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Abstract

In the article tensor-input/tensor-output blockwise Recursive N-way Partial Least Squares (RNPLS) regression is considered. It
combines the multi-way tensors decomposition with a consecutive calculation scheme and allows blockwise treatment of
tensor data arrays with huge dimensions, as well as the adaptive modeling of time-dependent processes with tensor
variables. In the article the numerical study of the algorithm is undertaken. The RNPLS algorithm demonstrates fast and
stable convergence of regression coefficients. Applied to Brain Computer Interface system calibration, the algorithm
provides an efficient adjustment of the decoding model. Combining the online adaptation with easy interpretation of
results, the method can be effectively applied in a variety of multi-modal neural activity flow modeling tasks.
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Introduction

The Brain Computer Interface (BCI) is a system which

translates recordings of the brain’s neural activity into commands

for external devices. For neuronal signal decoding, a control model

is adjusted to an individual brain during the BCI system learning.

This is called calibration. The model allows the control of an

external effector at the stage of the online execution. Multi-way

analysis was recently reported [1–8] to be an efficient way to

calibrate BCI systems by providing simultaneous signal processing

in several domains (temporal, frequency and spatial). Multi-way

analysis represents a natural approach for modalities fusion [9]. It

is based on the tensor data representation. Several tensor-based

approaches have been invented (PARAFAC [10], Tucker [11],

Non-negative Tensor Factorization [12], Sparse Nonnegative

Tucker Decomposition [13], General Tensor Discriminant Anal-

ysis [14], Regularized Tensor Discriminant Analysis [7], etc.).

Among them, a Multi-way or N-way Partial Least Squares (NPLS)

regression was invented [15,16] as a generalization of ordinary

Partial Least Squares (PLS) [17] for the case of tensor variables.

One of the major problems in BCI studies is the variability of

the neuronal signals, in particular, due to brain plasticity. The

changes in the neuronal activity require recalibration of the BCI

systems. The full system recalibration is a time and labor-

consuming procedure. Adaptive calibration aims to provide a fast

adjustment of the BCI system in response to mild changes of the

signal. For adaptive modeling the online (consecutive) algorithms

are applied. In addition, consecutive algorithms are efficient tools

to treat the signal for a long period of observation. Let us note that

the task of calibration of the BCI system analyzing the signal in

several domains (temporal, frequency and spatial) is characterized

by significant duration of observation as well as by huge feature

space dimensions. For the high dimensional observations (more

variables than observations) Partial Least Squares modeling is

particularly suited [17]. A blockwise Recursive Partial Least

Squares [18] allows online identification of Partial Least Squares

regression. N-way PLS (NPLS) [15] provides a generalization of

ordinary PLS to the case of tensor variables. Similarly to the

generic algorithm, NPLS combines regression analysis with the

projection of data into the low dimensional space of latent

variables using tensor factorization. The blockwise Recursive PLS

adapted to multi-way structured inputs (tensor-input scalar-output)

was invented by the authors recently [19]. This article presents

blockwise Recursive NPLS (RNPLS) extended to the most general

case of tensor-input/tensor-output, its numerical study, testing and

comparison. The algorithm is addressed to a data set of huge

dimensions and conducts a sequential blockwise tensor-data

processing. Unlike the multi-pass blockwise Iterative NPLS [8],

which repeatedly runs through the entire data set, the new RNPLS

algorithm performs a consecutive calculation and can be applied

online. Moreover, in the case of non-stationary tensor-valued

processes, RNPLS allows adaptive learning by introducing the

forgetting factor.

Extending the results published in [19], the present article

generalizes RPLS to the case of tensor-input and tensor-output

variables. Moreover, it studies the convergence of regression

coefficients as well as their variance and expectation and compares

them with ‘‘true’’ ones. Finally, the computational efficiency and

the generalization ability are compared for a set of PLS family

methods (RNPLS, generic NPLS, multipass blockwise Iterative N-

way Partial Least Squares (INPLS), Unfolded PLS (UPLS)). For

this purpose, a set of computational experiments were carried out.

Finally, the generalization abilities of the algorithms are

examined using recordings from real-life BCI preclinical experi-

ments. In particular, RNPLS is applied to solve the tensor-input
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and scalar-output problem of binary events prediction in long-

term experiments in freely moving animals.

Generalization of the algorithm allows us to consider another

problem of continuous hand movement trajectory reconstruction

from Electrocorticogramm (ECoG) recordings: simultaneous

prediction of 3D coordinates of the hand at three points (wrist,

elbow, shoulder).

Methods

The RNPLS algorithm unites the recursive calculation scheme

of Recursive PLS regression with the multimodal data represen-

tation of NPLS.

Generic PLS
Ordinary PLS [17] is an iterative procedure to model a linear

relationship between vector input and output variables on the basis

of matrices of observations, X and Y:Y~XCzV, where V and C

are noise and coefficient matrices respectively. PLS is a statistical

method particularly suited to the high dimensional observation

vectors. In order to build the model, the observations are projected

into the low dimensional spaces of latent variables in such a way

that the maximum variances of X and Y are explained

simultaneously. At the first iteration, the matrices X and Y are

represented as X~t1p
T
1zE1, Y~u1q

T
1zF1, where t1 and u1are

the latent variables (score vectors), while p1 and q1 are the loading

vectors. E1 and F1 are the matrices of residuals. The score vectors

are calculated to maximize the covariance between t1 and u1. The

coefficient b1 of a regression u1~b1t1zr1 is calculated to

minimize the norm of the residuals, r1. Then the procedure is

applied iteratively F times to the residual matrices. It is

demonstrated in [18] that the latent variables could be constructed

as orthonormal:

TTT~IF , ð1Þ

where T~ t1, . . . ,tF½ �, IF is identity matrix.

