LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

fitle RECURSIVE I.EAST-SQUARFS LLEARNING AL.CORITIIMS FOR NRURAL. NETWORKS

AUTHORIS) P. S. I.cwls, MLIS-3 Jenq-Nes Ilwang, U.of WA

DISC'LAIMER

Thin report was prepared an an accumet of with sponsored by an agency of the United States (iowernment Neithet the Inited Stales fiovernment nor any agency thered, mor any of their emphorecs. makev uny wat:anty, expreas of impined, of asumes any legal labilily of reaponsihility lor the atcuracy, compleienesh, ur usefulnenh of any informalom, apparatus, product, or prisess disckmed, il reprexits that is une wisuld ma infringe privately awned rights Refer ence herein to any vecific commercial proxuci, princss, os weivese by trade name, Irademarh manufacturer, of otherwise dise nud necesoarily constilute ill imply is endorsement, recom mendatwon, is faviring hy the United Siate, fiovernment of any apency thereol Ihe vown and opmoms of authors rapiensed herein the num necesoarily wate or reflect thane of the United hates (hovirnment or any atency thereal

Recursive least-squares learning algorithms for neural networks

Paul S. Lewis
Los Alamos National Laboratory"
Mechanical and Electronic Engineering Divinon
MS J580, Los Alamos, NM ©Tis.is

Jenq-Neng Hwang
University of Washington
Department of Electrical Engineeriag
FIV-10, Seattle, WA 98195

Abstract

This paper presents the development of a pai، of recursive least squares (RLS) algorithms for online training, of multilayer perceptrons, which are a class of feedforward artificial neural networks. These algorithme incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such an the generalized delta rule. A least squares formulation is derived from a iinearization of the training error function. Individual training pattern errors are linearized about the uetwork parameters that were in eflert when the pattern was presented. This permits the recursive solution of the least squares approximation, either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computationad complexity of the update is $\mathcal{O}\left(\boldsymbol{N}^{2}\right)$. where N is the number of networl: parameters. This is due to the estimation of thr $N \times N$ inverse ll essian matrix. less computationally intensive approximations of the RIS algorithms ran br acsily derived by using only block diagonal elements of this matrix, thereby partitioning the learning into independent sets. A simulation example is presented in whicha neural network is trained to approximatr a two dimensiona! (iaussian bump. I: this example, RI.S training regnired an order of magnitude frwer iterations on awrage (ri2i) than did traning with the gencralized delta rule (6.331).

1 BACKGROUND

Artificial neural networás (ANAs) offar an intoresti:g and potentially useful paradigm for nonlinear signal

 backpropanation to refor only wo the promo. of computing arror darivativen.

 darisative or llasaian matrix information.

[^0]minimize the error for the complete training set and are based on the ability to evaluate the total error and its derivatives with respect to the network parameters at arbitrary values of the parameters. In essencre. the training set is rerun for each function and deriwative evaluation. Assuming the number of training patterns is proportional to the number of network parameters, the computational complexity of computing the overall training set error and its gradient is $\mathcal{O}_{(} N^{2}$), where N is the number of network parathetets. The proposed algorithms also have romputational complexity of $\mathcal{O}\left(\mathrm{N}^{\prime 2}\right)$ per iteration and hence are well suited to block training.

In this work, we address the adernate case of recursive or online network training. Recursive trainiug, seeks to adjust the network parameters as training patterns are presented, rather than after a comphte: pass through the training set. This approach is necessary when the training set is infinite or at least orders of magnitude larger than the number of network parameters. In principle, each training pattern is arrin only once, as would be the rase in a time series filtering operation. In practice. recursive training may be applied to finite training sets by repeated application of the same set of patterns. Underlying this approath is the assumption that the knowledge to be extracted from the training set is distributed and that no single training pattern contains unique information.

In linear adaptive filtering, recursive least squares (RISS) algorithms implement second order recursiwe training. The basic approach that underlies RLS adgorithmes for linear adaptive filters may also be applied to the training of feed-forward ANNs in general and MI.Ps in particular. RLS-like algorithms for MLIPs have been derived in a variety of ways and use different amoumts of sercond order information. These derivations include the application of the extended Kalman filtering equations to MLP training [6], neurom-local limearizations of the sigmoid functions [7], and quadratic SILP error approximations [$\mathrm{K}, 9$].

In this paper we present a unified framework in which to develop and antalyae ald.S-like algorithons for MLP training. An approximate least squares formuiation of the training problem is derived from a linearization of the error function, which yields a quadratic squared-error function. We explicitly show what approximations are necessary both for this least squares formulation and for its recursive solutions. Wifurther illustrate how the formulated least squares problem can he solved by either conventional RI.S recursions or by the more numerically stable QR decomposition based methods popular in lincar leant spuare filtering. Within this framework, the RLS-like training algorithms proposed to date use convemtional 1 ? 1. S recursions and are mainly differentiated by the portions of the Ilessian matrix that they utilize.

