistent estimation
of the local structure in the sparse Markov model.

Keywords: clustering, Delaunay triangulation, recursive learning, sequence
analysis, sparse Markov chains.

1 Introduction

Markov chains of higher order are useful models for capturing spatial or time-dependence
in sequential data where the dependences extend beyond immediate neighbors. However,
the rapidly increasing parameter richness is a challenge for such models and, therefore,
several sparser alternatives have been considered, in particular in the machine learning
literature. Finite memory sources and variable order Markov chain models are popular
methods in data compression and mining for applications in bioinformatics and natural
language modeling. A shared feature of these models is that they cluster the possible
sample paths used to predict the next state into invariance classes, where identical
conditional distributions are assigned to the same class. The main difference between the
models arises from the constraints imposed on legitime partitions of the sample paths.

Here we consider estimation in the class of sparse Markov chains (SMC) for which
the partition is left unconstrained a priori (Jääskinen et al., 2013). Such models need not
correspond to a hierarchical representation of contexts used in variable length Markov
chains (Rissanen et al., 1983; Bühlmann et al., 1999) and can lead to significantly im-
proved predictions and higher rate of data compression than variable length Markov
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chains and ordinary Markov chains. Overall, very limited experience is currently avail-
able about learning algorithms for sparse models of this type. Gonzalez-Lopez et al.
(2010) derived an asymptotic criterion for learning of partitions for a related class of
Markov models, and Farcomeni (2011) considered hidden Markov partition models and
proposed learning by the expectation-maximization algorithm (EM), where the number
of hidden states is fixed.

Jääskinen et al. (2013) derived a stochastic greedy algorithm for learning SMC mod-
els by Bayesian clustering with merge/split and re-allocation operators that are not
purely random, in contrast to similar proposals used in standard Markov chain Monte
Carlo (MCMC) samplers for clustering. However, as the order of the Markov chain in-
creases, the search space for the algorithm grows exponentially and, consequently, the
stochastic greedy optimization method may experience slow convergence. Inspired by
the deterministic clustering algorithm introduced in Dahl et al. (2009), we develop here
a recursive algorithm for optimizing the partition for an SMC model by considering
Delaunay triangulation of the parameter space of a higher order Markov chain.

The algorithm in Dahl et al. (2009) is guaranteed to identify the posterior mode
clustering in the space of partitions under the constraint that sufficient statistics are
univariate for each data entity and can thus be unambiguously ordered before starting
the search of the mode. In addition, the likelihood terms for each data entity must sat-
isfy certain conditions such that posterior optimal clusters are represented by contiguous
subsets in the ordered data collection. The key benefit from this is that the subsequent
recursive dynamic programming approach avoids unnecessary search steps in the parti-
tion space by exclusion of cluster mergings known to lead to inferior partitions in terms
of posterior probability. We introduce a similar idea in higher dimensions by first us-
ing Delaunay triangulation to create a neighborhood structure in the SMC parameter
space and then optimizing the partition in terms of posterior probability by using local
operations based on Bayes factors. Unlike Dahl’s algorithm, this is not guaranteed to
converge to the global mode of the posterior. However, we show that our method yields
a consistent estimate of the SMC structure in a local neighborhood when the sequence
length tends to infinity. We demonstrate that our algorithm is considerably faster than
the stochastic optimization used by Jääskinen et al. (2013) and that it outperforms also
k-means and nearest neighbor algorithms both in terms of speed and accuracy.

The outline of the paper is as follows. In Section 2, we review the SMC models intro-
duced in Jääskinen et al. (2013) and describe how Bayesian inference can be performed
for them. The clustering algorithm based on Delaunay triangulation is introduced in Sec-
tion 3. In Section 4, the performance of the algorithm is illustrated with both synthetic
data and bacterial DNA sequence data. Some remarks about possible further develop-
ments of the algorithm, in particular in the context of bioinformatics applications, are
given in the final section.

2 Sparse Markov chain models

We first briefly review the basic characteristics of sparse and variable-length Markov
chains using definitions and examples from Jääskinen et al. (2013). Let {Xt}nt=1 be a se-
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quence of random variables Xt which take values from a finite alphabet X = {1, . . . , J}.
Assume that such a sequence can be represented by a time homogeneous Markov chain
of order m denoted by MC(m). The set which contains all the possible values of the
subsequence (Xt−1, . . . , Xt−m) is denoted by Xm. For a state i ∈ Xm we denote the
transition probability distribution P (Xt|(Xt−1, . . . , Xt−m) = i) by a vector pi|·. Note
that in accordance with some of the literature on Markov chains, the state i is placed on
the left side of the condition rather than on the right side as in the standard notation
for conditional probability.