Generic NPLS
NPLS is an algorithm of the PLS family adapted to multimodal

data (tensor variables). Tensors, or multi-way arrays, are higher-

order generalizations of vectors and matrices. Elements of a tensor

X[<I1|I2|...|IN are denoted xi1,i2,...,iN . Here, N is the order of the

tensor, i.e., the number of dimensions, also known as ways or

modes. Vectors and matrices are tensors of order one and two

respectively. The number of variables Ii in the mode i shows the

dimensionality of the mode (for more details, see [20]). The tensor

X[<I1|I2|...|IN can be unfolded into a matrix along the i-th mode

[20]. In this paper this operation of unfolding along the i-th mode

is referred to as Xð Þ(i). The vectorization of tensor X is denoted as

vec Xð Þ [20].
NPLS models a linear relationship between input and output

variables on the basis of tensors of observations X[<n|I1|...|IN

and Y[<n|J1|...|JM . The first dimension of the array corresponds

to the points of observation, while other dimensions are related to

the modes of analysis (e.g., time, frequency, and space).To project

data into the low dimensional feature space, NPLS uses the tensors

decomposition with a set of projectors corresponding to each

modality. At the first iteration, the tensors X and Y are

represented as.

X~t10w
1
10 . . . 0w

N
1 zE1,

Y~u10q
1
10 . . . 0q

M
1 zF1: ð2Þ

The operation ‘‘0’’ is the outer product [20]. The latent

variables t1[<
n and u1[<

n are extracted from the first mode of the

tensors X and Y, providing maximum covariance between t1 and

u1. In parallel, the algorithm forms the factors, i.e. the sets of

vectors w1
1[<

I1 , . . . , wN
1 [<

IN
� �

, wi
1

�

�

�

�

N

i~1
~1, and

q11[<
J1 , . . . , qM1 [<JM

� �

related to corresponding modes of X

and Y. They are found in such a way that projection of the tensor

X on the vectors w1
1, . . . , w

N
1

� �

results in t1 and projection of the

tensor Y on the vectors q11, . . . , q
M
1

� �

results in u1. The

coefficient b1 of regression u1~b1t1ze1 is calculated by least

squares. Next, factors are calculated in the same way by

decomposing the residuals E1 and F1. NPLS latent variables

T~ t1, . . . ,tF½ � are not orthogonal. A detailed description of NPLS

can be found, for example, in [16].

Recursive PLS
The recursive PLS algorithms [18,21,22] were invented to take

into account time-dependent changes in the data and were

designed for matrices of observations. In comparison to other

methods, Qin’s blockwise recursive algorithm is more efficient in

updating the model with respect to the computational cost and

memory [18]. To model a linear relationship between vector input

and output variables Y~XCzV on the basis of matrices of

observations, X and Y (V, C are noise and coefficient matrices

respectively), Qin’s algorithm considers the decomposition of the

matrices X and Y with orthonormal input latent variables

TTT~IF :

X~TPT
zEF , Y~UQT

zFF~TBQT
zFF ,

where P~ p1, . . . ,pF½ �, Q~ q1, . . . ,qF½ � are the matrices of loading

vectors, T~ t1, . . . ,tF½ � and U~ u1, . . . ,uF½ � are the matrices of

latent variables (score), and B~diag b1, . . . ,bFf g are regression

coefficients for latent variables. In addition, by construction latent

variables T~ t1, . . . ,tF½ � are orthogonal to residuals:

TTEF~0, ð3Þ

TTFF~0: ð4Þ

It has been shown [18] that if F is large enough to provide

ET
FEF~0, then XTX~PPT and XTY~PBQT . This yields that,

for the new data matrices X1,Y1f g, regression on the joint data

sets,

X

X1

� �

,
Y

Y1

� �� �

is equivalent to the regression calculated using the loading

matrices (P and Q) and the matrix of coefficients B from previous

observations:

Recursive NPLS for BCI
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X

X1

� �

,
Y

Y1

� �� �

u

PT

X1

" #

,
BQT

Y1

" #( )

Here, the equivalence of regressions X1,Y1f gu X2,Y2f g means

an equality of the least square estimates of regression coefficients:

Ĉ1 = Ĉ2, Ĉi~ argminC Yi{XiCk k~ XT
i Xi

	 
z

XT
i Yi, i~1, 2.

Thus the old data sets X and Y are captured by the loading

matrices and regression coefficients, while the new data is added

directly to them. As a result, the algorithm always keeps the size of

the processing matrices.

Blockwise recursive PLS was applied for the adaptive modeling

and monitoring of time-varying and non-stationary processes with

slow and abrupt changes [18,23–25] by introducing the sliding

window and/or forgetting factor.

cPT

X1

" #

,
cBQT

Y1

" #( )

ð5Þ

The forgetting factor c is either fixed over the entire range of 0 to

1, or estimated dynamically by assessing changes in the current

data [24].

Recursive NPLS
To apply the recursive approach to the NPLS algorithm,

orthonormality of latent variables T~ t1, . . . ,tF½ � as well as their
orthogonality to residuals should be provided (see Equation 1,

Equation 3 and Equation 4). Let us note that the NPLS latent

variables do not satisfy these conditions. The modification of

NPLS to meet the requirements of Equation 1, Equation 3, and

Equation 4 integrated to a recursive algorithm is described below.

Similar to recursive PLS, RNPLS is a sequential blockwise

algorithm. Data blocks are received and then processed. The first

block of data, namely tensors X[<n|I1|...|IN and

Y[<n|J1|...|JM , is factorized with NPLS. The procedure results

in the sets of projectors w1
f [<

I1 , . . . ,wN
f [<

IN

n oF

f~1
,

q1f [<
J1 , . . . ,qMf [<JM

n oF

f~1
, as well as the matrix of latent variables

TF[<n|F and regression coefficients bf [<f
� �F

f~1
(Algorithm S1,

steps 4–17). It provides the approximations X~
PF

f~1 tf 0w
1
f 0 . . .

0 wN
f zEF and Y~

PF
f~1 uf 0q

1
f 0 . . .

0 qMf zFF .

For the next steps, we use the matrix representation. It does not

affect the proposed approach, but simplifies the notation. To

convert to the matrix form, the tensors X and Y are unfolded

along the first mode into the matrices X[<n| I1 ...INð Þ and

Y[<n| J1...JMð Þ: X~ Xð Þ(1), Y~ Yð Þ(1). At the same time, let us

denote the vectorization of the tensors wf~vec w1
f 0 . . .