2 MULTILAYER PERCEPTRONS

In this work a multilayer perceptron (MIP) is defined to consist of surcessive layers of "mouroms" intarcom nerted in a fedforward manner. The general structure is illastrated in Fig. 1. The outputs of the meneme in the first hayer are the MLID inputs. while the outputs of the newrens in the final hayer ate the Male
 generate an affine combination of these values, and run the result through a differemtiable mombinear sigmoid function. If"nce, the omput of the jth nemen in the tha layer is compened hy

$$
\begin{equation*}
\therefore-\int\left(r_{1}^{\prime}+\sum_{1} u_{1}^{\prime}, z_{1}^{I-1}\right) \tag{1}
\end{equation*}
$$

$$
f(x) \frac{1}{1+1} \quad \frac{d f}{d x} \quad f(x)\{1 \quad f(x)\}
$$

n	$=$ number of training patterns.
N	$=$ number of network parameters (weights and offsets).
$\boldsymbol{\theta}$	$=$ vertor of network parameters .
L	$=$ number of network layers.
M	$=$ number of network outputs.

Fig. 1: Multilayer perceptron: (a) Overall uetwork structure. (b) Individual neuron structure.
$u_{1,}^{\prime}$, and offsets c^{\prime}, for all of the neurons. Thesse ran be arranged as an N-dimensional parameter vector $\underline{\theta}$. (In this paper, vectorb are column vectors and are denoted by underlines. Marices are denoted by boddface type.)

In supervised learning, a set of MLP inputs and desired outputs is provided and the purpose of the lrarning algorithm is to adjust the MLP parameters so that the actual ouputs most rosely match the desired ones. The goad of learning ran be expressed mathematically as the minimization of the total squared
 in rexponse to the keth training pattern. The total separed error for the complete training set is defined to br

$$
\begin{equation*}
E \equiv \frac{1}{2} \sum_{k} \sum_{\jmath}\left\{r_{k}(\theta)\right\}^{2} \equiv \sum_{k} \varepsilon_{k}(\theta) . \tag{3}
\end{equation*}
$$

where ε_{k} is the total sumared error for training patiorn k. The gradient with renpert to \underline{Q} in

$$
\begin{equation*}
\Sigma l:=\sum_{k} \Gamma_{n}(t) . \tag{i}
\end{equation*}
$$

 computations and is called meckpropagution [1. 2|.

reflect the fact that the network parameters are updated for each additional training pattern, the network parameter vector is indexed to indicate the portion of the training set it is expected to match. Define

- θ_{n+1} as the parameter vector to be computed from training patterns \backslash to n, and
- $\varepsilon_{k \mid m} \equiv \varepsilon_{k}\left(\theta_{m}\right)$ as the squared error generated by training pattern k using parameter vector $\underline{\theta}_{m}$. athd
- λ as an exponential "forgetting" factor between 0 and 1 .

The training goal for patterns 1 to n can then be expressed as

$$
\begin{equation*}
\min _{E_{n+1}} E_{n} \equiv \sum_{k=1}^{n} \lambda^{n-k} \varepsilon_{k \mid n+1} \tag{5}
\end{equation*}
$$

The gradient of the error function with respert to $\underline{\theta}_{n+1}$ is

$$
\begin{equation*}
\Gamma E_{n}=\sum_{k=1}^{n} \lambda^{n-k} \Sigma \varepsilon_{k \mid n+1} \tag{i}
\end{equation*}
$$

Minimizing (5) by a fixed step steepest descent approach requires updates of the form

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-\mu \Gamma l_{n} \tag{7}
\end{equation*}
$$

Exact computation of ΣE_{n} is not possible as it requires knowledge of the unknown parameter: $\boldsymbol{\theta}_{n+1}$. In block learning schemes, the current gradient is approximated by the gradient at the previous parathetei values.

$$
\begin{equation*}
\Gamma E_{n}=\sum_{k=1}^{n} \lambda^{n-k} \Sigma \varepsilon_{k \mid n+1} \approx \sum_{k=1}^{n} \lambda^{n-k} \Sigma \varepsilon_{k \mid n} \tag{N}
\end{equation*}
$$

This still requires that the current paramoters θ_{n} be applied to ad past training patterns. In a recursive learning scheme this is avoided by using a recursive approximation of IL.'..

$$
\begin{equation*}
\Gamma E_{n} \approx \dot{\Sigma} f_{i n} \equiv \sum_{k=1}^{n} \lambda^{n-k} \Sigma \varepsilon_{k \mid k}=\Gamma \varepsilon_{n \mid n}+\lambda \dot{\Gamma} E_{n-1} \tag{!}
\end{equation*}
$$