Definition 1 (Sparse Markov chain (SMC)). Consider a time homogeneous Markov
chain MC(m) of order m. Let S = {s1, . . . , sk} be a partition of X = {1, . . . , J}m such
that pi|· = pj|· = θc for all pairs of {i, j}, i, j ∈ sc, c = 1, . . . , k, and P = {θ1, . . . ,θk}
is the set of k distinct transition probability vectors. The pair (S,P) forms a sparse
Markov chain model from MC(m).

By definition, an SMC merges identical transition probability vectors of a Markov
chain into invariance classes, which reduces the effective parametric dimension of the
model. Since the number of parameters in a higher order Markov chain increases expo-
nentially as a function of the order, it can be essential to use a sparser model class to
reduce noise in the parameter estimates. Also, characteristics of the invariance classes
convey important structural information about context-specific independence embedded
in a Markov chain. These properties are illustrated by the following examples.

Example 1. Let MC(2) be an ordinary Markov chain of order 2, which takes values
from the DNA alphabet X = {A,C,G, T}, and define partition S according to

S= {{AA,AC,AG,AT}, {CA,CC,CG,CT}, {GA,GC,GG,GT}, {TA, TC, TG, TT}}.

Such a partition corresponds a set of transition probability vectors P = {θ1,θ2,θ3,θ4},
where

θ1 = pAA|· = pAC|· = pAG|· = pAT |·,

θ2 = pCA|· = pCC|· = pCG|· = pCT |·,

θ3 = pGA|· = pGC|· = pGG|· = pGT |·,

θ4 = pTA|· = pTC|· = pTG|· = pTT |·.

The SMC (S,P) in Example 1 implies that for each Xn the preceding state Xn−1

is irrelevant for predicting the state of Xn, whereas Xn−2 is always relevant, whatever
the state of Xn−2. Ignoring the probability distribution of the initial state as is typical
for estimation of Markov chain parameters, the SMC model in the example reduces the
number of free parameters of the corresponding MC from 48 to 12.

Example 2. Let MC(2) be an ordinary Markov chain of order 2, which takes values
from the DNA alphabet X = {A,C,G, T}, and define partition S according to

S = {{A}, {GT, TT}, {AC}, {CC}, {GC}, {TC}, {AG}, {CG}, {GG},
{TG}, {AT}, {CT}}
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such that P = {θ1,θ2, . . . ,θ12}, where the two first vectors are

θ1 = pAA|· = pCA|· = pGA|· = pTA|·,

θ2 = pGT |· = pTT |·.

In Example 2, the model can also be represented by the so-called context model
(Rissanen et al., 1983; Bühlmann et al., 1999), where for each Xt the finite history
(Xt−1, . . . , Xt−m) is mapped to the shortest possible context dependent subset (Xt−1,
. . . , Xt−r), r � m, such that

P (Xt|Xt−1 = xt−1, . . . , Xt−m = xt−m) = P (Xt|Xt−1 = xt−1, . . . , Xt−r = xt−r). (1)

This kind of a model is generally referred to as variable length Markov chain (VLMC).
A VLMC model represents a special case of an SMC model, when the partition of
transition probability vectors satisfies certain conditions such that the classes can be
unambiguously mapped to a context-tree. For further details about the connection be-
tween SMC and VLMC models, see Jääskinen et al. (2013). The example below illus-
trates an additional case of an SMC which is also a VLMC model, such that all the
additional independences imposed by the model are context-specific and alternatively
representable through a context-tree. For a comprehensive discussion about context-
trees, see Bühlmann et al. (1999).

Example 3. Let MC(3) be an ordinary Markov chain of order 3, which takes values
from the binary alphabet X = {0, 1}, and define partition S according to

S = {{000}, {100}, {010, 110}, {001, 101, 011, 111}}.

This corresponds to the following context-specific independences, which reduce the num-
ber of free parameters from 8 to 4:

P (Xt|Xt−1 = 1, Xt−2 = xt−2, Xt−3 = xt−3) = P (Xt|Xt−1 = 1),

P (Xt|Xt−1 = 0, Xt−2 = 1, Xt−3 = xt−3) = P (Xt|Xt−1 = 0, Xt−2 = 1).