0 wN
f

� �

,

wf [<I1 ...IN , Wf~ w1j . . . jwf

 �

and qf~vec q1f 0 . . .
0 qMf

� �

,

qf [<
J1...JM (Algorithm S1, steps 18–21). In the matrix notation

X~TFW
T
FzEF , Y~

PF
f~1 Tf bf q

T
f zFF .

In order to use Qin’s approach, the orthogonality of latent

variables TF is required (see Equation 1). Since the NPLS latent

variables TF are not orthogonal, let us orthonormalize them T\

F :

T\

F

	 
T
T\

F~IF . It is constructed in a way to provide additional

orthogonalization of T\

F to the residuals matrix T\

F

	 
T
FF~0. T\

F

can be obtained, for example, from a Gauss orthogonalization

procedure [26]. For the new orthonormal latent variables

X~TFW
T
FzEF~T\

F P
T
FzEF , where PT

F~ T\

F

	 
T
TFW

T
F (see

Algorithm S1, steps 22–25). After the orthonormalization,

Equation 1 and Equation 4 are satisfied, i.e., T\

F

	 
T
T\

F~IF and

T\

F

	 
T
FF~0.

To provide the orthogonality of the matrix T\

F and the residual

matrix EF (Equation 3), let us subtract from the residual matrix its

projection on all latent variables t\f

n oF

f~1
:

~
EF~EF{

PF
f~1 t

\

f t\f

� �T

EF . Thus, X~T\

F

~
P
T
z

~
EF , with a

new matrix of loadings
~
P~ ~p1, . . . ,

~pF½ �, ~pf~pfzET
F t

\

f . The

relation T\

F

	 
T~
EF~0 now holds. Let us define

~
Q

T
~ T\

F

	 
TPF
f~1 Tf bf q

T
f (see Algorithm S1, steps 26–30).

Since Equation 1, Equation 3 and Equation 4 are satisfied, then

XTX~
~
P
~
P
T
, XTY~

~
P
~
Q

T
. Hence, the least squares coefficients

are equivalent for the data sets [18]:

X

Xnew

� �

,
Y

Ynew

� �� �

u

~
P
T

Xnew

" #

,
~
Q

T

Ynew

" #( )

In tensor notation (see Algorithm S1, steps 31–33):

X

Xnew

� �

,
Y

Ynew

� �� �

u

~
P

Xnew

" #

,

~
Q

Ynew

" #( )

Here, a tensor
~
P is obtained from the matrix

~
P, with F as the

dimensionality of the first mode. The dimensions of the other

modes are equal to the dimensions of the corresponding modes of

X. Similarly
~
Q is obtained from the matrix

~
Q according to the

dimensions of the corresponding modes of Y.

Thus, the RNPLS algorithm inherits the tensor representation

of the data and allows consecutive learning, which is a property of

recursive PLS. Besides tensors
~
P and

~
Q for recursive calculations,

the sets of projectors w1
f [<

I1 , . . . ,wN
f [<

IN

n oF

f~1
,

q1f [<
J1 , . . . ,qMf [<JM

n oF

f~1
and coefficients bf [<f

� �F

f~1
are

identified. They are used at the prediction stage to estimate the

output Ŷ in the same way as it is done in the traditional NPLS

[15]. A graphical representation of the RNPLS algorithm is shown

in Figure 1.

All schemes of adaptive modeling developed for the matrix

RPLS can be directly applied to adaptive learning of RNPLS. For

instance, similarly to Equation (5) we can introduce the forgetting

factor c[ 0,1½ �:

c
~
P

Xnew

" #

,
c
~
Q

Ynew

" #( )

Simulation Study
Both the generalization ability (prediction error) and the

convergence of model coefficients were studied in simulation

Recursive NPLS for BCI
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experiments. The resulted prediction errors of the proposed

approach were compared with ones generated by other state of the

art methods.

The computational experiments were performed on simulated

datasets for matrix input and scalar output, the simplest case for

simulation and comparison of tensor based algorithms. Keeping

the essential properties, it simplifies the visualization and

interpretation of results.

A set of PLS family offline algorithms for tensor data analysis,

namely, generic NPLS, Iterative NPLS, and unfolded PLS, were

compared with new sequential RNPLS. Let us note that all these

algorithms generate the set of projectors and the set of coefficients

of linear regression in low dimensional spaces of latent variables to

predict the output variable from the input one. This model can be

rewritten in the original variables. In the particular case of scalar

y tð Þ[< and matrix x tð Þ[<I1|I2 ,

ŷy tð Þ~
X

i,j

xi,j tð Þci,j , C~ ci,j
� �

i,j
,

The matrix of coefficients C is estimated by each algorithm. To

analyze the convergence properties of sequential blockwise

RNPLS, the training data were split into K disjoint subsets. The

RNPLS algorithm was consequently applied to these subsets, i.e.,

each following subset was used to adjust the solution from the

previous step. Ck is the approximation of the regression coefficient

matrix estimated at step k~1, . . . ,K .

The variance and expectation of the coefficients evaluated by

the different methods were examined in comparison with ‘‘true’’

coefficients. Prediction errors of algorithms mentioned above were

compared on simulated datasets. Furthermore, the adaptive

properties of the RNPLS-based adaptive algorithm to abrupt

changes in the observed process were evaluated.

The tests were performed for the binary output variable which

corresponds to the binary BCI experiment described below (see

details in [8]). Despite its simplicity, this model makes it possible to

explore the fundamental properties of the method. An artificial

data set xk [ <100|200,yk [ 0,1f g
� �

k
was generated following

[19]. Namely, binary outputs yk were randomly generated (0 or

1) with equal probabilities. Matrices of input xk (Figure 2A) were

calculated according to xk~c(yk)zlek,

cij~
cos 2:5p i{0:4jð Þz2ð Þ if yk~0,

sin 2:5p iz0:4jð Þz1ð Þ if yk~1:

�

The random noise ek[<
100|200 was drawn from a multivariate

normal distribution N 0,Sð Þ. To take into account the covariance

structure of the real data, the covariance tensor S was defined as a

Kronecker product of two matrices S~S16S2 where the

matrices S1 and S2 were estimated as covariance matrices of the

temporal and frequency modalities of the real brain ECoG activity

recordings (binary BCI is described below in the Section Binary

BCI). Correlation matrices are shown in Figure 2B. Thus the

artificial data inherit some of the statistical properties of the real

recordings. The same noise distribution was applied for both

classes in the simulated data. The noise ek was added to the

templates with coefficients l~0:5, 1, 5, 10. It has the same

amplitude as the signal c(yk) if l~1.