This recursive approximation can be interpreted as making a local lanear assumption about the error surface so that the gradients are constant $\Sigma \varepsilon_{k \mid n+1} \approx \Gamma \varepsilon_{k \mid k}$. Of course, this approximation breaks down an the difference befwen $n+!$ and k increases, but the expenential forgerfing factor A rompensates far thin.
('sing the recursive gradient approximation in thir aldepest descent update of (i) yiolds

$$
\begin{align*}
\underline{\theta}_{n+1} & =\theta_{n} \cdots \mu \Sigma \vdash_{n}=\underline{\theta}_{n}-\mu\left(\Sigma_{n \mid n}+\lambda \Gamma r_{n-1}\right) \\
& =\theta_{n}-\mu \Gamma \Sigma_{n \mid n}+\lambda\left(\theta_{n}-\theta_{n-1}\right) .
\end{align*}
$$

 prer ipdate, hat an comoren very shawly for complex ertor surfaces.

3 LEAST SQUARES FORMULATION

To speed up convergence. second order information can be utilized to indicate the curvature of the error surface. This is achieved by using a quadratic approximation of E_{r}. A quadratic approximation can bie derived by a linearization of the underlying individual errors that comprise E_{n}.

$$
\begin{equation*}
E_{n} \equiv \frac{1}{2} \sum_{k=1}^{n} \sum_{j}\left\{\epsilon_{k j \mid n+1}\right\}^{2} \tag{1i}
\end{equation*}
$$

As in the case of approximating the gradieni for stecpest descent, it is desirable to avoid having to apply current parameters to past training samples. To achieve this, the errors of past training sampla k using the parameters θ_{n+1} are linearly approximated by a two term Taylor's series expansion about the errors of sample k using parameters $\boldsymbol{\theta}_{\boldsymbol{k}}$.

$$
e_{k, \mid n+1} \approx e_{k j \mid k}+\Gamma \epsilon_{k j \mid k} \cdot\left(\theta_{n+1}-\theta_{k}\right) \quad \Longrightarrow \quad \Gamma \epsilon_{k j \mid n+1} \approx \Sigma \epsilon_{k j \mid k}
$$

The error $\epsilon_{k j l}$ is cornputed by forward evaluation of the MLP for the training pattern k using paranmeters $\boldsymbol{\theta}_{k}$. The gradient $\Sigma e_{k j k}$ can be computed in a manner analogous to the backpropagation computation of Ee. Details of the procedure are prisented in the Appendix.

Applying the Taylor's series approximation in (12) leads to

$$
\begin{align*}
\Gamma E_{n} & =\sum_{k=1}^{n} \lambda^{n-k} \Gamma \varepsilon_{k \mid n+1}=\sum_{k=1}^{n} \lambda^{n-k} \sum \epsilon_{k j \mid n+1} \Gamma \epsilon_{k, \mid n+1} \\
& \approx \sum_{k=1}^{n} \lambda^{n-k} \sum_{j} \Gamma^{\prime} f_{k, \mid k}\left\{f_{k j \mid k}+\Gamma \epsilon_{k, \mid k} \cdot\left(\theta_{n+1}-\theta_{k}\right)\right\} \tag{1.3}
\end{align*}
$$

In contrast, a block learning scheme would apply the approximations $e_{k j \mid n+1} \approx e_{k j \mid n}+\Gamma e_{k j} \cdot\left(\theta_{a+1}-\theta_{n}\right)$ and $\Sigma \epsilon_{k j \mid n+1} \approx \Sigma \epsilon_{k j \mid n}$. This leads to the standard (iauss-Newton result for nonlinear least squares which

lefining

$$
\begin{equation*}
\Gamma_{k j} \equiv \Gamma_{k j \mid k} \quad \text { alld } \quad d_{k j} \equiv \Gamma_{k,}^{T}, \theta_{k}-r_{k j \mid k} \tag{1.1}
\end{equation*}
$$

where the superscript T denotes vertor transpesse, and setting $E E_{n}^{\prime}=Q$ in (1'3) bads to the following wer of nermal equations.

$$
\left(\sum_{k=1}^{n} \lambda^{n-k} \sum_{j} \Gamma_{k,} \Gamma_{k j}^{r}\right) 甘_{n+1}=\sum_{k=1}^{n} \lambda^{n-k} \sum_{j} \cdot \Sigma_{k}, d_{i},
$$

 y_{k}. error vertor \mathcal{S}_{k}, and target vector \mathbb{d}_{k}.

$$
\begin{align*}
& y_{k}=\left[\Gamma_{k 1} \Sigma_{k 2} \cdots \Gamma_{k, 1}\right] \quad(N \times . M 1 \tag{1101}
\end{align*}
$$

$$
\left(\sum_{n=1}^{n} \lambda^{\prime \prime}{ }^{k} y_{A} y_{h}^{\prime \prime}\right) \underline{\theta}_{1+1} \quad \sum_{A=1}^{\prime \prime} \lambda^{\prime \prime}{ }^{A} y_{A} \underline{I}_{k} .
$$