Consider an SMC model defined by the pair (S,P), where we have k vectors of
parameters {pc|· : c = 1, . . . , k}. An analytical expression for the marginal likelihood of
observed sequence data given S was derived by Jääskinen et al. (2013). Below we recite
their result for later use in the recursive learning algorithm. Let θ ∈ Θ denote collectively
the set of quantitative parameters of an SMC model. A conjugate multivariate Dirichlet
prior for the matrix of transition probabilities (see, e.g., Koski, 2001) has the expression

p(θ|α, q) =
k∏

c=1

⎡
⎣ Γ(α)∏J

j=1 Γ(αqj)

J∏
j=1

p
αqj−1

c|j

⎤
⎦ , (2)

where the hyperparameters satisfy the following conditions: α > 0, qj > 0,
∑J

j=1 qj = 1.
The likelihood of an observed data sequence x = x0x1 · · ·xn with initial state z0 =
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(x0x1 · · ·xm−1) assumed fixed equals under the SMC model

p(x|θ, S) ∝
∏

i∈Xm

J∏
j=1

p
ni|j
i|j =

k∏
c=1

J∏
j=1

p
nc|j
c|j , (3)

where ni|j is the observed count of transitions from the state i to j in x and nc|j =∑
i∈scni|j

. Consequently, the marginal likelihood p(x|S) of x is available analytically

using the properties of Dirichlet distribution, such that

p(x|S) ∝
∫
θ∈Θ

p(x|θ, S)p(θ|α, q)dθ (4)

∝
∫
θ∈Θ

⎡
⎣ k∏
c=1

Γ(α)∏J
j=1 Γ(αqj)

J∏
j=1

p
αqj−1

c|j

J∏
j=1

p
nc|j
c|j

⎤
⎦ dθ

∝
k∏

c=1

Γ(α)∏J
j=1 Γ(αqj)

∏J
j=1 Γ(nc|j + αqj)

Γ((
∑J

j=1 nc|j) + α)
,

where Γ(·) is the Gamma function. Inference about S can be done using the posterior
distribution

p(S|x) ∝ p(x|S)p(S). (5)

In our numerical experiments, a uniform prior p(S) = 1/B(|X |m) is for simplicity as-
signed over the space of all possible partitions of Xm to obtain the posterior probability
of S, where B(n) is the Bell number of n. However, alternative priors could also be
deployed. For example, a Dirichlet process (DP) prior assigns the following probability
on the partitions

p(S) ∝ βk
k∏

c=1

Γ(|sc|), (6)

where β is a concentration parameter governing the implied probability mass over possi-
ble values of k. A uniform prior on k, given an upper limit K ≤ |Xm|, distributes evenly
the same probability mass 1/K over all partitions with a given number of classes k.
Since the number of ways of partitioning a set of |Xm| elements into k non-empty sub-
sets is given by the Stirling number of the second kind, the probability of a partition

S with k clusters equals p(S) = K−1
{|Xm|

k

}−1
. Both of these alternative priors imply

penalties for any particular partition when k increases and therefore favor the partition
with smaller k. It should nevertheless be noted that the Dirichlet prior for the transition
probability vectors already imposes an increasing penalty as a function of the number
of clusters in the partition.

Given the sequence x = x0x1 · · ·xn, the predictive likelihood for a future observation
y = y1 · · · ym under an SMC model (S,P) can be expressed as

p((Ym = ym, . . . , Y1 = y1)|(Xn = xn, . . . , X0 = x0), S) = (7)

=

∫
θ∈Θ

p(y|x, θ, S)p(θ|x, S)dθ
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=

k∏
c=1

Γ(α+mc|j)

Γ((
∑J

j=1 mc|j + nc|j) + α)

J∏
j=1

Γ(mc|j + nc|j + αqj)

Γ(mc|j + αqj)
,

wheremi|j is defined analogously to the count ni|j and is calculated from the sequence y.

3 Learning SMC models from observed sequence data

Jääskinen et al. (2013) used stochastic optimization to estimate posterior mode partition
of states for an SMC model. Their algorithm uses search operators typical to Bayesian
clustering methods where the number of clusters is not fixed in advance. The local
moves in the partition space consist of merge and split of existing clusters, as well as
re-assignment of individual data entities among clusters. In contrast to purely stochas-
tic proposals which are inefficient for finding reasonable splits of clusters, the algorithm
uses deterministic hierarchical clustering within an existing cluster to obtain informed
proposals which are more likely to yield an improvement to the log-unnormalized poste-
rior. The re-assignment of individual data entities is attempted in a random order, but
otherwise the algorithm proceeds in a greedy manner by choosing the local move that
leads to maximal increase in the log-unnormalized posterior. Jääskinen et al. (2013)
showed that this approach did yield good accuracy for the partition estimation.