In the particular case of this computational experiment, the

matrix of regression coefficient C belongs to <100|200.

Figure 1. The RNPLS scheme. Information from the tensors of observation X and Y of order 1zNð Þ and 1zMð Þ, respectively, is captured by their

loading tensors
~
P and

~
Q. On every iteration, the algorithm generates the current sets of the coefficient vectors bf

� �F

f~1
, as well as the projection

vectors w1
f , . . . ,w

N
f

n oF

f~1
and q1f , . . . ,q

M
f

n oF

f~1
used to estimate the dependent variable ŷ on the prediction stage.

doi:10.1371/journal.pone.0069962.g001
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Convergence of RNPLS Regression Coefficients
Generally speaking, the convergence of the output variables y

does not require the convergence of the regression coefficients C so

far as the convergence of the regression coefficients is a stronger

requirement.

To analyze the convergence of regression coefficients, we

examined the distance between 2 matrices Ck and Cl ,

r Ck, Clð Þ~ Ck{Clk kF,

where :::k kF is the Frobenius norm.

In addition, to evaluate the RNPLS regression coefficients, they

were compared with the ‘‘true’’ ones. The ‘‘true’’ coefficients are

estimated using the simulated data without noise (l~0). In the

particular case, the difference of the centers of the classes

represents the matrix of regression coefficients (up to a scaling

factor and a constant term). They could be evaluated, for instance,

by the ordinary PLS.

To apply blockwise RNPLS, a simulated data set (800 points)

was split into 40 disjoint subsets (blocks), each one containing 20

points. The level of noise was taken to be 1000% of the signal

amplitude (l~10). The convergence of the regression coefficient

matrices for the series of computational experiments (10 realiza-

tions) is represented in Figure 3 and Figure 4. The changes in C

become insignificant after approximately 10–15 iterations. The

number of factors, F~9, was chosen in such a way as to minimize

the average root mean squared error (RMSE) on the test dataset

over 10 realizations of the training dataset.

Adaptivity
The second computational experiment was performed to verify

the adaptive properties of the RNPLS. An abrupt change was

introduced to the simulated data set (2000 points). Namely, the

indexes of the classes were reversed from the point number 1000

for the rest of the data set. The level of the noise was chosen equal

to 1000% (l~10). 10 realizations of the noise were generated.

To apply adaptive blockwise RNPLS, the data was split

sequentially into blocks containing 50 points. The same number

of factors (F~9) was applied. For the first 20 blocks (i~1, . . . ,20),

the algorithm successfully converged to ‘‘true’’ regression coeffi-

cients. For the next subsets (i~21, . . . ,40) the classes and,

therefore, the ‘‘true’’ regression coefficients were reversed.

Figure 5 demonstrates that the RNPLS algorithm adjusted its

solution to the new situation in 15 iterations (i~21, . . . ,35)
(forgetting factor c~0:9).

Comparison of Algorithms
To study whether the recursive scheme of the RNPLS algorithm

decreases the accuracy of modeling, the proposed method was

compared with generic offline NPLS, iterative NPLS and unfolded

PLS on the simulated data. The percentage of prediction errors

(RMSE) was estimated depending on the level of noise and the

number of factors. The variance of the coefficients was studied for

the set of algorithms. Finally these coefficients were compared with

the ‘‘true’’ ones.

The entire simulated dataset (1600 points) was equally split into

the training and the test datasets. The NPLS, iterative NPLS, and

unfolded PLS algorithms processed the whole training set. For the

recursive calculation, the training dataset was split into 20 disjoint

windows, each one containing 40 points. For all conditions

(different noise level and the number of factors), the experiment

was repeated 10 times with new realizations of noise.

The percentage of prediction errors was estimated using 10

realizations of the test dataset depending on the level of noise and

number of factors for all the algorithms. RNPLS demonstrated a

significantly smaller number of factors which are necessary for

efficient prediction (Table 1). Let us remember that the RNPLS

showed better robustness, as the variation of the prediction errors

was essentially smaller for the recursive algorithm for a small

number of factors [19].

Figure 2. Artificial data. A) Points x, yf g without noise and with
1000% of noise (l~10) from the simulated data set. B) Covariance
tensor S~S16S2 to generate samples of the simulated data set is
defined as a Kronecker product of covariance matrices S1 and S2 .
Matrices S1 and S2 were estimated from experimental data (Section
Binary BCI) as correlation matrix for the temporal and frequency
modalities in the most informative time interval [0, 21.5] s and
frequency band [50, 300] Hz.
doi:10.1371/journal.pone.0069962.g002

Figure 3. Convergence of the regression coefficients matrices.
Convergence of the coefficients matrices versus iterations i (mean and
standard deviation) of the RNPLS algorithm in the series of experiments
(10 realizations, simulated dataset, level of noise 1000%). The distance r
between two successive coefficient matrices decreases on ,70% (in
,3.5 times) after the first 12–15 iterations.
doi:10.1371/journal.pone.0069962.g003

Recursive NPLS for BCI
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To compare the variance of the estimated coefficients, RNPLS,

NPLS, INPLS, and UPLS algorithms were applied to 10

realizations of the training dataset with the level of noise l~10

(1000%). The factor numbers were chosen equal to 9, 17, 17, and

13, for RNPLS, NPLS, INPLS, and UPLS, respectively, in order

to minimize the average RMSE in the 10-fold cross-validation

procedure. For this procedure, the training set is randomly

partitioned into 10 equal size subsets. 9 subsets are used for

training, whereas one is used for the test, i.e., RMSE calculation.