Defining block matrix Y_{k} and block vector D_{k} as
permits (15) to be further rewritten as

$$
\begin{equation*}
\mathbf{Y}_{n}^{T} \mathbf{Y}_{n} \theta_{n+1}=Y_{n}^{T} D_{n} \tag{19}
\end{equation*}
$$

Equation (19) can be solved for θ_{n+1} when Y_{n} is full rank. The solution is equivalent to the least squares solution of

$$
\begin{equation*}
Y_{n} \boldsymbol{\theta}_{n+1}=D_{n} \tag{20}
\end{equation*}
$$

The $Y_{n}^{T} Y_{n}$ correlation matrix on the left hand side of (19) can be interpreted as an approximation of the second derivative Hessian matrix of the error E_{n} with respect to the N networks parameters in θ_{n} [10, 11].

$$
Y_{n}^{T} Y_{n}=\sum_{k=1}^{n} \lambda^{n-k} \mathbf{y}_{k} \mathbf{Y}_{k}^{T} \approx \sum_{k=1}^{n} \sum_{j=1}^{M}\left[\begin{array}{ccc}
\frac{\partial e_{n_{1}}}{\partial \theta_{n 1}} \frac{\partial e_{k 1}}{\partial \theta_{n 1}} & \cdots & \frac{\partial e_{k 1}}{\partial \theta_{n 1}} \frac{\partial e_{k_{1}}}{\partial \theta_{b N}} \tag{21}\\
\vdots & & \vdots \\
\frac{\partial e_{k 1}}{\partial \theta_{n N}} \frac{\partial c_{k 1}}{\partial \theta_{n 1}} & \cdots & \frac{\partial e_{e_{1}}}{\partial \theta_{n N}} \frac{\partial e_{k 1}}{\partial \theta_{n N}}
\end{array}\right] \approx\left[\begin{array}{ccc}
\frac{\partial^{2} E_{n}}{\partial \theta_{n 1}} & \cdots & \frac{\partial^{2} \bar{r}_{n}}{\partial \theta_{1} \partial \theta_{n N}} \\
\vdots & & \vdots \\
\frac{\theta^{2} \xi_{i n}}{\partial \theta_{N} \partial \theta_{n 1}} & \cdots & \frac{\partial^{2} E_{n}}{\partial \theta_{n}^{2} \theta_{n N}}
\end{array}\right]
$$

So the least squares formulation can be interperted in terms of several levels of approximation. First, as in all second order nonlinear optimization approachs, the nonlinear error surface is approximated hy a quadratic [10, 11]. This leads to an expression for the minimum in terms of the gradient and llessiatn. Nex:, as in the Gauss-Newton nonlinear least squares approach, the llessian matrix is approximated by a sum of products of Jacobian matrices, each of which contains the gradients of the errors of the individual training patterns. Finally, to permit recursive computation, cach individual training pattern gradient is approximated by its value at the parameters in effect when the pattern was $;$;esented to the network.

4 CONVENTIONAL RLS ALGORITHMS

Equation (19) may be solved recursively using the conventional recursive le...it squares (RI.S) algorithm [12, 13]. The RLS alzorithm is based on a par of recursions for computing θ_{n} and $P_{n} \equiv\left(Y_{n}^{T} Y_{n}\right)^{-1}$. These secursions are

$$
\begin{align*}
\mathbf{P}_{n} & =\frac{1}{\lambda}\left\{\mathbf{P}_{n-1}-P_{n-1} y_{n}\left(y_{n}^{T} P_{n-1} y_{n}+\lambda I\right)^{-1} y_{n}^{T} P_{n-1}\right\} \text { and } \tag{2}\\
\boldsymbol{\theta}_{n+1} & =\boldsymbol{\theta}_{n}+\mathbf{P}_{n-1} y_{n}\left(\mathbf{y}_{n}^{T} P_{n-1} y_{n}+\lambda I\right)^{-1}\left(d_{n}-y_{n} \ddot{\theta}_{n}\right) \tag{2;3}
\end{align*}
$$

These recursions may be simplified by defining the Kalman gain $K_{n} \equiv P_{n-1} y_{n}\left(y_{n}^{T} P_{n-1} y_{n}+\lambda I\right)^{-1}$. tho intermediato quantity $x_{n} \equiv P_{n-1} y_{n}$, and recaliang from (16) that $d_{n}-y_{n}^{T} \boldsymbol{\theta}_{n}=-\varsigma_{n}$. The general form of the conventional RIS algorithm for the traning : C MIIS's is listed in Table I.