In Dahl et al. (2009), a recursive dynamic programming algorithm was introduced,
such that the posterior modal partition can be found in a deterministic manner for a
set of data entities under a clustering model. A main advantage of the algorithm is
to exploit convexity of clusters, which avoids unnecessary trials of cluster merging and
splitting of the type discussed above. Inspired by this, we first determine neighborhoods
for Markov chain transition probability vectors using Delaunay triangulation. These
neighborhoods are then used in a recursive fashion to identify an approximate posterior
mode partition over the space of clusterings of Markov chain states.

Delaunay triangulation is a mathematical tool used mainly for constructing a topol-
ogy for a given set of data points. For a given set P of data points, a Delaunay tri-
angulation of P is defined as a triangulation DT (P ) such that no point in P is inside
the circum-hypersphere of any simplex in DT (P ). Delaunay triangulation was first dis-
cussed by Boris Delaunay and has been widely used in a variety of applications (De Berg
et al., 2000). Particularly, it has gained popularity in spatial clustering problems by pro-
viding a compact proximity between the data points (Yang and Cui, 2008), such that
the nearest points are always connected as neighbors in the triangulation (Liu et al.,
2008; Deng et al., 2011).

For a given sequence {Xt}nt=1, learning an optimal SMC can be interpreted as finding
a partition S = {s1, . . . , sk} on Xm, where the posterior defined in (5) is maximized
and then obtaining an estimate of the transition probability distribution for all classes
in the partition S (alternatively, the posterior predictive distribution in (7) could also
be used). We can consider the ordinary Markov model MC(m) as a trivial SMC model
with the number of classes in the partition equal to |X |m. For each state i ∈ Xm,
values of the free parameters in the corresponding transition probability vector pi|· are
coordinates in a (J −1)-dimensional simplex. Correspondingly, all the states in Xm can
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then be mapped into points in such a simplex. By applying Delaunay triangulation on
Xm, each transition state i ∈ Xm becomes a node in the triangulation DT (Xm).

We can maximize the posterior defined in (5) by recursively merging those nodes in
the Delaunay triangulation where it leads to an improvement of the posterior proba-
bility. Bayes factor appears to provide an efficient local criterion for this task. For any
two clusters u, v, the Bayes factor for merging them against keeping the two states as
separate classes in the model is defined as

BFuv =
P (x|M({u, v}))

P (x|M({u}, {v})) (8)

=

∏J
j=1 Γ(αqj)

Γ(α)

∏J
j=1 Γ(nu|j +nv|j +αqj)

Γ((
∑J

j=1 nu|j +nv|j)+α)

Γ((
∑J

j=1 nu|j)+α)∏J
j=1 Γ(nu|j +αqj)

Γ((
∑J

j=1 nv|j)+α)∏J
j=1 Γ(nv|j +αqj)

where, with a slight abuse of notation, M({u, v}) refers the SMC model that merges u, v
while M({u}, {v})) refers to the model where u, v remain separate, and the remaining
parts of the models are identical. The form of (8) reveals that the calculations only
involve the sufficient statistics of the two clusters, which enables efficient localized com-
putation. The theorem below establishes that the local operations converge to correct
decisions as the sequence length increases, when relevant neighbors are included in the
comparisons.

Theorem 1. Let a sequence {Xt}nt=1 and a sparse Markov model (S,P) constructed
from {Xt}nt=1 be given. For any two clusters u, v in S, it holds

lim
n→∞

logBFuv =

{
+∞, pu|· = pv|·,

−∞, pu|· �= pv|·.
(9)

Proof. A detailed proof is provided in the supplementary appendix (Xiong et al., 2015).

The robustness of Bayes factor as a criterion of merging increases with the length
of the data sequence. Similarly, since the neighborhood of any state is determined by
a Delaunay triangulation of consistent estimates of all the transition probability distri-
butions, states associated with identical underlying transition probability vectors will
become neighbors with an increasing probability. We propose the heuristic algorithm
(Algorithm 1) for searching the optimal (S,P) for a given sequence {Xt}nt=1.

To identify the posterior optimal m, one can use the above algorithm to learn the
posterior mode conditional on each m = 0, . . . ,M , and store the corresponding values
of p(x|S) and p(S). Let p(x|Sm) denote the marginal likelihood and p(Sm) the prior
probability for a particular value of m, under the assumption that the initial observa-
tions x0x1 · · ·xM−1 are considered fixed to ensure compatibility of model comparisons
between all putative values of m. Then, an optimal value of m and the corresponding
partition can be obtained by the following maximization operation:

Ŝ = argmax
m∈{0,...,M}

{
argmax
Sm∈Sm

p(x|Sm)p(Sm)

}
, (10)

where Sm refers to the space of possible partitions for a given order m.
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Algorithm 1: Deterministic recursive learning for sparse Markov models.