The process is then repeated 10 times and the 10 results are

averaged to produce a single RMSE estimation. The whole

procedure is repeated for the different number of factors to find

the one which minimizes RMSE. For each calibration approach,

for the optimal number of factors, the images of the obtained

regression coefficients CRNPLS
k

� �10

k~1
, CNPLS

k

� �10

k~1
, CINPLS

k

� �10

k~1

and Cunfolded PLS
k

� �10

k~1
are represented in Figure 6. The

variability of the unfolded PLS results (sunfolded PLS~3:3:10{5) is

almost 5 times greater than the variability of the RNPLS results

(sRNPLS~0:7:10{5), whereas the variabilities of INPLS and NPLS

are sINPLS~0:8:10{5 and sNPLS~1:6:10{5, respectively.

‘‘True’’ coefficients (PLS without noise), the regression coeffi-

cients for RNPLS, NPLS, INPLS, and UPLS methods (averaged

over 10 realizations, l~10) are shown in Figure 7. It can be seen

that the result generated by RNPLS is closer to the ‘‘true’’

coefficients than the NPLS, INPLS, and UPLS solutions. To

estimate the difference numerically, the mean values and standard

deviations of r Ctrue
l~0, C

RNPLS
lw0

	 


for different noise levels l were

calculated over the algorithm iterations (Figure 8). In parallel, the

means and the standard deviations of r Ctrue
l~0, C

NPLS
lw0

	 


,

r Ctrue
l~0, C

INPLS
lw0

	 


and r Ctrue
l~0, C

unfolded PLS
lw0

	 


were computed for

every level of noise. All statistics were calculated for 10

realizations. As can be seen, the mean value of the distances

between the RNPLS and ‘‘true’’ regression coefficients after 15

iterations (the first 20–100 points of the training set) is less than

those between the NPLS, or UPLS and ‘‘true’’ regression

coefficients computed for the whole training datasets (800 points),

whereas RNPLS needs up to 14 iterations (280 points) to

outperform the INPLS results. In addition, the standard deviations

of the RNPLS results are generally less than those obtained by

NPLS, INPLS, or UPLS.

The advantages of RNPLS can be explained by overfitting

suppression.

Application
The particular goal of our study is to develop an efficient

algorithm for BCI system calibration. The RNPLS algorithm was

tested on real data sets recorded during BCI experiments.

Binary BCI
Both RNPLS and generic NPLS algorithms were applied in

parallel to calibrate the binary BCI system. The data set was

collected during the binary self-paced BCI experiments on a freely

moving rat.

Figure 4. Examples of the regression coefficients. The regression coefficients C depending on the iteration number i of the RNPLS algorithm in
one of the computational experiments for the simulated dataset, level of noise 1000%.
doi:10.1371/journal.pone.0069962.g004

Figure 5. Adjustment of the RNPLS regression coefficients to
abrupt changes in observations. A) The distance r (mean and
standard deviation) between the RNPLS and ‘‘true’’ coefficients versus
the iterations of the RNPLS algorithm in the series of experiments (10
realizations of the simulated dataset, level of noise 1000%). The solution
of the RNPLS algorithm is adjusted in 15 iterations to the abrupt
changes in observation (at 21st iteration) with the forgetting factor
c~0:9. B) ‘‘True’’ coefficients before after abrupt changes at 21st

iteration. C) Example of adjusting the regression coefficients over
iterations i~20, . . . ,35.
doi:10.1371/journal.pone.0069962.g005
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The experiments were carried out by the neurophysiological

team at CEA, LETI, CLINATEC. Behavioral experiments were

based on a reward-oriented task. A rat freely moving in a cage had

the opportunity to push a pedal to activate a food dispenser. The

BCI task consisted in detection (prediction) of the pushing event by

analyzing the recording of the rat’s neuronal activity (see details in

[8]). During BCI experiments the Electrocorticogram (ECoG) (the

signal from 14 electrodes located on the surface of the cortex) and

the signal of the pedal were recorded simultaneously, down-

sampled to 1.3 kHz and band-pass filtered between 0.5 Hz and

500 Hz. The Common Average Reference (CAR) filter was

applied to eliminate a ‘‘common source’’ [27].

To form a feature tensor, each ECoG epoch was mapped to

temporal-frequency-spatial space by the continuous wavelet

transform (CWT). For each epoch j (determined by its final

moment t), electrode c, frequency f and time shift t, elements

xj,t,f ,c of the tensor X were calculated as norm of CWT

coefficients. The frequency band ½10, 300� Hz with step df~2

Hz and sliding windows t{Dt, t½ �, Dt~2 s with step dt~0:04 s,

were considered for all electrodes c~1, 2,:::, 14. The resulting

dimension of a point was 146|51|14ð Þ. The binary dependent

variable was set to one, yj~1, if the pedal was pressed at the

moment t, and yj~0 otherwise.

For the model identification, the tensor of observations was

formed from a 10 minute long recording. The tensor included 400

points corresponding to event-related epochs (50 pressing events

repeated 8 times) and randomly selected 1000 non-event epochs.

The tensor of observation was split into the training and test

tensors. Namely, 1000 randomly selected points (700 ‘‘non-events’’

and 300 ‘‘events’’) formed the training dataset, while 400 points

(300+100) were used for the test. The proportion of the classes is

chosen to avoid a class imbalance problem (e.g. [28]). Generally,

binary self-paced experiments [29] lead to imbalance classes: the

‘‘minority’’ class has a very small number of examples (class of

events), while the ‘‘majority’’ class includes a large number of cases

(class non-event). Most of the machine learning approaches are

strongly biased toward the majority class (e.g. [28] while the

correct classification of samples from the minority class is the most

important. At the same time, the non-event class should be well

presented for efficient algorithm learning. To avoid the problem,

the classes were formed in a less biased way, following [8].