 barkpropagation sworp for earh individual output error and requires ()(N, N) computations. The matrix
 ($A=1$), the matrix inversion reduces io scalar division and only a singlo barkpropatation sworp is

Table I: ANN RLS ALGORITHM

```
Initialize:
    P
    \mp@subsup{0}{1}{}}=\mathbf{vector of small random initial weights/offets
For n=1,2,\cdots
    Compute \mp@subsup{e}{n}{}}\mathrm{ via MLP forward evaluation.
    Cumputr y y via MLP backpropagation.
    \mp@subsup{x}{n}{}}=\mp@subsup{P}{n-1}{\prime}\mp@subsup{y}{n}{
    K
    P
    \mp@subsup{\boldsymbol{0}}{n+1}{}}=\mp@subsup{\boldsymbol{0}}{n}{}-\mp@subsup{K}{n}{}\mp@subsup{\underline{\varepsilon}}{n}{
```

required. The remainder of the update operations require $\mathcal{O}\left(M N^{2}\right)$ computations, so overall complexity of the update is $\mathcal{O}\left(M N^{2}+M^{3}\right)$.

In cases where there is a large number of outputs, the necessity of performing rank M block updates can be avoided by using a scalar root-mean-square (RMS) error in place of the M-dimensional error vector f_{n}. This approach permits the use of morr computationally efficient rank one updates at the expense of a poorer approximation provided by the leist squares formulation. To use this approach, replace the error row vector ϵ_{n} with its scalar RMS value $\epsilon_{n} \equiv\left|\boldsymbol{e}_{n}\right|=\sqrt{2 \varepsilon_{n}}$. Error minimization now reduces to the single output case and $\Sigma e_{n}=e_{n}^{-1} \mathbb{Z} \varepsilon_{n}$ can be computed by a single backpropagation sweep. The computational complexity of the update in this approach is $\mathcal{O}\left(\Lambda^{2}\right)$.

5 QR-BASED ALGORITHMS

The conventional ILLS algorithm presented above recursively solves the normal equations of (19).

$$
\begin{equation*}
\mathbf{Y}_{n}^{T} \mathbf{Y}_{n} \theta_{n+1}=\mathbf{Y}_{n}^{T} \mathcal{D}_{n} \quad \Longrightarrow \quad \varepsilon_{n+1}=\left(Y_{n}^{T} \mathbf{Y}_{n}\right)^{-1} \mathbf{Y}_{n}^{T} D_{n} \tag{2.1}
\end{equation*}
$$

As noted earlier, this is the least squares solution to (20).

$$
\begin{equation*}
\mathbf{Y}_{n} \underline{Q}_{n+1}=D_{n} . \tag{2:5}
\end{equation*}
$$

In the numerical solution of least squares problems, direct solution of the normal equations, as in (21). i, rarely used breanse of the numerical conditioning of the $\mathbf{Y}_{n}^{T} \mathbf{Y}_{n}$ matrix [1.4]. Instrad, the most common approarh is to work with the QR decomponition of the data matrix Y_{n} in (25). To outline the bisis idma. the QR deromposition of the n.I/ $\times N$ matrix Y_{n} is

$$
\mathbf{Y}_{n}=\mathbf{Q}_{n}^{r}\left[\begin{array}{c}
\mathbf{R}_{1,} \tag{20}\\
\mathbf{0}
\end{array}\right]
$$

 decomposition, the least squares solution of (25) can be derised an follows.

$$
Q_{n} Y_{n} Q_{n+1}=Q_{n} L_{n} .
$$

Table II: ANN QR-RLS ALGORITHM

Initialize:

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{0}}=\mathbf{0} \\
& \boldsymbol{\theta}_{\mathbf{1}}=\text { vector of small random initial weights/offsets }
\end{aligned}
$$

For $n=1,2, \cdots$
Compute ε_{n} via MLP forward evaluation.
Compute y_{n} via MLP backpropagation.
$\boldsymbol{d}_{n}=y_{k}^{T} \boldsymbol{\theta}_{n}-\boldsymbol{e}_{n}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\sqrt{\lambda} \mathbf{R}_{n-1} & \sqrt{\lambda} \underline{x}_{n-1} \\
\mathbf{y}_{n}^{T} & \underline{d}_{n}
\end{array}\right] \underset{\boldsymbol{\theta}_{n+1}}{=} \quad \begin{array}{l}
\text { GR }
\end{array} \underset{n}{\boldsymbol{G} \boldsymbol{x}_{n}} \text { (via back substitution) }}
\end{aligned}\left[\begin{array}{cc}
\mathbf{R}_{n} & \underline{x}_{n} \\
0 & \cdot
\end{array}\right] \text { (update via Givens rotations) }
$$

$$
\begin{align*}
{\left[\begin{array}{c}
\mathbf{R}_{n} \\
0
\end{array}\right] \boldsymbol{\theta}_{n+1} } & =\left[\begin{array}{l}
\underline{\underline{n}}_{n} \\
v_{n}
\end{array}\right] . \tag{28}\\
\underline{\theta}_{n+1} & =\mathbf{R}_{n}^{-1} \underline{I}_{n} . \tag{29}
\end{align*}
$$

Here \boldsymbol{x}_{n} denotes the first N rows of the product $\mathbf{Q}_{n} \underline{D}_{n}$. Since \mathbf{R}_{n} is upper triangular, (29) may be computed by barksubstitution, which has computational complexity of $\mathcal{O}\left(N^{2}\right)$.