Data: Input sequence {Xt}nt=1

Result: Sparse Markov model (S,P)
1 Calculate the transition counts from {Xt}nt=1 for MC(m);
2 Estimate each transition probability distribution p of MC(m) using the posterior
mean based on the transition counts;

3 Obtain Delaunay triangulation G of Xm by using values of free parameters in p
as coordinates;

4 Calculate the log Bayes factor
logBFuv = logP (x|M({u, v}))− logP (x|M({u}, {v})) for each edge u, v in G;

5 Find the edge (u∗, v∗) with max log Bayes factor value w;
6 Set U = u∗,V = v∗ and W = w;
7 while W > 0 do
8 Merge V to U by the following steps:
9 (a) Add the sufficient statistics counts of V to U ;

10 (b) For each node r in G which has a connection with V , if edge (U , r) does
not exist, redirect the edge (V , r) to (U , r);

11 (c) Delete V from G;
12 Update the Bayes factors for all the edges (include the edges added by

merging) connected to U ;
13 Find an edge (u∗′

, v∗
′
) with max log Bayes factor value w

′
;

14 Set U = u∗′
,V = v∗

′
and W = w

′
;

15 end

The computational complexity of Delaunay triangulation construction equals
Θ(|X |m log(|X |m)) and the maximum number of edges in a triangulation is 3|X |m − 6
(Yang and Cui, 2008; Lee and Schachter, 1980). An example output of the algorithm,
together with the generating partition and estimation errors, is visualized in Figure 1
in the next section.

4 Numerical results

Since SMC models have already been compared with alternative models in an earlier
work by Jääskinen et al. (2013), we focus on examining the predictive performance of
Delaunay triangulation based SMC estimates and on comparing the speed and accuracy
with the stochastic optimization algorithm and popular standard clustering algorithms.
First, we applied the deterministic recursive algorithm to data generated by a fifth order
SMC model. We simulated DNA data sequence with a length of 1000000 base pairs
from a fifth order SMC with 100 invariance classes for training purpose. The model
learning was performed with the maximum order ranging from 3 to 7. The parameter
values of the optimized SMC model were obtained by MAP estimation and then used
to calculate the predictive log-loss on additional 10 sequences generated from same
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generating mechanism:

l(P̂ , x) = − 1

T

T∑
i=1

log2 P̂ (xi|x1, . . . , xi−1). (11)

To generate the synthetic data under an SMC of order 5 with 100 invariance classes,
parameters for the generating model were sampled as follows. First, we sampled a vector
zl = (zl1, zl2, zl3, zl4), with l = 1, . . . , 100 from a four-dimensional multivariate normal
distribution with zero mean vector and covariance matrix defined as 5 · I4 (I4 denoting
a 4 × 4 identity matrix). Distributions of the transition probability vectors were then
sampled from the corresponding Dirichlet(ezl1 , ezl2 , ezl3 , ezl4) for each of the 100 classes.
These transition probability vectors were assigned to the 1024 states of the fifth order
MC with uniform probabilities. In addition to the log-loss, we used the Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985) to measure the similarity between the estimated
posterior mode partition and the generating partition. ARI is also used later in several
comparisons of algorithm performance.

Order |X |m ARI CPU-time (s) log-loss
3 64 0.0779 0.0716 1.9567(±0.0004)
4 256 0.1388 0.3673 1.8575(±0.0008)
5 1024 0.9570 2.5184 1.5496(±0.0007)
6 4096 0.6455 15.9570 1.5562(±0.0007)
7 16384 0.3327 88.4484 1.5890(±0.0011)

Table 1: Results from optimizing a fifth order SMC model with different maximum
orders. The standard deviations (SD) of log-losses across replicates are given in paren-
theses.

Predictive performance of the suggested algorithm is summarized in Table 1. It is
seen that the algorithm tends to find a reasonable partition structure when the max-
imum a priori eligible order is equal to or higher than the order of the generating
model. However, the algorithm may still be affected by noise resulting from the re-
dundant memory. A strategy commonly used in machine learning for noise control is
to perform model order selection by out-sample predictive validation. By splitting the
available data into training and test sets and calculating the log-loss of the test data
using the trained model, an order can be selected by choosing the model with minimal
log-loss instead of maximizing the posterior probability over the a priori eligible orders.
The adequate performance of this procedure is illustrated in Table 1 where log-loss is
minimized for the correct order.

Second, we compare the deterministic recursive algorithm with the stochastic greedy
algorithm Jääskinen et al. (2013). In this experiment we investigated how an increase in
the amount of training data influences the model learning. We generated DNA sequences
from SMC models with orders 3 and 4. The numbers of invariance classes for the two
models are 16 and 64, respectively. The different sequence lengths considered were 10000,
100000 and 1000000. For simplicity, in this experiment the order of the SMC model is
assumed to be known. The results are shown in Tables 2 and 3. Generally, an increase in
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the model order requires more data for training, and we can see that the deterministic
recursive learning algorithm achieves comparable or occasionally even better results than
the stochastic greedy algorithm in terms of accuracy. The CPU-time values in Table 3
show that the deterministic algorithm is much faster than the stochastic algorithm, even
up to several orders of magnitude when higher orders and longer data sequences are
analyzed.

3rd Order, 16 Populations, |X |m = 64
Length SMC-D SMC-S
10000 0.923(0.037) 0.916(0.029)
100000 0.999 (0.003) 0.999(0.003)
1000000 1(0) 1(0)

4th Order, 64 Populations,|X |m = 256
Length SMC-D SMC-S
10000 0.537(0.025) 0.545(0.025)
100000 0.939(0.015) 0.944(0.013)
1000000 0.998(0.003) 0.998(0.003)

Table 2: Average ARI (SD in parentheses) for simulated data sets with different order
and sequence length. Each result is based on 10 simulation runs on a single core with
3.4 GHz processor. SMC-S, Sparse Markov chain using stochastic greedy optimization;
SMC-D, Sparse Markov chain using deterministic recursive algorithm.

3rd Order, 16 Populations, |X |m = 64
Length SMC-D SMC-S
10000 0.106(0.004) 4.690(0.340)
100000 0.107(0.003) 23.6490(2.672)
1000000 0.107(0.004) 237.191(43.449)

4th Order, 64 Populations,|X |m = 256
Length SMC-D SMC-S
10000 0.537(0.007) 24.784(3.401)
100000 0.502(0.005) 74.522(8.716)
1000000 0.493(0.012) 511.398(48.696)

Table 3: Average CPU running time in seconds (SD in parentheses) for simulated data
sets with different order and sequence length. Each result is based on 10 simulations.

We further compare with the popular nearest neighbor (NN) search and k-means
clustering algorithms (Bishop, 2007). Since neither of these algorithms can automatically
determine the number of clusters, they are modified as follows. The algorithm used for
NN search is described in detail in the supplementary appendix (Xiong et al., 2015). In
short, we use Bayes factor as the distance metric and apply a similar updating approach
as described in Algorithm 1. As NN is fully deterministic, no initialization needs to be
specified. The reason for using the Bayes factor also for NN is the need for being able to
determine the number of clusters automatically. Otherwise with hierarchical clustering
partitions had to be obtained by cutting from level to level.
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Figure 1: Partition estimated by the SMC-D algorithm. The thick black lines represent
boundaries between invariance classes, and the thin black lines indicate triangulation
cells. The red lines indicate errors in the estimated partition (thick line, erroneous split;
thin line, erroneous merging). The number of edges in the triangulation is 2026; however,
the lines on the boundary of the graph do not represent edges of the Delaunay triangu-
lation, which brings the total number of elements considered in the error calculation to
2262.

For the k-means clustering, we use a standard implementation such that each pos-
sible value of k from the minimum to maximum is tested and the solution with the
highest log-unnormalized posterior is chosen. The k-means algorithm is reasonably fast
for small values of k; however, its convergence time increases very steeply for moderate
to large values, which causes a prohibitively long total execution time for the higher or-
der models considered. For illustration, we generated sequences of length 1000000 with
|X = 3| from a sixth order Markov chain with 81 invariance classes. For each transition
probability vector of the model, we estimate its value by posterior mean and project the
first two coordinates of the estimate on a 2D space. All codes used in these experiments
are available for download from http://www.helsinki.fi/bsg/filer/SMCD.zip.