To test RNPLS, the training dataset was split into disjoint

subsets with 10 and 100 points, marked as RNPLS (10) and

RNPLS (100), respectively. Next, the projectors and the predictive

models were identified. Figure 9A represents the first 2 factors

calculated by RNPLS (10). The total number of factors was

estimated to be 5 by the 10-fold cross-validation procedure. Each

factor consists of 3 projectors, corresponding to frequency,

temporal, and spatial modalities, respectively. Absolute values of

the projector’s elements define the influence of these elements on

the identified model. The weights of factors in the decision rule are

different. The relative weights of factors in the final decomposition

(coefficients b�f , of the normalized model ŷ~Tbzb01~T�b�zb01,

t�f~tf = tf
�

�

�

�, b�f~bf tf
�

�

�

�, f~1, 2,:::, F ) are demonstrated in

Figure 9B. Figure 9C shows the summarized influence of the

elements for different modalities on the predictive model according

to Modality Influence (MI) analysis [30]. For instance, in the spatial

modality the electrodes number 15 and 8 have the highest impact

on the decision rule. In the frequency modality the main

contribution is given by the frequencies band [150, 250] Hz. The

most significant interval in the temporal domain is [20.4, 20.1] s.

Figure 10 shows predicted root mean squared errors (RMSE) as a

function of the number of factors. With respect to NPLS, the

RNPLS algorithm demonstrates minimal deterioration in the

prediction quality for all numbers of factors: for RNPLS (100) it is

about 0.1%, while for RNPLS (10) it is about 0.2%. Thus, the

experiments demonstrated that the size of the analyzed data block

could be significantly reduced without essential deterioration of the

prediction quality.

Continuous BCI
The RNPLS method was also applied for decoding of the

continuous three-dimensional hand trajectories from epidural

ECoG signals of a Japanese macaque. The data is publicly

available (http://neurotycho.org/data/20100802s1epidural-

ecogfood-trackingbkentaroshimoda). The ECoG signals were

recorded (Blackrock Microsystems, Salt Lake City, UT, USA)

with a sampling rate of 1 kHz from the 64 electrodes implanted in

the epidural space of the left hemisphere of the monkey, which was

trained to retrieve foods using the right hand. The hand motion

was recorded by an optical motion capture system (Vicon Motion

Systems, Oxford, UK) with a sampling rate 120 Hz. The length of

the experiments was 15 minutes. During the experiment, the

monkey was seated in the chair with restricted head movement.

The experimenter demonstrated foods at random locations at a

distance of 20 cm for the monkey at random time intervals

(3.861.0 times per minute), and the monkey grasped the foods. A

precise description of the experiments can be found in [31]. In this

work, the unfolded PLS was applied for the continuous three-

dimensional hand trajectories reconstruction.

To test the RNPLS algorithm one recording (15 minutes,

sampling rate: 1000 Hz) was chosen randomly from the data base.

To train the algorithm, 5000 time epochs were randomly selected

among the recorded time moments. As a result, the training

dataset includes 0.5% of the entire recording. The test dataset

Table 1. Comparison of the optimal number of factors and RMSE for RNPLS, NPLS, INPLS, and UPLS.

RNPLS NPLS INPLS UPLS

Noise,

%

Number

of factors

RMSE,

%

Number

of factors

RMSE,

% t t0.01

Number

of factors

RMSE,

% t t0.01

Number

of factors

RMSE,

% t t0.01

50 8 0.1660.01 15 0.1560.01 2.23 2.88 14 0.1460.01 4.47 2.88 14 0.1560.01 2.23 2.88

100 10 0.3260.03 17 0.2960.01 3.00 3.12 15 0.3060.02 1.75 2.93 16 0.3060.02 1.75 2.93

500 8 1.660.2 15 1.560.1 1.41 3.00 9 1.560.1 1.41 3.00 11 1.560.1 1.41 3.00

1000 9 3.160.2 17 2.860.1 4.24 3.00 17 3.060.3 0.88 2.93 13 2.960.2 2.24 2.88

The difference of RMSE for RNPLS and the other methods is not statistically significant (t,t0:01) in the majority of the cases (10 from 12) according to the two-tailed
Welch’s t-test for 1% confidence level t0:01 .
doi:10.1371/journal.pone.0069962.t001
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Figure 6. Examples of regression coefficients for different methods. RNPLS, NPLS, INPLS and UPLS regression coefficients for 10 realizations
of the simulated training dataset (level of noise 1000%).
doi:10.1371/journal.pone.0069962.g006
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contains 4500 random epochs (0.45% of the entire recording) of

the same file out of training.

To form a feature tensor, each ECoG epoch was mapped to

temporal-frequency-spatial space by CWT. The frequency band

consisted of 3 sub-bands, namely, ½0:6, 7:8� Hz with step df~0:2
Hz, ½8, 48� Hz with step df~2 Hz, and ½50, 300� Hz with step

df~10 Hz. Sliding windows ½t{Dt, t�, Dt~1 s with step

dt~0:005 s were considered for all electrodes c~1, 2,:::, 64.

The resulting dimension of a point is 84|201|64ð Þ&106 vs.

10|10|64ð Þ&6400 in [31] (frequency band Hz, df~10 Hz,

time interval Dt~1 s, dt~0:1 s). Since the RNPLS algorithm

allows recursive data set processing, the restriction on the memory

consumption is less limiting.

Preprocessing techniques (chewing artifacts extraction, common

average reference filter, etc.) were not applied. To identify the

decoding model with RNPLS, the training set was split into 5

subsets of 1000 points. To validate the generalization ability, the

model was applied to the test data set. Predicted wrist motion of

the right hand was correlated with its real position. The resulting

correlation for the test data as a function of the number of factors

is shown in Figure 11. The best correlations 0.69, 0.82, and 0.79

for X -, Y -, and Z-positions are achieved for 150–175 factors. An

example of the real and predicted trajectories is given in Figure 12.