The quantities Y_{n} and \boldsymbol{D}_{n} can be expressed recursively as

$$
Y_{n}=\left[\begin{array}{c}
\sqrt{\lambda} Y_{n-1} \tag{30}\\
y_{n}^{T}
\end{array}\right] \quad \text { and } \quad D_{n}\left[\begin{array}{c}
\sqrt{\lambda} D_{n-1} \\
d_{n}
\end{array}\right] .
$$

As a consequence, the QR decomposition which produces $\mathbf{R}_{\boldsymbol{n}}$ and $\boldsymbol{x}_{\boldsymbol{n}}$ may be computed recursively by [12, 14]

$$
\dot{\mathbf{Q}}_{n}\left[\begin{array}{cc}
\sqrt{\lambda} \mathbf{R}_{n-1} & {\sqrt{\lambda} \boldsymbol{x}_{n-1}}^{\mathbf{y}_{n}^{T}} \\
d_{n}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R}_{n} & \boldsymbol{x}_{r} \\
\mathbf{0} & 6
\end{array}\right],
$$

where $\dot{\mathbf{Q}}_{\boldsymbol{n}}$ is an orthogonal matrix that nullifies the elements of \mathbf{y}_{n}^{T} by rotating them into the elements of $\sqrt{\lambda} \mathbf{R}_{n-1}$. The matrix $\overline{\mathbf{Q}}_{n}$ is not computed explicitly, but instead represents a series of Givens rotations [14, 12] that zero the rows containing \mathbf{y}_{n}^{T}. The form of $\dot{\mathbf{Q}}_{n}$ is $\dot{\mathbf{Q}}_{n}=\prod_{i=1}^{M} \prod_{j=1}^{N} \dot{\mathbf{Q}}_{n}^{(i j)}$, where each matrix $\dot{\mathbf{Q}}^{(i j)}$ represents the Givens rotation that zeros the $i j t h$ element of \boldsymbol{y}_{i}^{T} by rotation with the j th row of $\sqrt{\lambda} K_{n-1}$. The QR-based algorithm for MLP training is listed in Table II. The computational complexity: of the update in this approach is $\mathcal{O}\left(M N^{2}\right)$

6 BLOCK DIAGONAL APPROXIMATIONS

Complete RLS-based MLP training algorithms recursively solve the complete $N \times N$ sot of normal equations in (19). For networks with a large number parameters, the $\mathcal{O}\left(N^{2}\right)$ update required for the complete solution can become quite costly. In addition, the update computations are global in nature, combining information from all pairs of parameters. To redure both the complexity and globality of the required computations, approximate RLS algorithms have been proposed [8, 9, 7]. These algorilhms replace the yky y_{k}^{7} matrices
in (17) with an approximation in which only block diagonal elements of the matrix are retained while the otier parts are set to zero. The diagonal blocks retained may correspond to parameters in distinct layers, to the rarameters of individual neurons, or even to individual parameters for a straight diagohal approximation.

To develop this interpretation, we rew'rite the normal equations (17) that serve as a basis for the RI.S algorithms.

$$
14 z\left(\sum_{k=1}^{n} \lambda^{n-k} y_{k} \mathbf{y}_{k}^{T}\right) \underline{\theta}_{r+1}=\sum_{k=1}^{n} \lambda^{n-k} y_{k} \mathbf{y}_{k}^{T} \underline{\theta}_{k}-\sum_{k=1}^{n} \lambda^{n-k} y_{k \Theta_{k}}
$$

From this it is obvious that using a block diagonal approximation for the $y_{k} y_{k}^{T}$ matrices on both sides of the equality will decouple the equations into independent sets. Each block set may then be solved independently with either of the RLS or QR-RLS algorithms presented above.

