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Abstract

So called accelerated convergence is an ingenuous idea to improve the

asymptotic accuracy in stochastic approximation (gradient based) algo-

rithms. The estimates obtained from the basic algorithm are subjected

to a second round of averaging, which leads to optimal accuracy for es-

timates of time-invariant parameters. In this contribution some simple

calculations are used to get some intuitive insight into these mechanisms.

Of particular interest is to investigate the properties of accelerated conver-

gence schemes in tracking situations. It is shown that a second round of

averaging leads to the recursive least squares algorithm with a forgetting

factor. This also means that in case the true parameters are changing as

a random walk, accelerated convergence does not, typically, give optimal

tracking properties.

1 Introduction

Tracking of time varying parameters is a basic problem in many applications,

and there is a considerable literature on this problem. See, among many refer-

ences, e.g. [7], [5], [3].

A typical set-up is as follows: Suppose observed data fy(t); '(t); t = 1; : : : g
are generated by the linear regression structure

y(t) = �T (t)'(t) + e(t)

�(t) = �(t� 1) + w(t)
(1)

The generic algorithm for estimating �(t) in (1) is

^̂
�(t) =

^̂
�(t� 1) + �tP (t)'(t)(y(t) � ^̂

�
T

(t� 1)'(t)) (2)
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The choices of step size �t and modifying matrix P (t) has been the subject

of extensive discussion and analysis, which we will not dwell upon here. We

merely remark that in case fe(t)g is white noise with time-invariant covariance

and w(t) � 0 (i.e. the parameter vector �(t) is indeed constant) then the choice

�tP (t) =

"
tX

k=1

'(k)'T (k)

#
�1

(3)

leads to the least squares estimate
^̂
�(t), which indeed has the optimal accuracy

for this case. That is, the covariance matrix of the asymptotic distribution of
^̂
�(t) meets the Cramer-Rao bound.

This optimal choice (3) may require a substantial amount of calculations, if

the dimension of ' is large. Partly because of this simpler choices of P (t) in

(2) have been attractive. The LMS algorithm uses P (t) = I (identity matrix)

which is a gradient based update algorithm. This gives an order of magnitude

less calculations. The disadvantage with this choice is that the accuracy of the

estimate (or \the convergence rate") could be much worse. The rule of thumb

is that the worse conditioned the matrix (3) is, the worse convergence rate.

Now, the ingenuous observation and analysis of [6], [2] is as follows:

1. Use (2) with P (t) = I and �t a sequence that decays slower than 1=t.

2. Average the estimates
^̂
�(t) obtained from (2):

�̂(t) =
1

t

tX
k=1

^̂
�(k) (4)

Then �̂(t) will have the same optimal asymptotic accuracy as the choice (3)

would give, but at a considerably lower computational cost. The approach has

been termed \accelerated convergence".

So far we only have discussed the time-invariant parameter case: w(t) = 0

in (2). In applications, the most important use of adaptive algorithms like (3)

is really to deal with time-varying properties. It is therefore interesting to look

into what accelerated convergence schemes - \second round of averaging" - like

(4) will do for the tracking case. It is the purpose of this contribution to do

that. It will be done using simple and essentially algebraic calculations for the

case where the regressors ' are white. These calculations will also provide some

insights into how the averaging like (4) \thinks and works". For the case of

general regressors we will use also results from [1] and [4].

2 Optimal Tracking Algorithms

What is the best choice of �tP (t) in (2) for time-varying parameter �(t)? In

case fe(t)g and fw(t)g in (1) - (2) are white Gaussian noises, it is well known
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that the optimal tracking algorithm is provided by the Kalman �lter, which uses

�tP (t) =
S(t� 1)

R2 + 'T (t)S(t� 1)'(t)
(5)

S(t) = S(t� 1) +R1 �
S(t� 1)'(t)'T (t)S(t� 1)

R2 + 'T (t)S(t� 1)'(t)
(6)

Here R1 is the covariance matrix of w(t) and R2 is the variance of e(t) (Here

assumed to be a scalar).

It may be of interest to interpret this solution in a pragmatic and simpli�ed

way, see also [3]. (This interpretation is not necessary for the main result of this

paper, and the reader may skip directly to Section 3.): For \small" matrices R1

(slowly varying systems) we can approximately describe this solution as follows.