To test the RNPLS approach in the general case of tensor input

and tensor output data, we applied the proposed method for

simultaneous prediction of the monkey’s right shoulder, right

elbow, and right wrist coordinates. Both the training and the test

input tensors Xtraining and Xtest (calculated from ECoG) were not

changed, whereas the output tensors Ytraining and Ytest acquired

one more modality (shoulder, elbow, wrist). Thus, the training

dataset was X
training
k , Y

training
k

n o5

k~1
, X

training
k [<1000|84|201|64,

Y
training
k [<1000|3|3 and the test dataset was Xtest, Ytest

� �

,

Xtest
[<4500|84|201|64, Ytest

[<4500|3|3. The resulting correla-

Figure 7. The RNPLS, NPLS, INPLS, UPLS and ‘‘true’’ regression coefficients. Comparison of the regression coefficients averaged over 10
realizations of noise in the simulated dataset (level of noise 1000%). RNPLS, NPLS, INPLS, UPLS and ‘‘true’’ coefficients.
doi:10.1371/journal.pone.0069962.g007

Figure 8. Comparison of regression coefficients for different levels of noise. The mean values and the standard deviations (10 realizations
of random noise in the simulated dataset) of the distance between the ‘‘true’’ regression coefficients and RNPLS regression coefficients

r Ctrue, CRNPLS
	 


over the RNPLS recursive iterations (red lines); between the ‘‘true’’ coefficients and regression coefficients generated by the NPLS

applied to whole training datasets r Ctrue, CNPLS
	 


(blue lines); between the ‘‘true’’ coefficients and regression coefficients generated by INPLS (black
lines) and by UPLS (green lines).
doi:10.1371/journal.pone.0069962.g008
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tions between the observed and predicted coordinates are

represented in Table 2. The number of factors was equal to

200. Compared with the results obtained for the wrist only, we

found that predictions of the Y- and Z-coordinates are improved

while the X-coordinate became slightly worse.

In general, the quality of the prediction of the X-coordinates

(left/right movement) for all analyzed parts of the right hand was

essentially worse than prediction of Y-coordinates (backward/

forward movement) and Z-coordinates (up/down movement). A

possible explanation of this result is different types of muscular

efforts, and therefore different levels of their representation in the

Figure 9. RNPLS (10) calibration. A) The first and the second factors (which are the most contributive out of 5): frequency, temporal and spatial
projections. The values of elements of the spatial projector are shown in colors according to the color bar and positions of the electrodes are
indicated by numbers. B) Factor weights in the final decomposition which are the coefficients b�i of the normalized model in the space of latent
variables. C) Impact on the predictive model of different modalities’ components according to MI analysis; the spatial modality is represented by the
graph and the corresponding color map. Recordings from binary self-paced BCI experiments in freely moving rat.
doi:10.1371/journal.pone.0069962.g009

Figure 10. Comparison of prediction error RNPLS vs. NPLS.
RMSE as a function of the number of factors for the test dataset. RNPLS
(10) – the training set is split into 10-point disjoint subsets, RNPLS (100)
– the training dataset is split into 100-point disjoint subsets, NPLS
(1000) – generic NPLS using the whole training dataset. Recordings
from binary self-paced BCI experiments in freely moving rat.
doi:10.1371/journal.pone.0069962.g010

Figure 11. Correlation between the real and predicted
coordinates. Correlation between the real and predicted coordinates
as a function of the number of RNPLS factors for the test data of 3D
wrist position of the monkey’s right hand.
doi:10.1371/journal.pone.0069962.g011
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ECoG recordings.

Discussion

Neuronal signal decoding represents a challenging task. Recent

promising results in the BCI area (e.g., [32–36]) have brought

clinical applications to a realistic task. For real-life applications, the

need for an easy to use BCI system is one of the crucial problems.

The recursive algorithm presented in this article contributes

towards solving the problem of adaptive fast and easy BCI system

calibration.

The proposed RNPLS performs multimodal data analysis.

While several tensor-based methods were recently efficiently

applied in BCI studies, all of them are offline methods and

require access to the entire data set. RNPLS unites the recursive

calculation scheme with multimodal data representation and can

be applied online. It uses a single-pass blockwise tensor-data

processing in contrast to multipass blockwise Iterative NPLS [8],

which runs over the entire recording to estimate each latent

variable and corresponding set of projectors. Moreover, RNPLS

allows adaptive learning by introducing the forgetting factor.

One of the important problems of sequential algorithms could

be the degradation of results caused by consecutive calculation. To

examine this question, the prediction accuracy of the proposed

RNPLS algorithm was studied and compared with generic offline

NPLS as well as two other algorithms of the PLS family (INPLS

and Unfolded PLS) on artificial and real data sets. In both cases

the generalization abilities of tested algorithms are comparable.

We have not observed significant degradation in prediction error

caused by recursive calculation.

At the same time, over the set of computational experiments

recursive blockwise RNPLS provides the best approximation of

the ‘‘true’’ model coefficients and with minimal variance. It is

interesting to note that although coefficient estimates of all

algorithms of the PLS family are biased, both blockwise INPLS

and RNPLS provide more stable and less biased coefficients in

comparison to NPLS and Unfolded PLS. While the ‘‘true’’ model

is not necessarily the best in the sense of expectation of prediction

error (e.g., [37]), the appropriate coefficient estimation is

nevertheless of great importance for the interpretation of results.

Finally, the RNPLS approach demonstrates fast coefficients

convergence for all tested levels of noise and is considerably noise-

steady.

The recursive algorithm was compared to the generic NPLS in

terms of accuracy and convergence rate on the real data of BCI

experiments. In binary self-paced BCI in freely moving animals

the RNPLS algorithm demonstrated minimal deterioration in the

prediction quality with respect to NPLS: 0.2% using the 10 point

blockwise algorithm and 0.1% using the 100 point blockwise

algorithm. Treatment of smaller blocks of data does not

significantly affect the generalization ability of the model. At the

same time, a lower number of relevant factors was extracted by

RNPLS. The 10-fold cross-validation procedure indicated 8 as the

optimal number of factors for generic NPLS and only 5 factors for

RNPLS. Nevertheless, taking into account the requirements for

computation resources (memory), the blockwise method is

favorable. The factors extracted by RNPLS algorithms are very

similar to the factors reported in [8]. The same electrode has the

greatest impact on the decision rule (,16% of the extracted

information for the generic approach and ,19% for the recursive

algorithm). In both cases, high frequencies [100, 300] Hz provided

the main contribution to the decision (,86% and ,91%). In the

time domain, the interval [20.5, 0] s before the event is the most

significant (,68% and ,78% of the influence). Let us note that

less informative variables are better suppressed by the recursive

algorithm. Namely, the time interval of more than 1 s before a

movement is almost completely inhibited by RNPLS, which better

corresponds to the physiology. Moreover, the computational

efficiency of the resultant model is acceptable for real-time

applications [8].

