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Abstract: In this paper, the recursive form of an optimal finite impulse response filter is proposed for
discrete time-varying state-space models. The recursive form of the finite impulse response filter is
derived by employing finite horizon Kalman filtering with optimally estimated initial conditions. The
horizon initial state and its error covariance on the horizon are optimally estimated by using recent
finite measurements, in the sense of maximum likelihood estimation, then initiating the finite horizon
Kalman filter. The optimality and unbiasedness of the proposed filter are proved by comparison with
the conventional optimal finite impulse response filter in batch form. Moreover, an adaptive FIR
filter is also proposed by applying the adaptive estimation scheme to the proposed recursive optimal
FIR filter as its application. To evaluate the performance of the proposed algorithms, a computer
simulation is performed to compare the conventional Kalman filter and adaptive Kalman filters for
the gas turbine aircraft engine model.

Keywords: finite impulse response; recursive estimation; Kalman filter; adaptive filtering

1. Introduction

The Kalman filter has been used as a standard tool to deal with state estimation of
linear state-space models. However, since the Kalman filter has infinite impulse response
(IIR) structure, which makes use of whole measurements from the initial time to the current,
model uncertainties which come from the limited knowledge of the system model and
the statistics of the noises and computation errors may accumulate in the estimated state.
These could originate the divergence problem in the Kalman filter [1–3]. In order to
prevent divergence problems, finite impulse response (FIR) filters have been used as an
alternative to the Kalman filter [4–20]. Since FIR filters estimate the states by using finite
measurements on the most recent time interval, these filters are known to be more robust
against modeling uncertainties and numerical errors that cause of divergence problem in
Kalman filter. Moreover, due to their FIR structure, FIR filters have good properties such as
built-in bounded input/bounded output (BIBO) stability and fast tracking speed.

However, despite the aforementioned advantages of FIR filters, their complicated
derivation and batch form might lead to computational inefficiency and limitations in
further developments. Since the Kalman filter is well-known and has recursive form, which
can give effective computation methods to the FIR filter, the recursive form of FIR filters
were introduced by modifying the Kalman filter [7–16]. In [7,8], the receding horizon
Kalman (RHK) filters, whose concept is introduced in Figure 1a, and its fast iteration
method, are proposed for time-invariant systems. The filter equations of RHK filters are
easy to understand and many useful Kalman filtering methods could be directly applied to
FIR filtering problems for improving the performance of FIR filters because they are derived
by combining the Kalman filter algorithm and receding horizon strategy. Since RHK filters
have exactly the same structure as the Kalman filter on the finite estimation horizon, the
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RHK filtering problem can be thought as a recursive finite horizon Kalman filtering problem
with special initial conditions. Thus, the initial state and its error covariance for RHK filters
are very important factors for the performance of estimation. However, RHK filters were
derived with heuristic assumptions on initial conditions such as the infinite initial error
covariance. In the derivation of the RHK filter, inversion of the state transition matrix
is used in the iterative calculation to estimate state and error covariance matrix. For an
infinite covariance, the inverse matrix becomes singular and the estimation problem may
not be feasible. Furthermore, the optimality of RHK filters is not clear in their derivations,
and they cannot be applied to time-varying systems. On the other hand, Kalman-like
unbiased FIR (KUFIR) filters, whose concept is introduced in Figure 1b, are also proposed
for the recursive FIR filtering [9–16]. KUFIR filtering is a recursive Kalman-like algorithm
that ignores the noise statistics and initial conditions. These are ignored by determining
the optimal horizon length which minimize the mean-square estimation error, then the
recursive prediction and correction procedure are repeated without using noise statistics.
Since the optimal horizon length is the only design parameter of the KUFIR filter, the
determination of optimal horizon length is a major problem, hence, several algorithms
have been developed to find the optimal horizon length. In [9], the optimal horizon
length was derived for the l-degree polynomial model by minimizing the mean-square
estimation error. In [11], it was measured using the correlation method, and in [12], it was
determined by using a bank of KUFIR filters operating in parallel. For fast computation of
the optimal horizon length, an adaptive KUFIR filter was also suggested for time-invariant
systems in [15]. However, even though the horizon initial state can be ignored, the state
at time k− Nopt + K in Figure 1b considered as an actual initial state is required at each
estimation horizon, and they are obtained by calculating the batch form of the filter equation.
In addition to the aforementioned computational inefficiency, these approaches have a
common disadvantage due to the fact that heavy computational load is also required
to specify the optimal horizon length, because it must be obtained for each horizon in
time-varying systems. Moreover, the optimality of KUFIR filters is not guaranteed and the
horizon length cannot be adjusted.

(a)

(b)

Figure 1. (a) The concept of RHK filter. (b) The concept of KUFIR filter.