Let

R1 = 
2 �R1

Then

� = 
 (7)

P (t) � �P � 1

R2

(8)

with

�R1 =
1

R2

�PQ �P (9)

where

Q = E'(t)'T (t) (10)

The matrix is then also the value of the (optimal) covariance matrix of the error

� = E
�
^̂
�(t)� �(t)

��
^̂
�(t)� �(t)

�T
(11)

For an arbitrary choice of � and P (t) � P in (3) the same type of calculations

show that the error covariance matrix � in (11) is obtained as the solution to

PQ�+�QP = �R2PQP +

2

�
�R1

(see e.g. [3]). Minimizing this expression with respect to P and � gives (of

course) the solution (7)-(9).
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3 Tracking algorithms with a second round of

averaging

Now, the optimal tracking algorithm (2), (5), (6) requires knowledge of R2. One

of the most common ad hoc choices of algorithms is instead to use a forgetting

factor recursive least squares algorithm: This is obtained by

�̂ls(t) = �̂ls(t� 1) +
S(t� 1)'(t)

(1� �) + 'T (t)S(t� 1)'(t)
(y(t)� 'T (t)�̂ls(t� 1))

S(t) =

�
S(t� 1)� S(t� 1)'(t)'T (t)S(t� 1)

(1� �) + 'T (t)S(t� 1)'(t)

�
=(1� �)

(12)

Here 1�� is the forgetting factor. The estimate can also be explicitly expressed

as (with suitable initial conditions �̂ls and S(0))

�̂ls(t) =

"
tX

k=1

(1� �)t�k'(k)'T (k)

#
�1 tX

k=1

(1� �)t�k'(k)y(k) (13)

The estimate (12) could be costly to implement for large dimension of '. It

is therfore of interest to investigate what a second round of averaging would do

in this case. The tracking analog of (2), (4) would be as follows. First form

^̂
�(t) =

^̂
�(t� 1) + �P'(t)(y(t) � 'T (t)

^̂
�(t� 1)) (14)

(P = I would be the stochastic gradient algorithm). To apply the averaging idea

(accelerated convergence) in the tracking case would be to form a time-weighted

average

�̂(t) = (1� �)�̂(t� 1) + �
^̂
�(t) (15)

The idea is that 0 < � << �, so that some real averaging takes place.

We shall show that the estimates �̂ls and �̂ are close. The objective with this

proof is two-fold. One is to establish the counterpart of accelerated convergence

in the tracking case. The other is to use simple, mostly algebraic calculations,

which will give some insights into the mechanisms of how the second round of

averaging ((4) and (15)) works. This could be of value also for the time invariant

case.

We start by a result that shows how the matrix inversion in (3) and (13) is

accomplished from the sum of a geometric series in (15).

4 A Basic Relationship

Consider the following recursion formula:

x(t) = (I � �A)x(t � 1) + �w(t) (16)
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(Clearly, this corresponds to a typical error propagation equation for adaptive

algorithms, see the next section). Let us then average the sequence fx(t)g by

z(t) = (1� �)z(t� 1) + �x(t) (17)

Equation (17) means that

z(N) = �

NX
t=1

(1� �)N�tx(t) (18)

The equally weighted average (4) can be seen as the limit as � ! 0. Formally

it corresponds to the time varying choice � = �(t) = 1=t. Let us also introduce

ẑ(N) = �

NX
t=1

(1� �)N�tA�1w(t) (19)

We shall prove that z and ẑ are close when �=� is small.

Now, solving (16) gives for x(0) = 0

x(t) =

tX
k=1

(I � �A)t�k�w(k) (20)

which inserted into (18) yields

z(N) = �

NX
t=1

tX
k=1

(1� �)N�1(I � �A)t�k�w(k)

= �

NX
k=1

"
NX
t=k

(1� �)N�1(I � �A)t�k

#
�w(k) (21)

Let us consider the inner sum:

NX
t=k

(1� �)N�t(I � �A)t�k = (1� �)N (I � �A)�k

"
NX
t=k

�
I � �A

1� �

�t#

= (1� �)N (I � �A)�k

"�
I � I � �A

1� �

�
�1

�
 �

I � �A

1� �

�k
�
�
I � �A

1� �

�N+1
!#

For the moment, denote

f(A; �; �) = �

�
I � I � �A

1� �

�
�1

(22)

The inner sum is thus given by

1

�
f(A; �; �) � (1� �)N�k +

1

�
f(A; �; �) � (I � �A)

1� �
� (I � �A)N�k
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Inserting this into (21) gives

z(N) = f(A; �; �)

NX
k=1

(1� �)N�k�w(k)+

+f(A; �; �)
�

�
� (I � �A)

1� �
x(N) (23)

From (19) we �nd that

z(N)� ẑ(N) = (f(A; �; �)�A�1)Aẑ(N) + f(A; �; �)
�

�
� (I � �A)

1� �
x(N)

=
�

�

�
I � �

�
A�1

�
�1 �

A�1 � �I
�
(ẑ(N) + x(N))

(24)

where we in the second step inserted the de�nition of f .

We can sum up these simple algebraic relationships as a lemma:

Lemma 1. Let x(t) and z(t) be given by (16) and (17), respectively, which

� and � positive. Let ẑ(t) be given by

ẑ(t) = (1� �)ẑ(t� 1) + �A�1w(t) (25)

Let kA�1k = �. Then, assuming that �

�
< 1=� we have

jz(t)� ẑ(t)j � �

�

�+ �

1� � �

�

[jẑ(t)j+ jx(t)j]

Note that the lemma describes and algebraic relationship, and does not de-

pend on the particular sequence w or the choice of A (as long as it is invertible).

The lemma shows how the geometric series, inherent in the second round of

averaging provides the matrix inversion that is crucial for obtaining the optimal

estimates.

5 Connections to Recursive Least Squares

We shall now show that the estimate �̂ de�ned by (14){(15) will be arbitrarily

close to the recursive least squares estimate (12). To focus on the basic mech-

anisms we �rst give a simple and direct proof for the case where the regressors

' are independent:

Theorem 1: Let '(t) be a sequence of independent random vectors with

E'(t)'T (t) = Q > 0 and Ej'(t)j4 � �. Let y(t) be a sequence of random

variables with variances bounded by �, and independent of future '. (y(t) is

otherwise arbitrary and need not be subject to (1).) Let �̂ be de�ned by

^̂
�(t) =

^̂
�(t� 1) + �P'(t)(y(t) � 'T (t)

^̂
�(t� 1));

^̂
�(0) = 0

�̂(t) = (1� �)�̂(t� 1) + �
^̂
�(t); �̂(0) = 0:

(26)
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with 0 < � < 1, � positive and P > 0. Moreover, let �̂ls be de�ned by (13), or

in recursive form with suitable initial conditions:

�̂ls(t) = �̂ls(t� 1) +
S(t� 1)'(t)

(1� �) + 'T (t)S(t� 1)'(t)
(y(t)� 'T (t)�̂ls(t� 1))

S(t) =

�
S(t� 1)� S(t� 1)'(t)'T (t)S(t� 1)

(1� �) + 'T (t)S(t� 1)'(t)

�
=(1� �)

(27)

Let � = k(PQ)�1k, and assume that � < kPQk and �=� < 1=�. Also assume

that Ek^̂�(t)k2 � L. Then

�̂(t)� �̂ls(t) = C1

p
��1(t) + C2

�

�
�2(t) + C3

p
��3(t)�̂ls(t) (28)

where �k are random vectors and matrices with variances norm-bounded by 1.

The constants Ci can be derived from the assumptions as

C1 =
p
��LkPk; C2 =

�+ �

1� ��=�

p
�kQk(kQ�1 + �kPk); C3 =

p
�kQ�1k

Remark 1: The �rst term
p
� is conservative, and it should be possible to

improve that to �.

Remark 2: The conditions of the theorem guarantee that I � �PQ is a

stable matrix. Under the independence assumptions of the theorem it can be

shown, in a straightforward manner, that Ek^̂�k2 is bounded, so this condition

does not have to be stated as an assumption. It has been included only to make

the proof less technical.

Proof: In addition to the estimates
^̂
�; �̂, and �̂ls de�ned in the text, let us

introduce

x(t) = (I � �PQ)x(t� 1) + �P'(t)y(t) (29)

z(t) = (1� �)z(t� 1) + �x(t) (30)

ẑ(t) = (1� �)ẑ(t� 1) + �Q�1'(t)y(t) (31)

We shall write

�̂ � �̂ls = �̂ � z + z � ẑ + ẑ � �̂ls (32)

which will account for the three terms in (28).

Let us start with the last one: We have

ẑ(t) = Q�1
tX

k=1

(1� �)t�k�'(k)y(k)

7



Let

P (t) = �

tX
k=1

(1� �)t�k'(k)'T (k)

Then, ignoring an exponentially decaying term (1� �)tQ we have

P (t)�Q = �

tX
k=1

(1� �)t�k('(k)'T (k)�Q) (33)

This is a weighted sum of zero mean, and independent random variables, and

it is immediate to verify (using the geometric series) that the variance of the

matrix elements is bounded by

�2
tX

k=1

(1� �)2(t�k)� � �

2� �

Now, using (13) we �nd that

ẑ(t)� �̂ls(t) = (Q�1 � P�1(t))P (t)�̂ls(t) = Q�1(P (t)�Q)�̂ls(t) (34)

This shows the third term of (28).

For z(t)� ẑ(t) we apply Lemma 1. Note that the variances of ẑ(t) and x(t)

(being weighted averages of Q�1'(k)y(k) and of P'(k)y(k)) are bounded by

the variances of its terms.

It now only remains to consider �̂(t)� z(t). This quantity obeys

�̂(t)� z(t) = (1� �)(�̂(t� 1)� z(t� 1)) + �(
^̂
�(t)� x(t))

This means that the variance of �̂(t)� z(t) is bounded by the variance of h(t) =

(
^̂
�(t)�x(t)). (This is where the conservativeness mentioned in Remark 1 enters.

The term h(t) is zero mean, and some variance reduction when averaged over

is to be expected.)

Let us therefore consider h(t). It obeys

h(t) = (I � �PQ)h(t� 1) + �P (Q� '(t)'T (t))
^̂
�(t� 1) (35)

To compute the variance of h, multiply each side by its transpose and take

expectation. Since, by assumption, '(t) is independent of the past, no cross

terms will make any contribution and we get with �(t) = Eh(t)hT (t)

�(t) = (I � �PQ)�(t� 1)(I � �PQ)T + �2PKPR(t) (36)

where K contains the fourth moment terms of ' and R(t) contains the second

moment terms of
^̂
�(t � 1), which are bounded. This means that the second

moment of h is bounded by �, which concludes the proof of the theorem.

The theorem shows that averaging the simple estimate
^̂
� can give an estimate

arbitrarily close to the recursive least squares estimate. Selecting, e.g., � =

�(2=3) gives a deviation between the two estimates of order of magnitude �1=3.
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Non-white Regressors

The assumption of white regressors makes certain technical aspects easier, and

the proof was not obscured by issues that have been extensively dealt with

elsewhere.

The assumption of white regressors was used in two places:

� In the calculation of the variance of (33). It is elementary to show that

the same result holds (with another C3) as soon as the correlation among

the ' decays suÆciently fast.

� When ignoring the cross term in (35). Detailed analysis of this cross term

in the non-white case has been carried out in, e.g., [4], for the case that

' is �-mixing with function �(M). In Equation (19) of that paper this

cross term is called �(t). Its e�ect is that the result still holds with
p
�

replaced by �(
p
�), where � is de�ned by

�(�) = min
M>0

(�(M) + �M)

where �(M) is the �-mixing function. See also [1] for related results.

6 Conclusions

The question asked in this paper was what the e�ect of \accelerated conver-

gence" schemes for stochastic approximation would achieve in a tracking situa-

tion.

The basic accelerated scheme will then consist of two averaging algorithms

with constant, and di�erent step sizes. The �rst one uses larger steps and is typi-

cally a stochastic gradient (LMS) scheme. The second one performs exponential

smoothing of the estimates obtained from the �rst step.

Simple calculations (asymptotic in the step sizes) show that what is obtained

in this way is the recursive least squares estimate, corresponding to a forget-

ting factor given by the second step's exponential forgetting. The step size

and update direction in the �rst algorithm do not a�ect the resulting estimate

(asymptotically).

Thus, the accelerated scheme will be a cheap way to obtain asymptotically

the recursive least squares estimate. However, this also means that the acceler-

ated convergence scheme does not give optimal tracking properties, since that

would require the algorithm (2), (5), (6).
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