Another real-life problem in testing the recursive algorithm was

the decoding of the continuous three-dimensional hand trajectory

from epidural ECoG signals. The movement of the hand was

represented by 3D positions of the shoulder, the elbow, and the

wrist of the monkey. Thus, the motion was characterized by 9

degrees of freedom. Rigorous comparison of the proposed

approach with results reported by other authors is complicated

by variation of testing data. Nevertheless, the accuracy of

prediction (correlations 0.63, 0.85, 0.82 for X -, Y -,Z- positions

of wrist) is comparable with results reported by other authors using

the same or a similar data base: 0.4760.12, 0.5660.10,

0.6860.06 with Unfold-PLS [31]; 0.5260.13, 0.6760.04,

0.7460.04 with Higher-Order Partial Least Squares [3,35];

0.5060.13, 0.6760.04, 0.7360.04 with NPLS [35]; 0.5060.12,

0.6760.04, 0.7460.03 with Unfold-PLS [35]. The good accuracy

may result from high resolution of data analyses which is achieved

due to consecutive calculation. The large number of factors (150–

175 vs. 36614 in [31]) can be explained by the fact that

presentation of data by tensors of order one (used in NPLS

algorithms) required more factors than matrix decomposition with

PLS. The continuous structure of the output signal could

contribute to the significant number of factors. For instance, for

the case of the binary response variables, the number of factors for

the RNPLS approach did not exceed 10.

Figure 12. Example of the observed and predicted trajectories.
Example of the observed and predicted trajectories for Y -coordinate of
the monkey’s right wrist. The predicted model is identified by the
RNPLS approach applied for the case of tensor input and matrix output
of 3D coordinates for wrist position.
doi:10.1371/journal.pone.0069962.g012

Table 2. Correlation between predicted and observed
coordinates of the monkey’s right hand (test dataset, N = 4500
samples).

corrx t corry t Corrz t

Shoulder 0.62 85.67 0.80 134.13 0.85 159.65

Elbow 0.54 72.67 0.84 153.67 0.83 148.19

Wrist 0.63 87.51 0.85 159.65 0.82 143.15

t-test demonstrates the significance of the correlation (1% confidence level
t0:01~2:58).
doi:10.1371/journal.pone.0069962.t002
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Limitations of the Present Study and Future Work
The RNPLS algorithm applies a blockwise recursive calculation

schema of Qin’s RPLS algorithm and inherits its limitations. From

the theory of Qin’s recursive PLS, the number of factors F should

provide a full rank of matrix of latent variables (the residuals of

tensor X factorization should be essentially zero: EF

�

�

�

�ƒe, see

[18]). Otherwise it could result in numerical error. RNPLS inherits

this point of Qin’s algorithm. Similar to RPLS, the number of

factors in Recursive NPLS should be large enough to extract the

essential information. It could be chosen with cross-validation

[18].

Some informative features could be weakly represented and

finally lost due to insufficient size of blocks. To prevent this

situation, the size of the data fragments should be adjusted

depending on the number of informative factors.

In addition, the forgetting factor should be determined in

accordance with the variability of the analyzed data.

The perspective of this study is preclinical (in the monkey) and

clinical BCI applications. Simulation of decoding of neuronal

activity demonstrates the compatibility of the predictive model

with real time requirements. After efficient implementation, the

algorithm will be used in the CLINATECH BCI project which

includes the realization of a fully implantable device, WIMAGI-

NEH, to measure and transmit ECoG data wireless [38] to a

terminal, and the means for a tetraplegic subject to pilot effectors,

such as fragments of exoskeleton. Blockwise RNPLS allows higher

resolution (frequency and temporal) of the BCI predictive model

than other approaches including tensor based methods [31,35]. In

addition, it will help to take into account session-to-session BCI

signal variability with fast system adjustment instead of full

recalibration and to consider intra-session signal variations

(degradation due to fatigue, changes caused by brain plasticity,

disturbance from the outside world, etc.) The study of the

algorithm’s adaptation to session-to-session, subject-to-subject

variability with publicly available monkey ECoG recordings is

our nearest perspective.

Conclusion
In the current paper we consider the method of the adaptive

multimodal data flow processing in the most general case of

tensor-input/tensor-output data, whose properties were studied in

detail for different aspects. A detailed pseudocode is provided

which substantially facilitates the understanding and implementa-

tion of the proposed approach.

Contrary to other multimodal data treatment methods, such as

unfolded PLS, NPLS, INPLS, etc., the RNPLS allows sequential

blockwise adaptive learning. Due to significant variability of the

neural data, this property is of great importance for the real-time

BCI applications, where complete recalibration of the system is

time-consuming and cannot be done frequently.

For the obvious demonstration of the convergence properties,

they were explored on the artificial datasets. The experiment

demonstrated fast and stable convergence. Tested with noisy data

(the level of the noise was up to 1000%), the algorithm showed

robustness and significant noise steadiness.

At the same time, the performance of the sequential algorithm is

demonstrated to be comparable with the offline algorithms of the

PLS family. In both simulated and real experiments, RNPLS

allows one-pass online regression reconstruction without loss of

generality. Note that all PLS family algorithms provide biased

estimates of regression coefficients [39]. However, the recursive

algorithm demonstrated better stability, lower variability and less

biased coefficients, regarding the ‘‘true’’ ones.

RNPLS method demonstrates promising results in BCI studies.

Generalization of the algorithm to the case of tensor-input/tensor-

output data allows efficient continuous movement reconstruction

in several points (e.g. wrist, elbow, shoulder) simultaneously.

The algorithm can be efficient in many other applications for

the adaptive modeling of high dimensional tensor flows.

Supporting Information

Algorithm S1 RNPLS.

(DOC)
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