For example, if each block corresponds to the parameters of an individual neuron, then the network parameter vector may be expressed in block form as

$$
\begin{equation*}
\underline{\theta}=\left[\cdots \underline{\theta}^{T}(\gamma) \cdots\right]^{T} \tag{33}
\end{equation*}
$$

where $\underline{\theta}(\gamma)$ represents the parameters (weights and offsets) of the γ neuron. The gradients will also have the same block form

$$
\begin{equation*}
\Sigma \epsilon_{k j \mid k}=\left[\cdots \Gamma^{T}(\gamma) \epsilon_{k j \mid k} \cdots\right]^{T} \tag{3.4}
\end{equation*}
$$

Following the notation of (14), define

$$
\Gamma(\gamma)_{k j} \equiv \Gamma(\gamma) \epsilon_{k j \mid k} \quad \text { and } \quad d(\gamma)_{k j} \equiv \Gamma^{T}(\gamma)_{k j} \underline{\theta}(\gamma)_{k}-\epsilon_{k j \mid k}
$$

This leads to the set of normal equations for $\theta(\gamma)$ analogous to (15).

$$
\begin{equation*}
\left(\sum_{k=1}^{n} \lambda^{n-k} \sum_{j} \Gamma(\gamma)_{k, ~} \Gamma^{T}(\gamma)_{k j}\right) \underline{\theta}(\gamma)_{n+1}=\sum_{k=1}^{n} \lambda^{n-k} \sum_{j} \Gamma(\gamma)_{k j} d(\gamma)_{k j} . \tag{31;}
\end{equation*}
$$

These recursions may be solved recursively by either the conventional RLS algorithm of Table I or the QR algorithm of Table II. In this example, there would be a separate set of recursions for each neuron in the network.

7 SIMULATION EXAMPLE

In this example, a three-layer MLP was used to approximate a two dimensional (iaussian with a stindard deviation of one half. (Zero mean, covariance matrix = .25I.) The network had two input neurons. corresponding to the x and y input values, four hidden neurons in the middle layer, and a single nouron in the output layer. To generate a nonrepeating training set, sequential $x-y$ training samples were drawn randomly from the interval $\cdot 2$ to +2 . Network weights were initialized to rathdom values betwern 1 and +1. The network war trained using both the (iD) algorithm and the RI.S algorithm of lable I. An exponential window of $\lambda=.98$ was used for both algorithms and a step size of $\mu=.1$ was used in the (il) algorithm. Both algorithms were run until either the total squared error ($E_{i n}$) was less than 11 or until the. number of training samples (n) exceeded 25,000 .

Fig. 2(a) illustrates a typical result achieved when the error converged to less than . 1. Here the fon vard transfer function of the trained reetwork in plotted for $x-y$ betweren - 2 and 2 . The result is rasily recognizabla as an approximation of a (ianssian. Fig. 2(b) documents the training results for ten difforme sets of ramdom

(a)

Set	RLS	GDR
1	495	3,437
2	597	6,847
3	505	12,464
4	556	-
5	562	8,811
6	780	-
7	354	2,517
8	474	-
9	478	3,907
10	471	-
mean	527	6,331
standard	105	3484
deviation		

(b)

Fig. 2: Two dimensional Gaussian approximation simulation. (a) Typical Gatssian approximation. (b) Iterations (training samples) needed to reach an error of .1 for ten different sets of random initial weights.
initial weights. Using the RLS algorithm, training averaged 527 iterations with a standard deviation of 105 iterations. Using the GDR algorithm, training only converged for 6 out of the 10 starting values. In the cases in which training was successful, the average number of iterations required was 6331, with a standard deviation of 3484. In this case, RLS training proved to be more robust than GDR training and on average required an order of magnitude fewer training iterations (samples).

APPENDIX

The least squares algorithms desc:abed in this paper use the Jacobian matrices which specify the derivatives of the individual output eriors with respect to the network parameters. This is in contrast to more general methods of nonlinear optimization, such as the GDR algorithm, which require only the derivatives of the overall squared error sum with respect to the network parameters. In this appendix we expand on this difference and illustrate how the Jacobian matrices y defined in (16) can be computed in a backpropagationlike manner. Figure 3 illustrates the basic network terminology for an L-layer MLP.

The parameters of this network are the weights and offsets, denoted by $u_{i j}^{\prime}$. The vector containing these parameters is $\theta \equiv\left(\cdots w_{i j}^{1} \cdots\right)^{T}$. For a given training pattern, the relationship between the overall squared error ε and the individual output errors ε_{m} is

$$
\begin{equation*}
\varepsilon \equiv \frac{1}{2} \sum_{m}\left(c_{m}\right)^{2} \quad \text { and } \quad \nabla \varepsilon=\sum_{m} \epsilon_{m} \Gamma \epsilon_{m} . \tag{3i}
\end{equation*}
$$

The derivatives that compose the gradient of the overall error, $\Sigma \varepsilon=\partial \varepsilon / \partial \theta=\left[\cdots \partial \varepsilon / \partial u_{i}^{\prime}, \cdots\right]^{T}$ rall be found by repeated application of the chain rule [!] where $\delta_{j}^{l} \equiv-\partial \varepsilon / \partial a_{j}^{l}$.