Therefore, in this paper, a new recursive optimal FIR (ROFIR) filter is proposed for
linear time-varying systems in order to overcome the disadvantages of previous methods
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for recursive FIR filtering. The ROFIR filter is derived by employing the finite horizon
Kalman filter and the optimal and unbiased initial state estimation. The initial state and
its corresponding error covariance on the estimation horizon are obtained by solving the
maximum likelihood estimation problem, then they initiate the finite horizon Kalman
filter. Since the initial state is estimated from the measurements at each finite estimation
horizon, the ROFIR filter does not require any priori initial information. In addition, the
proposed ROFIR filter is derived without assumption on a nonsingular state-transition
matrix and has less computational burden than the KUFIR filters for time-varying systems.
Furthermore, the ROFIR filter provides the best linear unbiased estimate (BLUE) of the
state on the finite estimation horizon. In addition, since AFIR filters in previous studies
were designed in batch form, they were mostly focused on how to adjust the horizon
length [17–19]. To the author’s best knowledge, there are no results on the adaptive FIR
(AFIR) filters which consider noise statistics, thus, we propose a new adaptive FIR filtering
algorithm by employing a sequential noise statistics estimation technique as an application
of the proposed ROFIR filter.

This paper is organized as follows: In Section 2, the ROFIR filter is proposed for
linear time-varying state-space models and its optimality and unbiasedness are proved.
Moreover, the AFIR filter is also proposed by applying the modified sequential noise
statistics estimation method to the proposed ROFIR filter. In Section 3, the performance
and effectiveness of the proposed ROFIR and AFIR filters are shown and discussed via
computer simulations. Finally, our conclusions are presented in Section 4.

2. Recursive Optimal FIR Filter and Adaptive FIR Filter
2.1. Recursive Optimal FIR Filter with Optimally Estimated Initial Conditions

Consider the following discrete time-varying state-space model:

xk+1 = Akxk + wk, (1)

yk = Ckxk + vk, (2)

where xk is the state vector, yk is the measurement, wk and vk are the process noise and
measurement noise, respectivley. We assume that wk and vk are zero-mean white Gaussian
and mutually uncorrelated. These noises are uncorrelated with the initial state xk0 and Qk
and Rk denote the covariance matrices of wk and vk, respectively. The pair (Ak, Ck) of the
system (1) and (2) is assumed to be observable so that all modes are observed at the output
and stabilized observers can be constructed.

On the horizon [k− N k], the finite number of measurements is expressed as a batch
form as follows:

YN,k−1 = C̃k−1xk−N + G̃k−1Wk−1 + Vk−1. (3)

YN,k−1 is the finite number of measurements defined as:

Yi,k−j
4
= [ yT

k−i yT
k−i+1 · · · yT

k−j ]
T (i ≥ j). (4)

The finite measurement noise vector Vk−1 and the finite process noise vector Wk−1 are
defined by replacing y· in (4) with v· and w·, respectively, and C̃k−1 and G̃k−1 are defined as:

C̃k−i
4
=


Ck−N

Ck−N+1ΦN,N
...

Ck−iΦi+1,N

, (5)
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G̃k−i
4
=



0 0 0 · · · 0 0
Ck−N+1 0 0 · · · 0 0

Ck−N+2ΦN−1,N−1 Ck−N+2 0 · · · 0 0
Ck−N+3ΦN−2,N−1 Ck−N+3ΦN−2,N−2 Ck−N+3 · · · 0 0

...
...

...
. . .

...
...

Ck−iΦi+1,N−1 Ck−iΦi+1,N−2 Ck−iΦi+1,N−3 · · · Ck−i 0


, (6)

where Φi,j = Ak−i · · · Ak−j+1 Ak−j (i ≤ j).
The estimate of the horizon initial state xk−N at time k can be represented to be linear

with finite measurements on the recent horizon [k− N k] as

x̂k−N|k =
k−1

∑
i=k−N

hk−iyi = HkYN,k−1, (7)

where Hk
4
= [ hk−N hk−N+1 · · · hk−1 ] is the gain matrix of initial state estimator.

The optimally estimated initial state x̂k−N|k can be obtained by the following maximum
likelihood criterion:

max
x̂k−N|k

p(xk−N | YN,k−1). (8)

p(xk−N | YN,k−1) in (8) is the conditional probability density function of initial state xk−N
given YN,k−1 as follows:

p(xk−N | YN,k−1) =
1√

(2π)N | Πk−1 |
e−

1
2 ST

k−1Π−1
k−1Sk−1 , (9)

where

Sk−1
4
= YN,k−1 − C̃k−1xk−N , (10)

Πk−1
4
= G̃k−1Q̃N,1G̃T

k−1 + R̃N,1, (11)

Q̃i,j
4
= diag

(
Qk−i, Qk−i+1, · · · , Qk−j

)
(i ≥ j), (12)

R̃i,j
4
= diag

(
Rk−i, Rk−i+1, · · · , Rk−j

)
(i ≥ j). (13)

To maximize p(xk−N | YN,k−1), we can equivalently maximize ln p(xk−N | YN,k−1), or
minimize the following cost function

Jk =
1
2

ST
k−1Π−1

k−1Sk−1. (14)

By taking the derivative of Jk with respect to xk−N as

∂Jk
∂xk−N

= C̃T
k−1Π−1

k−1Sk−1 = 0, (15)

then the optimal estimate of the horizon initial state x̂k−N|k can be obtained as

x̂k−N|k = HkYN,k−1 = (C̃T
k−1Π−1

k−1C̃k−1)
−1C̃T

k−1Π−1
k−1YN,k−1. (16)



Appl. Sci. 2022, 12, 2757 5 of 16

From (3) and (16), the estimation error ek−N can be represented as

ek−N = xk−N − x̂k−N|k
= (I − (C̃T

k−1Π−1
k−1C̃k−1)

−1C̃T
k−1Π−1

k−1C̃k−1)xk−N
−(C̃T

k−1Π−1
k−1C̃k−1)

−1C̃T
k−1Π−1

k−1(G̃k−1Wk−1 + Vk−1)

= −(C̃T
k−1Π−1

k−1C̃k−1)
−1C̃T

k−1Π−1
k−1(G̃k−1Wk−1 + Vk−1).

(17)

By taking the expectation on estimation error ek−N , we have

E[ek−N] = (C̃T
k−1Π−1

k−1C̃k−1)
−1C̃T

k−1Π−1
k−1(G̃k−1E[Wk−1] + E[Vk−1]) = 0, (18)

which shows that the maximum likelihood estimate of the initial state on the horizon is
unbiased. Furthermore, the initial error covariance Pk−N can be obtained with the aid of
(11) as

Pk−N = E{ek−NeT
k−N}

=
{
(C̃T

k−1Π−1
k−1C̃k−1)

−1C̃T
k−1Π−1

k−1

}
Πk−1

×
{
(C̃T

k−1Π−1
k−1C̃k−1)

−1C̃T
k−1Π−1

k−1

}T

= (C̃T
k−1Π−1

k−1C̃k−1)
−1.

(19)

In order to obtain recursive form of the optimally estimated initial conditions, define
the following matrices:

Ĉi,k−1
4
=


Ck−i+1Φi,i

Ck−i+2Φi−1,i
...

Ck−2Φ3,i
Ck−1Φ2,i

 =

[
Ck−i+1

Ĉi−1,k−1

]
Ak−i, (20)

Ĝi,k−1
4
=


Ck−i+1 0 · · · 0

Ck−i+2Φi−1,i−1 Ck−i+2 · · · 0
Ck−i+3Φi−2,i−1 Ck−i+3Φi−2,i−2 · · · 0

...
...

...
...

Ck−1Φ2,i−1 Ck−1Φ2,i−2 · · · Ck−1

, (21)

Π̂i,k−1 = Ĝi,k−1Q̃i−1,1ĜT
i,k−1 + R̃i−1,1, (22)

ŵi,k−1 = ĈT
i,k−1Π̂−1

i,k−1Yi−1,k−1, (23)

P̂i,k−1 = Ĉi,k−1Π̂−1
i,k−1ĈT

i,k−1. (24)

Then, the optimal estimate of the horizon initial state x̂k−N|k in (16) and error covari-
ance Pk−N in (19) can be rewritten as

x̂k−N|k = Pk−N

(
CT

k−N R−1
k−Nyk−N + ŵN,k−1

)
, (25)

Pk−N = (CT
k−N R−1

k−NCk−N + P̂N,k−1)
−1. (26)

Although the optimal initial conditions are obtained, they have computationally
inefficient batch forms. In order to obtain the recursive form of x̂k−N|k and Pk−N in (25)
and (26), ŵN,k−1 and P̂N,k−1 should be calculated recursively.
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The recursive equations of ŵN,k−1 and P̂N,k−1 can be obtained as follows:

P̂i+1,k−1 = ĈT
i+1,k−1Π̂−1

i+1,k−1Ĉi+1,k−1

= ĈT
i+1,k−1

(
Ĝi+1,k−1Q̃i,1ĜT

i+1,k−1 + R̃i,1

)−1
Ĉi+1,k−1

= AT
k−i−1

[
Ck−i

Ĉi,k−1

]T
([

Rk−i 0
0 Π̂i,k−1

]
+

[
Ck−i

Ĉi,k−1

]
Qk−i

[
Ck−i

Ĉi,k−1

]T
)−1

×
[

Ck−i
Ĉi,k−1

]
Ak−i−1

= AT
k−i−1CT

k−iR
−1
k−iCk−i Ak−i−1 + AT

k−i−1P̂T
i,k−1 Ak−i−1 − AT

k−i−1

×
(

CT
k−iR

−1
k−iCk−i + P̂i,k−1

)[
Q−1

k−i + AT
k−i−1

(
CT

k−iR
−1
k−iCk−i + P̂i,k−1

)
×Ak−i−1

]−1(
CT

k−iR
−1
k−iCk−i + P̂i,k−1

)
Ak−i−1,

(27)

ŵi+1,k−1 = ĈT
i+1,k−1Π̂−1

i+1,k−1Yi,k−1,

= AT
k−i−1

[
Ck−i

Ĉi,k−1

]T
([

Rk−i 0
0 Π̂i,k−1

]
+

[
Ck−i

Ĉi,k−1

]
Qk−i

[
Ck−i

Ĉi,k−1

]T
)−1

×
[

yk−i
Yi−1,k−1

]
= AT

k−i−1CT
k−iR

−1
k−iyk−i + AT

k−i−1ŵi,k−1 − AT
k−i−1

(
CT

k−iR
−1
k−iCk−i + P̂i,k−1

)
×
[

Q−1
k−i + AT

k−i−1

(
CT

k−iR
−1
k−iCk−i + P̂i,k−1

)
Ak−i−1

]−1

×
(

CT
k−iR

−1
k−iyk−i + ŵi,k−1

)
,

(28)

with P̂1,k−1 = 0, ŵ1,k−1 = 0, and 1 ≤ i ≤ N − 1.
Finally, the ROFIR filter can be represented by applying the estimated horizon initial

state (25) and its error covariance (26) to the one-step-ahead prediction dynamics of the
Kalman filter, as follows:

x̂k−N+i+1|k = Ak−N+i(I − Kk−N+iCk−N+i)x̂k−N+i|k + Ak−N+iKk−N+iyk−N+i, (29)

where

Kk−N+i = Pk−N+i|kCT
k−N+i(Ck−N+iPk−N+i|kCT

k−N+i + Rk−N+i)
−1, (30)

Pk−N+i+1|k = Ak−N+iPk−N+i|k AT
k−N+i + Qk−N+i − Ak−N+iKk−N+i

×(Ck−N+iPk−N+i|kCT
k−N+i + Rk−N+i)KT

k−N+i A
T
k−N+i.

(31)

2.2. Opimallity and Unbiasdness of Recursive Optimal FIR Filter

In this section, the optimality and unbaisedness of the proposed ROFIR filter is verified.
Since the conventional optimal FIR filter is optimal and provides unbiased estimate in the
finite horizon, the optimality and unbiasedness of the proposed ROFIR filter can be verified
by showing the equality with the conventional optimal FIR filter.

To begin with, the best linear unbiased FIR filter for linear time-varying state space
is introduced. The best linear unbiased FIR filter is designed to have the properties of
unbiasedness and optimality by design as per the following lemma.

Lemma 1 ([21]). For linear time-varying state-space model (1) and (2), the best linear unbiased
FIR filter is obtained as a linear function of finite measurements on the horizon [k− N k]:

x̂k|k = HkYN,k−1, (32)
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where the filter gain matrix Hk, chosen to minimize the estimation error variance with unbiased
constraint E[xk] = E[x̂k|k], is obtained as

Hk = Mk

[
W1k W2k
W2

T
k W3k

]−1[ C̃T
k−1

G̃T
k−1

]
R̃−1

N,1, (33)

with
Mk =

[
Φ1,N Φ2,N · · · ΦN,N I

]
, (34)

W1k = C̃T
k−1R̃−1

N,1C̃k−1, (35)

W2k = C̃T
k−1R̃−1

N,1G̃k−1, (36)

W3k = G̃T
k−1R̃−1

N,1G̃k−1 + Q̃−1
N,1. (37)

Next, the finite horizon Kalman filter on the horizon [k− N k] can be represented as
following theorem.

Theorem 1. On the horizon [k − N k], a batch form of finite horizon Kalman filter can be
obtained as

x̂k|k = Mk

[
W1k + P−1

k−N W2k
W2

T
k W3k

]−1([
P−1

k−N
0

]
xk−N +

[
C̃T

k−1
G̃T

k−1

]
R̃−1

N,1YN,k−1

)
. (38)

Proof of Theorem 1. By using the induction method, we can obtain a batch form of the
finite horiozon Kalman filter as follows.

x̂i|k and Pi can be obtained from x̂i−1|k and Pi−1 by substuting the Kalman gain matrix
and covariance matrix into dynamic equation of Kalman filter as

x̂i|k =

[
Ai−1 − Ai−1Pi−1CT

i−1

(
Ri−1 + CT

i−1Pi−1Ci−1

)−1
Ci−1

]
x̂i−1|k

+Ai−1Pi−1CT
i−1(Ri−1 + Ci−1Pi−1CT

i−1)
−1yi−1, (39)

Pi = Ai−1Pi−1 AT
i−1 + Qi−1 − Ai−1Pi−1CT

i−1
(

Ri−1 + Ci−1Pi−1CT
i−1
)−1

×Ci−1Pi−1 AT
i−1,

(40)

where i is used instead of k− N + i for simple notation.
By defining notations Li, Ni, and Si as

Li =

[
C̃T

i R̃−1
N,N−i+1C̃i + P−1

0 C̃T
i R̃−1

N,N−i+1G̃o,i

G̃o,iR̃−1
N,N−i+1C̃i G̃T

o,iR̃
−1
N,N−i+1G̃o,i + Q̃−1

N,N−i+2

]
, (41)

Ni =

[
C̃T

i R̃−1
N,N−i+1C̃i + P−1

0 C̃T
i R̃−1

N,N−i+1G̃i

G̃iR̃−1
N,N−i+1C̃i G̃T

i R̃−1
N,N−i+1G̃i + Q̃−1

N,N−i+1

]
, (42)

Si =

[
P−1

0
0

]
x̂i|k +

[
C̃T

i
G̃T

i

]
R̃−1

N,N−i+1YN,k−N+i, (43)

where G̃o,i is defined by removing the last zero column from G̃i, the Equations (39) and (40)
can be rewritten as

x̂i|k = Mi N−1
i Si, (44)

Pi = Mi N−1
i MT

i . (45)
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For i = 1, x̂1|k can be represented with initial state x0 and covarinace P0 as

x̂1|k = A0x0 + A0P0CT
0 (R0 + C0P0CT

0 )
−1(y0 − C0x0)

=
[

A0 − A0P0CT
0
(

R0 + C0P0CT
0
)−1C0

]
x0

+A0P0CT
0 (R0 + C0P0CT

0 )
−1y0

= M1N−1
1 S1,

(46)

and P1 is calculated as

P1 = A0P0 AT
0 + Q0 − A0P0CT

0
(

R0 + C0P0CT
0
)−1C0P0 AT

0

= A0

(
P−1

0 + CT
0 R−1

0 C0

)−1
AT

0 + Q0,

=
[

A0 I
][ P−1

0 + CT
0 R−1

0 C0 0
0 Q−1

0

]−1[
A0 I

]T

= M1N−1
1 MT

1 .

(47)

For i + 1, x̂i+1|k can be calculated from x̂i|k as

x̂i+1|k =
[

Ai − AiPiCT
i
(

Ri + CiPiCT
i
)−1Ci

]
x̂i|k

+AiPiCT
i (Ri + CiPiCT

i )
−1yi

= Ai Mi

[
N−1

i − N−1
i MT

i CT
i

(
Ri + Ci Mi N−1

i MT
i CT

i

)−1
Ci Mi N−1

i

]
Si

+Ai Mi N−1
i MT

i CT
i

(
Ri + Ci Mi N−1

i MT
i CT

i

)−1
yi

= Ai MiL−1
i Si + Ai MiL−1

i MT
i CT

i R−1
i yi

= Ai MiL−1
i

(
Si + MT

i CT
i R−1

i yi

)
=

[
Ai Mi I

][ L−1
i 0
0 Qi

]
Si+1

= Mi+1N−1
i+1Si+1,

(48)

and Pi+1 can be obtained from Pi as

Pi+1 = Ai

[
Pi − PiCT

i
(

Ri + CiPiCT
i
)−1CiPi

]
AT

i + Qi

= Ai Mi

[
N−1

i − N−1
i MT

i CT
i

(
Ri + Ci Mi N−1

i MT
i CT

i

)−1

×Ci Mi N−1
i

]
MT

i Ai + Qi

= Ai Mi

(
Ni + MT

i CT
i R−1

i Ci Mi

)−1
MT

i Ai + Qi

= Ai MiL−1
i MT

i Ai + Qi
= Mi+1N−1

i+1MT
i+1.

(49)

This completes the proof.

Finally, it can be shown that the finite horizon Kalman filter with estimated initial
conditions is equivalent to the conventional optimal FIR filter (32) by applying the estimated
initial state (16) and error covariance (19) to the finite horizon Kalman filter (38) as per the
following theorem.

Theorem 2. The optimal FIR filter (32) can be obtained by replacying xk−N and Pk−N in the finite
Kalman filter (38) with the estimated initial conditions (16 ) and (19), respectively.
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Proof of Theorem 2. Π−1
k−1 in (11) can be represented as

Π−1
k−1 =

(
G̃k−1Q̃N,1G̃T

k−1 + R̃N,1

)−1

= R̃−1
N,1 − R̃−1

N,1G̃k−1

(
G̃T

k−1R̃−1
N,1G̃k−1 + Q̃−1

N,1

)−1
G̃T

k−1R̃−1
N,1.

(50)

By using (35)–(37) and (50), P−1
k−N and P−1

k−N x̂k−N in (38) can be rewritten as

P−1
k−N = C̃T

k−1Π−1
k−1C̃k−1

= C̃T
k−1

{
R̃−1

N,1 − R̃−1
N,1G̃k−1

(
G̃T

k−1R̃−1
N,1G̃k−1 + Q̃−1

N,1

)−1
G̃T

k−1R̃−1
N,1

}
C̃k−1

= W1k −W2kW3
−1
k W2

T
k ,

P−1
k−N x̂k−N = P−1

k−N Pk−NC̃T
k−1Π−1

k−1

= C̃T
k−1

{
R̃−1

N,1 − R̃−1
N,1G̃k−1

(
G̃T

k−1R̃−1
N,1G̃k−1 + Q̃−1

N,1

)−1
G̃T

k−1R̃−1
N,1

}
= C̃T

k−1R̃−1
N,1YN,k−1 −W2kW3

−1
k G̃T

k−1R̃−1
N,1YN,k−1,

(51)

respectively.
Then, we can obtain the following relations by applying (51) to the right side of

Equation (38):

Mk

[
W1k + P−1

k−N W2k
W2

T
k W3k

]−1([
P−1

k−N
0

]
x̂k−N +

[
C̃T

k−1
G̃T

k−1

]
R̃−1

N,1YN,k−1

)

= Mk

[
W1k + P−1

k−N W2k
W2

T
k W3k

]−1[
2C̃T

k−1R̃−1
N,1YN,k−1 −W2kW3

−1
k G̃T

k−1R̃−1
N,1YN,k−1

G̃T
k−1R̃−1

N,1YN,k−1

]

= Mk

[
W1k + P−1

k−N W2k
W2

T
k W3k

]−1[
2I W2kW3

−1
k

0 I

][
C̃T

k−1
G̃T

k−1

]
R̃−1

N,1YN,k−1

= Mk

[
W1k W2k
W2

T
k W3k

]−1[
C̃T

k−1
G̃T

k−1

]
R̃−1

N,1YN,k−1,

(52)

This completes the proof.

2.3. Adaptive FIR Filter with Sequential Noise Statistics Esitmation

Since the structure of the proposed ROFIR filter is exactly same as the Kalman filter on
the horizon, many useful techniques of Kalman filtering can be applied to the the proposed
ROFIR filter for improving the performance of FIR filter. In this section, we propose an
AFIR filter as an application of the proposed ROFIR filter.

By applying modified sequential noise statistics esitmation method introduced in
Figure 2 to ROFIR filter, an AFIR filter can be obtained as follows.
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Figure 2. The concept of modified sequential noise statistics estimation in AFIR filter.

Firtly, consider the linear measurement state relationship to estimate the measure-
ment noise statistics. On the horizon [k− N − 1 k− 1], i-th approximation sample of the
measurement noise, rk−N+i|k−1 can be represented as

rk−N+i|k−1 = yk−N+i − Ck−N+i Ak−N+i x̂k−N+i−1|k−1. (53)

An unbiased estimate of the initial mean of the measurement noise at time k can be
defined as

r̂k−N|k =
1
N

N

∑
i=1

rk−i+1|k−1, (54)

where rk|k−1 = yk − Ck Ak x̂k−1|k−1.
Then, the unbiased estimation of initial variance Cr,k−N|k can be obtained as

Ĉr,k−N|k =
1

N − 1

N

∑
i=1

(rk−i|k−1 − r̂k−N|k)(rk−i|k−1 − r̂k−N|k)
T . (55)

By using the expectation of Cr,k−N|k as

E
(

Ĉr,k−N|k

)
=

1
N

N

∑
i=1

γk−i|k−1 + Rk−N , (56)

the unbiased estimate of the initial measurement noise covariance R̂k−N|k can be obtained as

R̂k−N|k = 1
N−1 ∑N

i=1

(
(rk−i|k−1 − r̂k−N|k)(rk−i|k−1 − r̂k−N|k)

T

−N−1
N γk−i|k−1

)
,

(57)

where γk−i|k−1 = Ck−iPk−i|k−1CT
k−i.
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The mean and covariance of the measurement noise can be obtained on the horizon
[k− N k] as

r̂k−N+i|k = r̂k−N+i−1|k +
1
N
(rk−N+i|k − rk−N+i|k−1), (58)

R̂k−N+i|k = R̂k−N+i−1|k +
1

N−1

(
(rk−N+i|k − r̂k−N+i|k)

×(rk−N+i|k − r̂k−N+i|k)
T − (rk−N+i|k−1 − r̂k−N+i|k)

×(rk−N+i|k−1 − r̂k−N+i|k)
T + 1

N (rk−N+i|k − rk−N+i|k−1)

×(rk−N+i|k − rk−N+i|k−1)
T − N−1

N (γk−N+i|k − γk−N+i|k−1)
)

,

(59)

for 1 ≤ i ≤ N − 1. For i = N, r̂k|k and R̂k|k can be obtained by replacing rk−N+i|k−1 and
γk−N+i|k−1 in (58) and (59) with rk−N|k−1 and γk−N|k−1 , respectively.

Secondly, for the process noise statistics, define the approximation of state noise
sample on the horizon [k− N − 1 k− 1] as

qk−N+i|k−1 = x̂k−N+i|k−1 − Ak−N+i x̂k−N+i−1|k−1, (60)

where qk−N+i|k−1 is defined as the i-th process noise sample at time k. In the same way
as the process of measurement noise statistics, an unbiased estimate for horizon initial
sampled mean q̂k−N|k at time k can be represented as

q̂k−N|k =
1
N

N

∑
i=1

qk−i+1|k−1, (61)

where qk|k−1 = x̂k|k−1 − Ak x̂k−1|k−1.
Then, the unbiased estimation of the initial process noise covariance Q̂k−N|k can be

represented as

Q̂k−N|k = 1
N−1 ∑N

i=1

(
(qk−i|k − q̂k−N|k)(qk−i|k − q̂k−N|k)

T

− N−1
N ∆k−N+i|k−1

)
,

(62)

where ∆k−i|k−1 = Ak−iPk−i−1|k−1 AT
k−i − Pk−i|k−1. Then, the mean and covariance of the

process noise on the horizon [k− N k] can be calculated sequentially as

q̂k−N+i|k = q̂k−N+i−1|k +
1
N
(qk−N+i|k−1 − qk−N+i|k), (63)

Q̂k−N+i|k = Q̂k−N+i−1|k +
1

N−1

(
(qk−N+i|k − q̂k−N+i|k)

×(qk−N+i|k − q̂k−N+i|k)
T − (qk−N+i|k−1 − q̂k−N+i|k)

×(qk−N+i|k−1 − q̂k−N+i|k)
T + 1

N (qk−i|k − qk−i|k−1)

×(qk−i|k − qk−i|k−1)
T − N−1

N (∆k−N+i|k − ∆k−N+i|k−1)
)

,

(64)

With the above sequential noise statistics esitmates, the AFIR filter can be obtained on
the horizon [k− N k] as:

x̂k−N+i+1|k = Ak−N+i(I − Kk−N+iCk−N+i)x̂k−N+i|k + Ak−N+i
×Kk−N+i(yk−N+i − r̂k−N+i|k) + q̂k−N+i|k,

(65)

where the filter gain and prediction covariance matrix are obtained as

Kk−N+i = Pk−N+i|kCT
k−N+i(Ck−N+iPk−N+i|kCT

k−N+i + R̂k−N+i|k)
−1, (66)
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Pk−N+i+1|k = Ak−N+iPk−N+i|k AT
k−N+i + Q̂k−N+i|k − Ak−N+iKk−N+i

×(Ck−N+iPk−N+i|kCT
k−N+i + R̂k−N+i)KT

k−N+i A
T
k−N+i,

(67)

where the optimal unbiased estimate of the horizon initial state x̂k−N|k and the state covari-
ance Pk−N|k are obtained by (25) and (26) with estimated noise statistics R̂·|k−1 and Q̂·|k−1
in (59) and (64) , respectively.

Since the noise statistics estimated in the AFIR filter are obtained by using the mea-
surements a step ahead of the estimation time , the modified sequential noise statistics
estimation method in the proposed AFIR filter may provide more adaptive estimation
results than results given by previous sequential noise statistics estimation methods in
adaptive Kalman filtering.

3. Simulation Results and Discussion

To demonstrate the validity of the proposed filters, the estimation performance of the
proposed algorithms are compared with the conventional Kalman filter, modified Sage-
Husa adaptive Kalman (SHAK) filters [22], and limited memory adaptive Kalman (LMAK)
filter [23] for the F-404 gas turbine aircraft engine model in [19]. The discrete-time nominal
F-404 gas turbine aircraft engine model can be represented as follows:

xk+1 = Axk + ωk

=

 0.9305 0 0.1107
0.0077 0.9802 −0.0173
0.0142 0 0.8953

xk + wk,
(68)

y = Cxk + vk

=

[
1 0 0
0 1 0

]
xk + vk,

(69)

where covariances matrices of the process noise and measurement noise are set as
Q = 0.02 ∗ I3×3 and R = 0.01 ∗ I2×2, respectively.

Even if dynamic systems and signals are well-represented in the state-space model, it
may undergo unpredictable changes, such as jumps in frequency, phase, and velocity. These
effects typically occur over a short time horizon, so they are called temporary uncertainties.
Although these effects typically occur over a short time interval, the filter should be
robust enough to diminish the effects of the temporary uncertainty. Due to its structure
and measurement processing manner, an FIR estimator is believed to be robust against
numerical errors and temporary modeling uncertainties that may cause a divergence
phenomenon in the case of the IIR filter. To illustrate this fact and the fast convergence, the
proposed filters and Kalman filter are compared for the following temporarily uncertain
model, where temporary uncertainties are added to the nominal models (68) and (69), as

xk+1 = Āxk + ω̄k = (A + ∆A)xk + ω̄k, (70)

y = C̄xk + v̄k = (C + ∆C)xk + v̄k, (71)

where

∆A = 0.1δk ∗ I3×3, ∆C =

[
0.01δk 0 0

0 0.01δk 0

]
, δk =

{
1, 200 ≤ k ≤ 250,
0, otherwise,

and process and measurement noise covariance matrices are taken as Q̄ = 0.25 ∗ I3×3 and
R̄ = 0.02 ∗ I2×2, respectively.

Filters are designed for the nominal state-space models (68) and (69), then they are
applied to the temporarily uncertain system (70) and (71). Additionally, the horizon length
is taken as N = 15 and N = 12 for the proposed FIR filters and LMAK filter, respectively,
and the forgetting factor of SHAK filter is set as α = 0.3.
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Figures 3–5 show estimation errors for the states x1, x2, and x3, respectively, for five
filters. In addition, mean relative estimation errors (MREE) are also compared in Tables 1–3.
The MREE is defined as

er =
1

N f − Ns

N f

∑
k=Ns

|xk − x̂k|∣∣∣ 1
N f−Ns

∑
N f
k=Ns

xk

∣∣∣ , (72)

where xk is the real state, x̂k is the estimate of the filter, Ns and N f are the initial time and
the end time of simulation, respectively.
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Figure 3. Estimation error for the first state x1,k (e1,k = x1,k − x̂1,k).
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Figure 4. Estimation error for the second state x2,k (e2,k = x2,k − x̂2,k).
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Figure 5. Estimation error for the third state x3,k (e3,k = x3,k − x̂3,k).

Table 1. Comparison of the MREE for the first state (e1,r).

Time Interval [50 550] [50 200] [201 400] [401 550]

Kalman filter 0.7567 0.2157 2.6138 0.1789
SHAK filter 0.4107 0.4852 1.3432 0.7997
LMAK filter 0.3760 0.4394 1.2185 0.7809
ROFIR filter 0.1038 0.2469 0.3141 0.1965
AFIR filter 0.0872 0.2927 0.1546 0.2476

Table 2. Comparison of the MREE for the second state (e2,r).

Time Interval [50 550] [50 200] [201 400] [401 550]

Kalman filter 0.2709 0.1933 0.4839 0.1579
SHAK filter 0.0642 0.2431 0.0998 0.5697
LMAK filter 0.0558 0.2387 0.0894 0.4248
ROFIR filter 0.0552 0.2314 0.0947 0.1779
AFIR filter 0.0216 0.2490 0.0240 0.2011

Table 3. Comparison of the MREE for the third state (e3,r).

Time Interval [50 550] [50 200] [201 400] [401 550]

Kalman filter 0.7973 0.3574 3.3627 0.2304
SHAK filter 0.3510 0.6860 1.2738 0.6468
LMAK filter 0.3355 0.6675 1.2022 0.6429
ROFIR filter 0.1808 0.4205 0.6386 0.2776
AFIR filter 0.1756 0.5891 0.4568 0.4040

Since the conventional Kalman filter provides optimal estimates, the estimation errors
of the conventional Kalman filter are smaller than those of other filters during the time
interval [50 200], when there are no system uncertainties. However, from the simulation
results in time intervals [50 550] and [201 400], it can be seen that the proposed ROFIR
and AFIR filters have smaller estimation errors and faster convergence speed than the
conventional Kalman filter and adaptive Kalman filters. These results show that when
model uncertainties exist, the proposed ROFIR and AFIR filters can work well and have
better performance than the Kalman filters due to their FIR structure.

By comparing the simulation results of adaptive filters in time interval [201 400], it can
be easily shown that the estimation errors of the proposed AFIR filter are remarkably smaller
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than those of LMAK filter, even though the horizon length of the proposed AFIR filter is
larger than that of LMAK filter. In addition, the estimation errors of the proposed AFIR filter
rapidly converge to zero after temporary model uncertainty disappears, whereas those of
adaptive Kalman filters do not. Moreover, the estimation errors of adaptive Kalman filters
fluctuate and oscillate during time interval [401 550], which are caused by accumulation
of estimation errors. From these results, it can be assumed that the modified sequential
noise statistics estimation method and its combination with recursive FIR filtering make
for more adaptive and faster convergence performance than the sequential noise statistics
estimation with Kalman filtering.

4. Conclusions

In this paper, the optimal- and recursive-form FIR filter was proposed by employing
the Kalman filtering technique, moving the horizon estimation strategy for discrete time-
varying state-space models. The initial state and its error covariance were optimally
estimated in the maximum likelihood sense over the horizon, then they initiated the finite
horizon Kalman filter. The proposed recursive optimal FIR filter was designed without
assumption of nonsingular transition system matrix and any a priori initial information. In
addition, it was also proved that the proposed ROFIR filter is the best linear estimator on the
finite estimation horizon. Furthermore, by applying the modified sequential noise statistics
estimation method to the ROFIR filter, an AFIR filter was also proposed as an application
of the ROFIR filter, which shows that many useful techniques of Kalman filtering could
be applied to the proposed ROFIR filter for improving the estimation performance of FIR
filters. To validate the proposed filters, computer simulation was performed and it was
shown that the proposed filters were more accurate and robust than other conventional
Kalman filters and adaptive Kalman filters.
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