Figure 1 shows how the generating partition relates to the Delaunay triangulation
of the posterior mean estimates of the transition probability vectors. For a majority of
invariance classes, using the local neighborhood results in finding the relevant states
that should be merged together in the partition. Comparison with Figures 2 and 3 il-
lustrates that the SMC-D algorithm outperforms the other two algorithms in terms of
erroneous splits and mergings of invariance classes in the resulting mode partition esti-
mate. The three figures show the error frequencies separately for splits and mergings,
revealing that the Delaunay triangulation based approach controls best both types of
errors simultaneously. However, the k-means algorithm is nearly as good regarding con-
trol of erroneous splits, whereas its error rate for merging is more than twice the rate
for SMC-D. Conversely, the nearest neighbor approach has a much higher error rate for

http://www.helsinki.fi/bsg/filer/SMCD.zip
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Figure 2: Partition estimated by the nearest neighbor clustering algorithm. The thick
black lines represent boundaries between invariance classes, and the thin black lines
indicate triangulation cells. The red lines indicate errors in the estimated partition
(thick line, erroneous split; thin line, erroneous merging).

Figure 3: Partition estimated by the k-means algorithm. The thick black lines represent
boundaries between invariance classes, and the thin black lines indicate triangulation
cells. The red lines indicate errors in the estimated partition (thick line, erroneous split;
thin line, erroneous merging).
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the splits, often producing small false clusters within a single true invariance class while
having a more reasonable control of the merging errors.

To compare the three deterministic algorithms in more challenging cases, we gener-
ated DNA sequences from SMC models with orders 5 and 6. The numbers of invariance
classes for the models are 256 and 1024, respectively. The different sequence lengths con-
sidered were 10000, 100000 and 1000000. Tables 4 and 5 demonstrate that our algorithm
outperforms the neighbor-joining and k-means algorithms both in terms of computa-
tional scalability and accuracy of the estimates. Note that k-means results were not
obtained for the sixth order model due to the excessive run times of the algorithm
compared with the two others.

5th Order, 256 Populations,|X |m = 1024
Length SMC-D NN K-means
10000 0.4364(0.0206) 0.2020(0.0140) 0.4076(0.0173)
100000 0.8989(0.0149) 0.7297(0.0225) 0.8002(0.0154)
1000000 0.9948(0.0037) 0.9660(0.0092) 0.7961(0.0234)

6th Order, 1024 Populations,|X |m = 4096
Length SMC-D NN K-means
10000 0.1070(0.0031) 0.0178(0.0006) NA
100000 0.4130(0.0090) 0.1550(0.0056) NA
1000000 0.8911(0.0080) 0.6844(0.0120) NA

Table 4: Average ARI (SD in parentheses) for simulated data sets with varying order and
sequence length. Each result is based on 10 simulations. NN, nearest neighbor search;
K-means, k-means clustering algorithm.

5th Order, 256 Populations,|X |m = 1024
Length SMC-D NN K-means
10000 4.9877(0.2190) 8.0962(1.9275) 668.7770(122.0522)
100000 4.5356(0.6128) 7.6964(2.3118) 481.5835(71.2533)
1000000 4.2605(0.1179) 7.0981(1.8584) 344.9480(51.5290)

6th Order, 1024 Populations,|X |m = 4096
Length SMC-D NN K-means
10000 39.1019(5.6826) 257.1691(58.2820) NA
100000 34.2587(2.9504) 325.2469(80.7503) NA
1000000 29.7716(2.1591) 278.7225(67.1614) NA

Table 5: Average CPU running time (SD in parentheses) for simulated data sets with
different order and sequence length. Each result is based on 10 simulations.

Finally, to illustrate the performance of our algorithm on real DNA data, we expand
the experiment reported in Table 1 of Jääskinen et al. (2013). The experiment used
a large bacterial genomic database investigated in detail in Corander et al. (2012),
where each sequence was assigned to a cluster using a population genomic model. The
experiment was performed using the concatenated multilocus sequence typing (MLST)
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DNA sequences of 7829 Neisseria meningitidis bacterial strains. In the example, 3915
sequences were randomly sampled from the whole dataset to train the models, and
the log-loss was calculated on the remaining 3914 test sequences by using the models:
Markov chain, DCTW, PPMC (Begleiter et al., 2004) and SMC. The SMC models in the
original example were trained by using the stochastic greedy algorithm. Here, we report
results based on applying the deterministic recursive algorithm for learning SMC on the
same data. The results are shown in Table 6. The models obtained from deterministic
recursive algorithm have similar performance to the models trained by stochastic greedy
algorithm, which agrees with our earlier experiments on synthetic data. We also note
that while the nearest neighbor method achieves here a similar level of accuracy, its
log-loss is still consistently slightly higher than for SMC-D for all considered model
orders.

Order MC PPMC DCTW NN SMC-S SMC-D
5 1.6291 1.4034 1.4243 1.3755 1.3748 1.3678
6 1.5420 0.9305 0.9285 0.8819 0.8830 0.8765
7 1.5058 0.4925 0.4834 0.4506 0.4490 0.4476
8 1.5045 0.2467 0.2283 0.2094 0.2091 0.2072
9 1.5133 0.1286 0.1195 0.1073 0.1081 0.1057
10 1.5262 0.0905 0.0809 0.0723 0.0739 0.0712

Table 6: Log-loss for predicting the 3914 concatenated multilocus sequence typing DNA
sequences based on 3915 training sequences. DCTW, decomposed context tree weight-
ing; MC, Markov chain; PPMC, prediction by partial match method-C; NN, nearest
neighbor clustering; SMC-S, Sparse Markov chain using stochastic greedy optimization;
SMC-D, Sparse Markov chain using deterministic recursive algorithm.

5 Discussion

The efficiency of sparse-type Markov chain models of high order has been demonstrated
in applications of data compression and prediction, especially in the bioinformatics con-
text. Earlier work derived a Bayesian representation for the SMC models which lump
transition probabilities into invariance classes such that the resulting models need not
have a hierarchical structure as is in general required in context tree-based approaches
(Jääskinen et al., 2013). Our main finding is that Delaunay triangulation of the parame-
ter space combined with local Bayesian model comparison offers an accurate and scalable
basis for deterministic clustering that targets to approximate the posterior mode parti-
tion. Since the algorithm almost never failed to find at least an equally good partition
as the stochastic optimization, it is particularly promising for applications where mini-
mizing computation time is important. The simulation results visualized in Figures 1–3
provide some basis for understanding why the Delaunay triangulation based approach
performs better than popular deterministic algorithms such as NN and k-means. The
latter struggled to maintain a good control of erroneous mergings of states, which may
be caused by cluster centers tending to get repelled from each other. When many clus-
ters underlie the data, it is more challenging for k-means to balance both the local and
global optimality of clusters as illustrated, for instance, by Marttinen et al. (2009).
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NN performed much better than k-means in terms of erroneous mergings, but re-
sulted instead in substantially larger number of erroneous splits. This is plausibly caused
by the very definition of the algorithm, as it only acts extremely locally and does not
consider among a reasonable set of alternative steps to be taken. Our recursive algorithm
benefits from gaining knowledge of the most likely relevant neighbors among which clus-
ters may be formed. Since in a typical setting majority of the states would not belong
to the same class as most other states, the Delaunay triangulation based neighborhood
structure effectively prevents the algorithm from trying out a large number of search
operations that are likely to fail in terms of posterior support. For successful local oper-
ations, it appears essential that the relevant sufficient statistics are updated after each
change to a cluster, in contrast to basic distance based methods which operate only
with pre-calculated distances to determine splits and mergings.

In our approach, we used a default uniform prior for the partitions of sequence states
combined with an uniform prior for the MC order. The experiments indicate that this
choice leads to relatively satisfactory results. However, in the experiments we sometimes
also observed that the posterior optimization may choose an SMC model with a higher
order than it should be. The main reason is that the model complexity does not grow
exponentially in SMC models and the penalty due to the prior may not compensate the
reward of over-fitting the noise in the data. However, as briefly demonstrated, cross-
validation with a predictive loss function could alternatively be used to optimize the
model order to maintain sufficient level of noise control. On the other hand, the more
advanced partition priors imposing a penalty on an increase in the number of clusters
could be employed to solve the over-fitting issue, as discussed in Section 2.

DNA sequence data represents an attractive area of application for the SMC models
combined with the deterministic learning method. Given its relatively low computa-
tional complexity, our algorithm could be modified to optimize an expressive class of
bi-clustering models for clustering simultaneously both Markov chain states and large
numbers of short DNA sequences met typically in 16S sequencing applications in micro-
bial ecology. For instance, since the number of sequences covering the whole or nearly
whole 16S gene currently available in databases is already extremely large and still
rapidly increasing, fast Bayesian clustering methods would offer potential for a more
accurate discovery of underlying data structures. For such big data sets only model-free
clustering approaches are generally used due to the computational constraints related
to Bayesian methods. Finally, as the DNA alphabet only requires the triangulation to
be done in a 3-dimensional space, it would be interesting to generalize the algorithm
into higher dimensional alphabets. This could be accomplished, for instance, by using
either a high-dimensional Delaunay triangulation or other heuristic graph constructing
algorithm for mapping the state space.

Supplementary Material

Appendix of article by Xiong, Jääskinen, and Corander (DOI: 10.1214/15-BA949SUPP;
.pdf).

http://dx.doi.org/10.1214/15-BA949SUPP
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