Fig. 3: Multilayer perceptron network terminology.

$$
\begin{align*}
\frac{\partial \varepsilon}{\partial w_{i j}^{l}} & =-\left\{_{j}^{l} z_{i}^{l-1} \quad\right. \text { and } \tag{38}\\
\delta_{j}^{l} & = \begin{cases}e_{j} z_{j}^{L}\left(1-z_{j}^{L}\right) & \text { for } l=L \\
\left(\sum_{k} \delta_{k}^{l+1} u_{j k}^{l+1}\right) z_{j}^{l}\left(1-z_{j}^{l}\right) & \text { for } l \neq L\end{cases} \tag{39}
\end{align*} .
$$

A similar approach can be used to compute the derivatives that compose the gradients of the individual errors $\boldsymbol{\sum} e_{m}=\partial e_{m} / \partial \theta=\left[\cdots \partial e_{m} / \partial u_{1, j}^{l} \cdots\right]^{T}$. Defining $\delta_{m, j}^{l} \equiv-\partial e_{m} / \partial a_{j}^{l}$, the result is

$$
\begin{align*}
& \frac{\partial \varepsilon_{m}}{\partial u_{i j}^{l}}=-\delta_{m, j}^{l} z_{i}^{l-1} \text { and } \\
& \delta_{m, j}^{l}= \begin{cases}e_{j} z_{j}^{L}\left(1-z_{j}^{L}\right) & \text { for } l=L, m=j \\
0 & \text { for } l=L, m \neq j \\
\left(\sum_{k} \delta_{m, k}^{l+1} u_{j k}^{l+1}\right) z_{j}^{l}\left(1-z_{j}^{l}\right) & \text { for } l \neq L\end{cases} \tag{.11}
\end{align*} .
$$

The Jacobian matrix $y=\left[\sum_{1} \cdots \Sigma_{r_{1}}\right]$ häs one column for each of the M MLP outputs. Ilence M distinct backpropagation sweeps are necessary for its computation.

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning imtermal representation by error propgation. In D). E. Rumelhart and J. L. Mc(Chlland, editors, P'aralle Distributcd Prowtasing: Eispharatume in the Mierostructure of ('exprition: Volume 1: Foundations, rhapter X. MIT Press, Cambridge, MA. 19 sk.
 April loxi.
[3] R. I. Watrons. Learsing algorithms for comertionist metworks: Applind gradient methods of mombinear
 CA, June 1:3*.
[4] 1. F. Shepanski. Fast learning in artifical neural systems: Multilayer perceptron trainilig using optimial estimation. In Proc. 1988 IEEE int. Conf. Neural Networks: Vol. I, pages 465-472, Sau Diego, CA, July 1988.
[5] A. J. Owens and D. L. Filkin. Efficient training of the back propgation network by solving a systern of stiff ordinary differential equations. In Proc. 1989 Int. Joint Corf. N'cural Networks: Vol. II, pigers 381-386, Washington D.C., June 1989.
[6] S. Singhal and L. Wu. Training multilayer perceptrons with the extended Kalman algorithun. In I. S. Touretzky, editor, Advances in Neural Information Processing Systems I, pages 133-140. Morgan Kaufmann, San Mateo, CA, 1989.
[7] M. R. Azimi-Sadjadi, S. Citrin, and S. Sheedvash. Supervised learning process of multi-liyer parreptron neural networks using fast least squares. In Proc. 1990 Int. Conf. Acoustics, Sperch and Sign. I Processing, pages 1381-1384, Albuquerque, NM: April 1990. IEEE.
[8] S. Kollias and D. Anastassiou. Adaptive training of multilayer neural networks using a least squares estimation technique. In Proc. 1988 IEEE Int. Conf. Neural Netuorks: V'ol. I, pagt: 3×3 3א!, Sian Diego, CA, July 1988.
[9] S. Kolias and D. Anastassiou. An adaptive least squares algorithm for the cificient training of artificial neural networks. IEEE Trans. C'ircuits and Systcms, CAS-30(8):1092-1101, August 19x!).
[10] W. H. Press. B. P. Flannery, S. A. Teukolsky, and W. T. Venterling. N'umerical Reripes: The Art of Scientific Computing. Cambridge C'niversity Press, Nrw York, NY, 198fi.
[11] P. E. Gill, W'. Muray, and M. II. Wright. Practical Optimization. Academic Iress, Nirw Yonk. Sil. 1981.
[12] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, 198G.
[13] J. M. Mendel. Irssoms in Digital Estimation Throry. Prontirr-Mall, Fuglowood (liffs, NJ, 1!si.
[14] G. H. Golub and C. F. Van Loan. Matrix ('omputations. The Juhns Hopkins l'uiversily l'rosn. Baitimore. M1), 19xis.

[^0]:

