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Abstract This paper is concerned with the asymptotic behaviour of estima-
tion procedures which are recursive in the sense that each successive estimator
is obtained from the previous one by a simple adjustment. The results of the
paper can be used to determine the form of the recursive procedure which is
expected to have the same asymptotic properties as the corresponding non-
recursive one defined as a solution of the corresponding estimating equation.
Several examples are given to illustrate the theory, including an application
to estimation of parameters in exponential families of Markov processes.

Keywords recursive estimation · estimating equations · stochastic approxi-
mation

1 Introduction

Let X1, . . . , Xn be random variables with a joint distribution depending on an
unknown parameter θ. Then an M -estimator of θ is defined as a solution of
the estimating equation

n∑

i=1

ψi(v) = 0, (1)

where ψi(v) = ψi(Xi
1; v), i = 1, 2, . . . , n, are suitably chosen functions which

may, in general, depend on the vector Xi
1 = (X1, . . . , Xi) of all past and

present observations. If fi(x, θ) = fi(x, θ|X1, . . . , Xi−1) is the conditional prob-
ability density function or probability function of the observation Xi, given
X1, . . . , Xi−1, then one can obtain a MLE (maximum likelihood estimator) on
choosing ψi(v) = f ′i(Xi, v)/fi(Xi, v). Besides MLEs, the class of M -estimators

T. Sharia
Department of Mathematics, Royal Holloway University of London,
Egham, Surrey TW20 0EX
E-mail: t.sharia@rhul.ac.uk



2 Teo Sharia

includes estimators with special properties such as robustness. Under certain
regularity and ergodicity conditions, it can be proved that there exists a con-
sistent sequence of solutions of (1) which has the property of local asymptotic
linearity.

If ψ-functions are nonlinear, it is rather difficult to work with the corre-
sponding estimating equations. In this paper, we consider estimation proce-
dures which are recursive in the sense that each successive estimator is obtained
from the previous one by a simple adjustment. In particular, we consider a class
of estimators

θ̂n = θ̂n−1 + Γ−1
n (θ̂n−1)ψn(θ̂n−1), n ≥ 1, (2)

where ψn is a suitably chosen vector process, Γn is a normalizing matrix pro-
cess, and θ̂0 ∈ Rm is an initial value. A detailed discussion and a heuristic
justification of this estimation procedure are given in Sharia (2007a).

In i.i.d. models, estimating procedures of type (2) have been studied by a
number of authors using methods of stochastic approximation theory. Some
work has been done for non i.i.d. models as well. A review of the existing
literature can be found in Sharia (2007a).

We study multidimensional estimation procedures of type (2) for the gen-
eral statistical model. This work can be regarded as the final part of a series
of three papers: see Sharia (2007a) and Sharia (2007b). In Sharia (2007a), we
study convergence of the recursive estimators for an arbitrary starting value
θ̂0. In Sharia (2007b), we present results on the rate of the convergence. In this
paper, we are concerned with asymptotic behaviour of the estimators defined
by (2). The main objective is to prove that θ̂n is locally asymptotically linear,
that is, for each θ there exist a matrix process Gn(θ) such that

θ̂n − θ = G−1
n (θ)

n∑

i=1

ψi(θ) + εθ
n,

where G
1/2
n (θ)εθ

n → 0 in probability P θ (see Section 2).
Since ψt(θ) is typically a martingale-difference, asymptotic distribution of

an asymptotically linear estimator can be studied using a suitable form of the
central limit theorem for martingales; see, e.g., Feigin (1985), Hutton and Nel-
son (1986), Jacod and Shiryayev (1987). Detailed discussion of the literature
on this subject can be found in Barndorff-Nielsen and Sorensen (1994), Heyde
(1997) and Prakasa-Rao (1999). For example, results in Shiryayev (1984) (see,
e.g., Ch.VII, §8, Theorem 4) show that, under certain conditions, local asymp-
totic linearity implies asymptotic normality.

In the case of one dimensional parameter θ, an estimator is said to be
asymptotically efficient if it is asymptotically linear with

ψn(θ) = f ′n(θ,Xn|Xn−1
1 )/fn(θ, Xn|Xn−1

1 ) and Gn(θ) = In(θ),

where In(θ) is the conditional Fisher information. This kind of efficiency is
called asymptotic first order efficiency. The motivation behind this general
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definition is the same as in the classical scheme of i.i.d. observations. For a
detailed discussion of this notion see, e.g., Hall and Heyde (1980), Section
6.2. Under relatively mild conditions, asymptotically efficient estimators are
asymptotically equivalent to the MLE Tn, i.e.

I1/2
n (θ)(θ̂n − Tn) → 0

in probability; see, e.g., Hall and Heyde (1980), Section 6.2, Theorem 6.2. A
generalisation of these concepts can be found in Heyde (1997).

Note that the recursive procedure (2) is not a numerical solution of (1) (see
the corresponding discussion in Sharia (2007a)). Nevertheless, as the results of
the paper show, the recursive estimator and the corresponding M -estimator
are expected to have the same or equivalent asymptotic linearity expansions
under quite mild conditions. It therefore follows that they are asymptotically
equivalent, in the sense that, depending on the regularity and ergodicity prop-
erties of the underlying model, they both have the same asymptotic distribu-
tion.

Note also that the global convergence results for (2) were obtained in Sharia
(2007a) under conditions that allow Γn to belong to quite a wide class of
processes which does not directly depend on the choice of ψn’s. It turns out
that to ensure local asymptotic linearity, one has to restrict this class to an
explicit choice of Γn, depending on the choice of ψn. In other words, the results
of the paper can be used to determine the form of a recursive procedure (see
Remark 3 (iv)–(vi) below) which is expected to have the same asymptotic
properties as the corresponding non-recursive one defined as a solution of the
equation (1). The fact that one is restricted to this choice of Γt is probably
not very surprising in retrospective, but this issue does not seem to have been
discussed in the existing literature.

The paper is organized as follows. Section 2 introduces the main objects
and definitions. The main results are obtained in Section 3 which also contains
various comments and explanations of the conditions used there. In Section 4,
we consider examples to illustrate the results of the paper.

2 Basic model

Let Xt, t = 1, 2, . . . , be observations taking values in a measurable space
(X,B(X)) equipped with a σ-finite measure µ. Suppose that the distribution
of the process Xt depends on an unknown parameter θ ∈ Θ, where Θ is an
open subset of the m-dimensional Euclidean space Rm. Suppose also that for
each t = 1, 2, . . . , there exists a regular conditional probability density of Xt

given values of past observations of Xt−1, . . . , X2, X1, which will be denoted
by

ft(θ, xt | xt−1
1 ) = ft(θ, xt | xt−1, . . . , x1),

where f1(θ, x1 | x0
1) = f1(θ, x1) is the probability density of the random vari-

able X1. Without loss of generality we assume that all random variables are
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defined on a probability space (Ω,F) and denote by
{
P θ, θ ∈ Θ

}
the family

of the corresponding distributions on (Ω,F).
Let Ft = σ(X1, . . . , Xt) be the σ-field generated by the random variables

X1, . . . , Xt. By (Rm,B(Rm)) we denote the m-dimensional Euclidean space
with the Borel σ-algebra B(Rm). Transposition of matrices and vectors is de-
noted by T . By (u, v) we denote the standard scalar product of u, v ∈ Rm,
that is, (u, v) = uT v, and the corresponding norm is denoted by ‖u‖.

Suppose that h is a real valued function defined on Θ ⊂ Rm. We denote
by ḣ(θ) the row-vector of partial derivatives of h(θ) with respect to the com-
ponents of θ, that is,

ḣ(θ) =
(

∂

∂θ1
h(θ), . . . ,

∂

∂θm
h(θ)

)
.

The m×m identity matrix is denoted by 1.
If for each t = 1, 2, . . . , the derivative ḟt(θ, xt | xt−1

1 ) w.r.t. θ exists, then
we can define

lt(θ, xt | xt−1
1 ) =

1
ft(θ, xt | xt−1

1 )
ḟT

t (θ, xt | xt−1
1 )

and the process
lt(θ) = lt(θ,Xt | Xt−1

1 )

with the convention 0/0 = 0. Let us denote

it(θ | xt−1
1 ) =

∫
lt(θ, z | xt−1

1 )lTt (θ, z | xt−1
1 )ft(θ, z | xt−1

1 )µ(dz).

The one step conditional Fisher information matrix for t = 1, 2, . . . is defined
as

it(θ) = it(θ | Xt−1
1 ).

Note that the process it(θ) is “predictable”, that is, it(θ) is Ft−1 measurable
for each t ≥ 1. Note also that by definition, it(θ) is a version of the conditional
expectation w.r.t. Ft−1, that is,

it(θ) = Eθ

{
lt(θ)lTt (θ) | Ft−1

}
.

Everywhere in the present work conditional expectations are meant to be
calculated as integrals w.r.t. the conditional probability densities.

The conditional Fisher information at time t is

It(θ) =
t∑

s=1

is(θ), t = 1, 2, . . . .

We say that ψ = {ψt(θ, xt, xt−1, . . . , x1)}t≥1 is a sequence of estimating
functions and write ψ ∈ Ψ, if for each t ≥ 1, ψt(θ, xt, xt−1, . . . , x1) : Θ×Xt →
Rm is a Borel function.



Recursive Estimation: Asymptotic expansion 5

Let ψ ∈ Ψ and denote ψt(θ) = ψt(θ,Xt, Xt−1, . . . , X1). We write ψ ∈
ΨM if ψt(θ) is a martingale-difference process for each θ ∈ Θ, i.e., if
Eθ {ψt(θ) | Ft−1} = 0 for each t = 1, 2, . . . . We assume that the conditional
expectations above are well-defined and F0 is the trivial σ-algebra.

Note that if differentiation of the equation 1 =
∫

ft(θ, z | xt−1
1 )µ(dz) is

allowed under the integral sign, then {lt(θ)}t≥1 ∈ ΨM.
Suppose that ψ ∈ Ψ and Γt(θ) is a predictable m×m matrix process with

detΓt(θ) 6= 0. We say that an estimator θ̂t is locally asymptotically linear if for
each θ ∈ Θ,

θ̂t = θ + Γ−1
t (θ)

t∑
s=1

ψs(θ) + εθ
t , (3)

and At(θ)εθ
t → 0 in probability Pθ, where At(θ) is a sequence of invertible m×

m matrices such that A−1
t (θ) → 0 in probability P θ and At(θ)Γ−1

t (θ)At(θ) →
η(θ) weakly w.r.t. P θ for some random matrix η(θ). That is, θ̂t is locally
asymptotically linear if

At(θ)(θ̂∗t − θ̂t) → 0 (4)

in probability P θ, where

θ̂∗t = θ + Γ−1
t (θ)

t∑
s=1

ψs(θ), (5)

is a linear statistic.

Convention Everywhere in the present work θ ∈ Rm is an arbitrary but
fixed value of the parameter. Convergence and all relations between random
variables are meant with probability one w.r.t. the measure P θ unless specified
otherwise. A sequence of random variables (ξt)t≥1 has some property eventually
if for every ω in a set Ωθ of P θ probability 1, ξt has this property for all t
greater than some t0(ω) < ∞.

3 Main results

Suppose that ψ ∈ Ψ and Γt(θ), for each θ ∈ Rm, is a predictable m×m matrix
process with det Γt(θ) 6= 0, t ≥ 1. Consider the estimator θ̂t defined by

θ̂t = θ̂t−1 + Γ−1
t (θ̂t−1)ψt(θ̂t−1), t ≥ 1, (6)

where θ̂0 ∈ Rm is an arbitrary initial point.
Let θ ∈ Rm be an arbitrary but fixed value of the parameter and for any

u ∈ Rm define

Rt(θ, u) = Γt(θ)Γ−1
t (θ + u)Eθ {ψt(θ + u) | Ft−1} .

Denote ∆t = θ̂t − θ. Then (6) can be rewritten as

∆t = ∆t−1 + Γ−1
t (θ)Rt(θ, ∆t−1) + Γ−1

t (θ)εθt, (7)
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where
εθt = Γt(θ)Γ−1

t (θ + ∆t−1)ψt(θ + ∆t−1)−Rt(θ,∆t−1)

is a P θ-martingale difference.

Lemma 1 Suppose that ψ ∈ Ψ and there exists a sequence of invertible ran-
dom matrices At(θ) such that A−1

t (θ) → 0 in probability P θ and

(E)
At(θ)Γ−1

t (θ)At(θ) → η(θ)

weakly w.r.t. P θ, where η(θ) is a random matrix with η(θ) < ∞ P θ-a.s.;
(S1)

lim
t→∞

A−1
t (θ)

t∑
s=1

(4Γs(θ)∆s−1 + Rs(θ, ∆s−1)) = 0

in probability P θ;
(S2)

lim
t→∞

A−1
t (θ)

t∑
s=1

Es(θ) = 0

in probability P θ, where

Es(θ) = Γs(θ)Γ−1
s (θ+∆s−1) [ψs(θ + ∆s−1)− Eθ {ψs(θ + ∆s−1) | Fs−1}]−ψs(θ).

Then At(θ)(θ̂∗t − θ̂t) → 0 in probability P θ, i.e., θ̂∗t is locally asymptotically
linear.

Proof. To simplify notation we drop the fixed argument or the index θ in
some of the expressions below. Rewrite (7) as

∆t =
(
1− Γ−1

t 4Γt

)
∆t−1 + Γ−1

t (4Γt∆t−1 + Rt(θ, ∆t−1)) + Γ−1
t εt. (8)

Denote Ht :=
∑t

s=1 (4Γs∆s−1 + Rs(θ,∆s−1)) and M̄t :=
∑t

s=1 εs. Then
the expression

∆t = Γ−1
t

{
M̄t +Ht + ∆0

}
, t ≥ 1

can easily be obtained by inspecting the difference between t’th and (t− 1)’th
term of this sequence to check that (8) holds. Therefore, denoting

δt := θ̂t − θ̂∗t = ∆t − (θ̂∗t − θ),

we obtain
δt = Γ−1

t {Mt +Ht + ∆0} , t ≥ 1,

where Mt :=
∑t

s=1 (εs−ψs). Now, (S1) implies that A−1
t Ht → 0 in probability

P θ. Also, by (S2), A−1
t Mt = A−1

t (θ)
∑t

s=1 Es(θ) → 0 in probability P θ. So,
using (E), it follows that Atδt → 0 in probability P θ. ♦

The next result gives sufficient conditions for (S1) and (S2).



Recursive Estimation: Asymptotic expansion 7

Proposition 2 (a) Suppose that At(θ) in Lemma 1 are diagonal matrices
with non-decreasing (w.r.t. t) elements and

(L1)

A−2
t (θ)

t∑
s=1

As(θ)[4Γs(θ)∆s−1 + Rs(θ, ∆s−1)] → 0

in probability P θ;

Then (S1) holds.

(b) Suppose that At(θ) in Lemma 1 are diagonal non-random matrices, ψ ∈
ΨM and

(L2) for each j = 1, . . . , m,

lim
t→∞

1

(A(jj)
t (θ))2

t∑
s=1

Eθ

{(
E(j)

s (θ)
)2

| Fs−1

}
= 0

in probability P θ, where A
(jj)
t (θ) is the j-th diagonal element of the matrix

At(θ) and E(j)
s (θ) is the j-th component of Es(θ) which is defined in (S2).

Then (S2) holds.

(c) Suppose that At(θ) in Lemma 1 are diagonal with non-decreasing elements
A

(jj)
t (θ) →∞, ψ ∈ ΨM and

(LL2) for each j = 1, . . . , m,

∞∑
s=1

Eθ

{
(E(j)

s (θ))2 | Fs−1

}

(A(jj)
s (θ))2

< ∞

P θ-a.s., where E(j)
s (θ) is the j-th component of Es(θ) which is defined in

(S2).

Then (S2) holds.

Proof. See Section 5.

Remark 3 (i) As was mentioned above, strong consistency of the recursive
estimator θ̂t, that is the convergence ∆t = θ̂t − θ → 0 (P θ-a.s.) is established
in Sharia (2007a). Here we are interested in the asymptotic behaviour of the
recursive estimator given that it is consistent. Note that although consistency
is not formally required in Lemma 1, it is easy to see that if θ̂t is not consistent,
conditions (S1) and (S2) will be satisfied for very special cases only. Note also
that given that ∆t = θ̂t − θ → 0, conditions (S1) and (S2) are local in the
sense that they are determined by the local behaviour of the corresponding
functions w.r.t. the parameter.

(ii) Condition (E) is an ergodicity type assumption on the statistical model.
If Γt(θ) = It(θ) and At(θ) and η(θ) are non-random, then the model is called
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ergodic. Further discussion of this concept and related work appears in Basawa
and Scott (1983), Hall and Heyde (1980) § 6.2, and Barndorff-Nielsen and
Sorensen (1994).

(iii) Let us examine condition (S2) in Lemma 1. Given that ∆t = θ̂t − θ → 0,
if the functions ψt(θ) and Γt(θ) are continuous w.r.t. θ with certain uniformity
w.r.t. t, we expect Et(θ) → 0. Parts (b) and (c) in Proposition 2 give sufficient
conditions for (S2). If there exists a non-random sequence At(θ), then obvi-
ously (L2) is less restrictive then (LL2). But unfortunately, (L2) can only be
used for non-random At(θ). In the case of random At(θ), when (LL2) may be
used, just the convergence Eθ

{
(Et(θ))

2 | Ft−1

}
→ 0 may not be enough since

in many models the components of At(θ) have the rate
√

t. In such cases one
may also use the result on the rate of convergence of θ̂t presented in Sharia
(2007b); see examples 4.1 and 4.3 in the next section.

(iv) Condition (S1) gives an important clue for an optimal choice of the nor-
malizing sequence Γt(θ). To see this, let us assume that ψ ∈ ΨM so that
Rt(θ, 0) = 0 and consider (S1) and (L1) in the case of the one dimensional
parameter θ ∈ R. Now we can write

4Γt(θ)∆t−1 + Rt(θ, ∆t−1) =
(
4Γt(θ) +

Rt(θ, ∆t−1))−Rt(θ, 0)
∆t−1

)
∆t−1.

In most applications, the rate of At is
√

t and the best one can hope for
is that

√
t∆t is stochastically bounded. Therefore we must at least have the

convergence 4Γt(θ)+(Rt(θ, ∆t−1))−Rt(θ, 0))/∆t−1 → 0. Given that ∆t−1 →
0 we expect 4Γt(θ) ≈ −∂/∂u Rt(θ, u) |u=0 for large t’s. Also, since Rt(θ, 0) =
Eθ {ψt(θ) | Ft−1} = 0, if Γt(θ)/Γt(θ+u) is smooth in u = 0, we can write that
∂/∂u Rt(θ, u) |u=0= ∂/∂u Eθ {ψt(θ + u) | Ft−1} |u=0 . So,

4Γt(θ) ≈ −b′t(θ, 0), (9)

where bt(θ, u) = Eθ {ψt(θ + u) | Ft−1} and b′t(θ, 0) =
∂

∂u
bt(θ, u) |u=0 .

Using the similar arguments, for the multidimensional case, we expect (9) to
hold for large t’s, where b′t(θ, 0) is the total differential of bt(θ, u) in u = 0.
Therefore,

Γt(θ) = −
t∑

s=1

b′s(θ, 0) (10)

is an obvious candidate for the normalizing sequence. If ψt(θ) is differentiable
in θ and differentiation of bt(θ, u) = Eθ{ψt(θ + u) | Ft−1} is allowed under
the integral sign, then b′t(θ, 0) = Eθ{ψ̇t(θ) | Ft−1}. This implies that, for a
given sequence of estimating functions ψt(θ), another possible choice of the
normalizing sequence is

Γt(θ) = −
t∑

s=1

Eθ{ψ̇s(θ) | Fs−1}, (11)
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or any sequence with the increments ∆Γt(θ) = −Eθ{ψ̇t(θ) | Ft−1}. Also, if
the differentiation w.r.t. θ of 0 =

∫
ψt(θ, z | Xt−1

1 )ft(θ, z | Xt−1
1 )µ(dz) is

allowed under the integral sign, using the product rule it is easy to obtain
that Eθ{ψ̇t(θ) | Ft−1} = −Eθ{ψt(θ)lTt (θ) | Ft−1}. Therefore, another possible
choice of the normalizing sequence is

Γt(θ) =
t∑

s=1

Eθ{ψs(θ)lTs (θ) | Fs−1} = 〈Mθ, Uθ〉t (12)

where 〈Mθ, Uθ〉t is the mutual quadratic characteristic of the martingales

Mθ
t =

t∑
s=1

ψs(θ) and Uθ
t =

t∑
s=1

ls(θ).

(v) Let us consider a likelihood case, that is ψt(θ) = lt(θ). Then the process
(12) in this case is the conditional Fisher information It(θ) =

∑t
s=1 is(θ). So,

the corresponding recursive procedure is

θ̂t = θ̂t−1 + I−1
t (θ̂t−1)lt(θ̂t−1), t ≥ 1, (13)

Also, given that the model possesses certain ergodicity properties, asymptotic
linearity of (13) implies asymptotic efficiency. In particular, in the case of i.i.d.
observations, it follows that the above recursive procedure is asymptotically
normal with parameters (0, i−1(θ)); see Corollary 4 in Section 4.

(vi) Normalizing sequences suggested in (iv) have been derived from the
asymptotic considerations. In practice however, behaviour of Γ sequence for
the first several steps might also be important. This can happen when the
number of observations is small or even moderately large. According to (iv),
to achieve asymptotic linearity, one has to choose a normalizing sequence Γ
with the property that 4Γt(θ) ≈ −b′t(θ, 0) for large t’s. So, we can consider
any sequence of the form C +ctΓt, where Γt is one of the sequences introduced
above (by (10), (11), or (12)), ct is a sequence of non-negative r.v.’s such that
ct = 1 eventually, and C is a suitably chosen constant. In practice, ct and
C can be treated as tuning constants to control behaviour of the procedure
for the first several steps; see Remark 4.4 in Sharia (2007a). Under certain as-
sumptions, at each step, the recursive procedure (6) on average moves towards
the direction of the unknown parameter; see Remark 3.2 in Sharia (2007a) for
details. Nevertheless, if the values of the normalizing sequence are too small
for the first several steps, then the procedure will oscillate excessively around
the true value of the parameter. On the other hand, too large values of the
normalizing sequence will result in slower convergence of the procedure. A
good balance can be achieved by using the tuning constants. The detailed
discussion of these and related topics will appear elsewhere, but as a rough
guide, the graph of θ̂t against t should ideally have a shape of those in Figure
1 in Sharia (2007a); that is, a reasonable oscillation at the beginning of the
procedure before settling down at a particular level.
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4 SPECIAL MODELS AND EXAMPLES

4.1 The i.i.d. scheme

Consider the classical scheme of i.i.d. observations X1, X2, . . . , with a common
probability density/mass function f(θ, x), θ ∈ Rm. Suppose that ψ(θ, x) is
an estimating function with

Eθ(ψ(θ, X1)) =
∫

ψ(θ, z)f(θ, z)µ(dz) = 0.

Let us define the recursive estimator θ̂t by

θ̂t = θ̂t−1 +
1
t
γ−1(θ̂t−1)ψ(θ̂t−1, Xt), t ≥ 1, (14)

where θ̂0 ∈ Rm is any initial value. According to Remark 3 (iv) and the
condition (V) below, an optimal choice of γ(θ) would be either

γ(θ) = Eθ(ψ̇(θ, X1))

or

γ(θ) = Eθ(ψ(θ,X1)lT (θ, X1)) where l(θ, x) =
ḟT (θ, x)
f(θ, x)

,

or any non-random invertible matrix function that satisfies conditions listed
below.

Suppose that

jψ(θ) =
∫

ψ(θ, z)ψT (θ, z)f(θ, z)µ( dz) < ∞

and consider the following conditions.

(I) For any 0 < ε < 1,

sup
ε≤‖u‖≤ 1

ε

uT γ−1(θ + u)
∫

ψ(θ + u, x)f(θ, x)µ( dx) < 0.

(II) For each u ∈ Rm,

∫ ∥∥γ−1(θ + u)ψ(θ + u, x)
∥∥2

f(θ, x)µ( dx) ≤ Kθ(1 + ‖u‖2)

for some constant Kθ.
(III) γ(θ) is continuous in θ.
(IV)

lim
u→0

∫
‖ψ(θ + u, x)− ψ(θ, x)‖2f(θ, x)µ( dx) = 0.
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(V) ∫
ψ(θ + u, x)f(θ, x)µ( dx) = −γ(θ + u)u + αθ(u),

where αθ(u) = o(‖u‖1+ε) as u → 0 for some ε > 0.

Corollary 4 Suppose that for any θ ∈ Rm conditions (I) - (V) are satisfied.
Then the estimator θ̂t is strongly consistent and tδ(θ̂t − θ) → 0 (P θ-a.s.) for
any 0 < δ < 1/2 and any initial value θ̂0. Furthermore, θ̂t is asymptotically
normal with parameters (0, γ−1(θ)j(θ, 0)γ−1(θ)), that is,

L
(
t1/2(θ̂t − θ) | P θ

)
w→N (

0, γ−1(θ)jψ(θ)γ−1(θ)
)
.

In particular, in the case of the maximum likelihood type recursive proce-
dure with ψ(θ, x) = ḟT (θ, x)/f(θ, z) and γ(θ) = i(θ) = jl(θ), the estima-
tor θ̂t is asymptotically efficient, i.e., asymptotically normal with parameters(
0, i−1(θ)

)
.

Proof See Section 5.

The results in Corollary 4 are similar to those obtained in the classical
works by Khas’minskii and Nevelson (1972; see Ch.8, §4) and Fabian (1978).

4.2 Linear procedures

Consider the recursive procedure

θ̂t = θ̂t−1 + Γ−1
t

(
ht − γtθ̂t−1

)
, t ≥ 1, (15)

where the Γt and γt are predictable matrix processes, ht is an adapted process,
i.e., ht is Ft-measurable for t ≥ 1. Assume also that all three processes are
independent of θ. The following result gives a set of sufficient conditions for
the asymptotic linearity of the estimator defined by (15) in the case when the
linear ψt(θ) = ht − γtθ is a martingale-difference, i.e., Eθ {ht | Ft−1} = γtθ,
for t ≥ 1.

Corollary 5 Suppose that Γt →∞ and

Γ
−1/2
t

t∑
s=1

(4Γs − γs)∆s−1 → 0 (16)

in probability P θ, where ∆s−1 = θ̂s−1−θ. Then the recursive estimator defined
by (15) is asymptotically linear with

Γ
1/2
t (θ̂t − θ) = Γ

−1/2
t

t∑
s=1

ψs(θ) + oP θ (1), (17)

where oP θ (1) → 0 in probability Pθ.
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Proof Let us check the conditions of Lemma 1 for At(θ) = Γ
1/2
t . Condition

(E) trivially holds. Then, since ψt(θ) = ht − γtθ and

bt(θ, u) = Eθ {(ψt(θ + u)) | Ft−1} = Eθ {(ht − γt(θ + u)) | Ft−1} = −γtu,

we have
Rt(θ, u) = Γt(θ)Γ−1

t (θ + u)bt(θ, u) = −γtu.

Therefore, (S1) is equivalent to (16). Then, it is easy to see that for Es(θ)
defined in (S2) we have

Es(θ) = ψs(θ + ∆s−1)− bs(θ, ∆s−1)− ψs(θ) = 0

implying that (S2) holds which completes the proof. ♦
Remark 6 Condition (16) trivially holds if ∆Γt = γt, that is if Γt =

∑t
s=1 γs.

In this case, the solution of (15) is

θ̂t = Γ−1
t

(
θ̂0 +

t∑
s=1

hs(Xs)

)
. (18)

This can be easily seen by inspecting the difference θ̂t − θ̂t−1 for the sequence
(18) to check that (15) holds. Also, since (18) can obviously be rewritten as

θ̂t = Γ−1
t θ̂0 + Γ−1

t

t∑
s=1

(hs(Xs)− γsθ) + θ,

it follows that in this case, Γt →∞ is indeed an obvious necessary and sufficient
condition for θ̂t to be asymptotically linear for arbitrary starting value θ̂0.

4.3 Exponential family of Markov processes

Consider a conditional exponential family of Markov processes in the sense of
Feigin (1981); see also Barndorf-Nielson (1988). This is a time homogeneous
Markov chain with the one-step transition density

f(y; θ, x) = h(x, y) exp
(
θT m(y, x)− β(θ;x)

)
,

where m(y, x) is a m-dimensional vector and β(θ; x) is one dimensional. Then
in our notation ft(θ) = f(Xt; θ, Xt−1) and

lt(θ) =
(

d

dθ
log ft(θ)

)T

= m(Xt, Xt−1)− β̇T (θ;Xt−1).

It follows from standard exponential family theory (see, e.g., Feigin (1981))
that lt(θ) is a martingale-difference and the conditional Fisher information is

It(θ) =
t∑

s=1

β̈(θ; Xs−1).



Recursive Estimation: Asymptotic expansion 13

A maximum likelihood type recursive procedure can be defined as

θ̂t = θ̂t−1 +

(
t∑

s=1

β̈(θ̂t−1; Xs−1)

)−1 (
m(Xt, Xt−1)− β̇T (θ̂t−1; Xt−1)

)
, t ≥ 1.

Now suppose that θ is one dimensional and the process belongs to the
conditionally additive exponential family, that is,

f(y; θ, x) = h(x, y) exp (θm(y, x)− β(θ; x)) ,

with

β(θ;x) = γ(θ)h(x) (19)

where h(·) ≥ 0 and γ̈(·) ≥ 0 (see Feigin (1981)). Then,

It(θ) = γ̈(θ)Ht where Ht =
t∑

s=1

h(Xs−1).

Assuming that γ̈(θ) 6= 0, the likelihood recursive procedure is

θ̂t = θ̂t−1 +
1

γ̈(θ̂t−1)Ht

(
m(Xt, Xt−1)− γ̇(θ̂t−1)h(Xt−1)

)
. (20)

Remark 7 Consistency and rate of convergence of the estimator derived by
(20) are studied in Sharia (2007b). To ensure that (20) has the same asymptotic
properties as the maximum likelihood estimator, one has to impose certain
restrictions on the γ(θ) and Ht. In Corollary 9 in Section 5, the conditions of
Section 3 written in terms of this model are presented. These conditions will
be satisfied if there is a certain balance between requirements of smoothness
on γ(·), the rate at which Ht →∞, and ergodicity of the model. For instance,
suppose that the model is ergodic, that is, there exists a non-random sequence
H̃t such that

Ht/H̃t → η < ∞
weakly. This will often follow from an ergodic theorem with H̃t = t. Then

1

I
1/2
t (θ)

t∑
s=1

Es(θ) → 0,

will hold if the process

1
It(θ)

t∑
s=1

Eθ

{E2
s (θ) | Fs−1

}
=

1
It(θ)

t∑
s=1

4Is(θ)
(

γ̈(θ + ∆s−1)− γ̈(θ)
γ̈(θ + ∆s−1)

)2

converges to zero; criterion based on the Lenglart-Rebolledo inequality, see
(L2) and formula (26) in Section 5. So, assuming that the estimator is consis-
tent, that is ∆t → 0, by the Toeplits lemma the above will be guaranteed by
the continuity of γ̈(·). On the other hand, if the model is non-ergodic, then one
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may need to impose smoothness of higher order on γ(·) function (see condition
(iii) below) and restrictions on the growth of the sequence Ht (see condition
(i) below). The following result gives one possible set of sufficient conditions
for the recursive estimator to be consistent and to have the same asymptotic
properties as the maximum likelihood estimator.

Proposition 8 Suppose that Ht →∞ and

(i)
h(Xt)

Ht
→ 0;

(ii) there exists a constant B such that

1 + γ̇2(u)
γ̈2(u)

≤ B(1 + u2)

for each u ∈ R.
(iii) The function γ̈(·) is locally Lipschitz , that is, for any θ there exists a

constant Kθ and 0 < εθ ≤ 1/2 such that

|γ̈(θ + u)− γ̈(θ)| ≤ Kθ|u|εθ

for small u’s.

Then θ̂t defined by (20) is strongly consistent, i.e., θ̂t → θ P θ-a.s. for any
initial value θ̂0. Furthermore, Hδ

t (θ̂t− θ) → 0 P θ-a.s. for any δ ∈]0, 1/2[, and
θ̂t is asymptotically linear with

H
1/2
t (θ̂t − θ) = H

−1/2
t

t∑
s=1

(m(Xs, Xs−1)− γ̇(θ)h(Xs−1)) + oP θ (1), (21)

where oP θ (1) → 0 in probability Pθ.

Proof See Section 5.

5 Appendix

Proof of Proposition 2 To simplify notation we drop the fixed argument or
the index θ in some of the expressions below.

To prove (a), denote

χs = As[4Γs(θ)∆s−1 + Rs(θ,∆s−1)]

and

Gt = A−1
t

t∑
s=1

[4Γs(θ)∆s−1 + Rs(θ,∆s−1)] = A−1
t

t∑
s=1

A−1
s χs.
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Applying the formula

t∑
s=1

Ds∆Cs = DtCt −
t∑

s=1

∆DsCs−1, C0 = 0 = D0,

with Cs =
∑s

m=1 χm and Ds = A−1
s we obtain

Gt = A−2
t

t∑
s=1

χs −A−1
t

t∑
s=1

4A−1
s

s−1∑
m=1

χm.

Then, 4A−1
s = A−1

s − A−1
s−1 = −A−1

s (As − As−1)A−1
s−1 = −4AsA

−1
s A−1

s−1,
where the last equality follows since As is diagonal. Therefore,

Gt = A−2
t

t∑
s=1

χs + A−1
t

t∑
s=1

4As

{
A−1

s A−1
s−1

s−1∑
m=1

χm

}
.

Finally, since At’s are diagonal with non-decreasing elements, applying the
Toeplits Lemma to the components of the right hand side of latter formula we
obtain that Gt → 0.

To prove (b) and (c) denote Mt :=
∑t

s=1 Es. Since ψ ∈ ΨM, it follows
that Mt is a martingale. Denote by M

(j)
t the j-th component of Mt. Then the

quadratic characteristic 〈M (j)〉t of the martingale M
(j)
t is

〈M (j)〉t =
t∑

s=1

Eθ

{(
E(j)

s

)2

| Fs−1

}

and, by (LL2),
∑∞

s=14〈M (j)〉s/(A(jj)
s )2 < ∞. It therefore follows that

M
(j)
t /At

(jj) → 0 P θ -a.s. (see e.g., Shiryayev (1984), Ch.VII, §5, Theorem
4). This proves (c). Now, use of the Lenglart-Rebolledo inequality (see, e.g.,
Liptser and Shiryayev (1989), Ch.1, §9) yields

P θ

{
(M (j)

t )2 ≥ K2
(
At

(jj)
)2

}
≤ ε

K
+ P θ

{
〈M (j)〉t ≥ ε

(
At

(jj)
)2

}

for each K > 0 and ε > 0. Then, by (L2), 〈M (j)〉t/(At
(jj))2 → 0 in

probability P θ. This implies that M
(j)
t /At

(jj) → 0 in probability P θ and so,
since At is diagonal, (S2) follows. ♦
Proof of Corollary 4 Using Corollary 4.1 in Sharia (2007a) it follows that
(I) and (II) imply (θ̂t − θ) → 0. We have Γt(θ) = tγ(θ) and b(θ, u) =

∫
ψ(θ +

u, z)f(θ, z)µ( dz). It is easy to see that (II) implies (B2) from Corollary 4.1
in Sharia (2007b), and (V) implies that (B1) of the same corollary holds with
Cθ = 1. So, for any 0 < δ < 1/2,

tδ(θ̂t − θ) → 0. (22)
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Let us check that conditions of Lemma 1 are also satisfied with At =
√

t1. Con-
dition (E) trivially holds. According to Proposition 2, condition (S1) follows
from (L1). To check (L1), it is sufficient to show that

1
t

t∑
s=1

[γ(θ)∆s−1 + R(θ, ∆s−1)]
√

s → 0, (23)

where

R(θ, u) = Rt(θ, u) = γ(θ)γ−1(θ + u)
∫

ψ(θ + u, z)f(θ, z)µ( dz).

By (V), R(θ, u) = −γ(θ)u + γ(θ)γ−1(θ + u)αθ(u) and

[γ(θ)∆s−1+R(θ, ∆s−1)]
√

s =
√

sγ(θ)γ−1(θ+∆s−1)αθ(∆s−1) =
√

s‖∆s−1‖1+εδs

where, by (III) and (V), δs = γ(θ)γ−1(θ + ∆s−1)αθ(∆s−1)/‖∆s−1‖1+ε → 0.
Then,

√
s‖∆s−1‖1+εδs =

√
s

s− 1

(
(s− 1)

1
2(1+ε) ‖∆s−1‖

)1+ε

δs

which, by (22) (since 1/(2(1 + ε)) < 1/2) converges to zero. Therefore, (23) is
now a consequence of the Toeplits Lemma.

For the process Es(θ) from (L2) (since ‖u− v‖2 ≤ 2‖u‖2 + 2‖v‖2), we have

‖Es(θ)‖2 = ‖γ(θ)γ−1(θ + ∆s−1) (ψ(θ + ∆s−1, Xs)− b(θ,∆s−1))− ψ(θ,Xs)‖2
≤ 2‖γ(θ)γ−1(θ + ∆s−1)ψ(θ + ∆s−1, Xs)− ψ(θ,Xs)‖2
+2‖γ(θ)γ−1(θ + ∆s−1)b(θ, ∆s−1)‖2.

(III) and (V) imply that
(
γ(θ)γ−1(θ + ∆s−1)− 1

) → 0 and b(θ,∆s−1) → 0

as s → ∞. So, using (IV), it is easy to see thatEθ

{(
E(j)

s (θ)
)2

| Fs−1

}
→ 0.

Since (A(jj)
t (θ))2 = t, (L2) follows from the Toeplitz lemma.

Therefore, the conditions of Lemma 1 hold for At(θ) =
√

t1. This implies
that

√
t(θ̂t − θ∗t ) → 0 in probability P θ, where

θ∗t =
1

tγ(θ)

t∑
s=1

ψs(θ,Xs).

The asymptotic normality now obviously follows from the central limit theorem
for i.i.d. random variables. ♦

Corollary 9 Suppose that Ht → ∞ and θ̂t is derived by (20). Denote ∆t =
θ̂t − θ, lt(θ) = m(Xt, Xt−1)− γ̇(θ)h(Xt−1), and suppose also that
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(I)

H
−1/2
t

t∑
s=1

Es(θ) → 0,

where

Es(θ) =
γ̈(θ + ∆s−1)− γ̈(θ)

γ̈(θ + ∆s−1)
ls(θ);

(II) one of the following two conditions are satisfied;

H
−1/2
t

t∑
s=1

4HsCs(θ) → 0,

OR

H−1
t

t∑
s=1

4Hs H1/2
s Cs(θ) → 0,

where

Cs(θ) =
γ̈(θ + ∆s−1)− γ̈(θ + ∆̃s−1)

γ̈(θ + ∆s−1)
∆s−1

and ∆̃t is a predictable process with |∆̃t| ≤ |∆t|.
Then (21) holds, i.e., the estimator θ̂t is asymptotically linear.

Proof. Let us check the conditions of Lemma 1 for ψt(θ) = lt(θ),

Γt(θ) = It(θ) = γ̈(θ)Ht (24)

and At(θ) = H
1/2
t . Since lt(θ) is a martingale-difference, we have

Eθ {m(Xt, Xt−1) | Ft−1} = γ̇(θ)h(Xt−1) and so

bt(θ, u) = Eθ {lt(θ + u) | Ft−1} = h(Xt−1) (γ̇(θ)− γ̇(θ + u)) (25)

and

Rt(θ, u) =
γ̈(θ)

γ̈(θ + u)
h(Xt−1)(γ̇(θ)− γ̇(θ + u)) = − γ̈(θ)

γ̈(θ + u)
h(Xt−1)γ̈(θ + ũ)u

where |ũ| ≤ |u|. Then, since 4Γt(θ) = 4It(θ) = h(Xt−1)γ̈(θ) we have

4Γt(θ)u + Rt(θ, u) = h(Xt−1)γ̈(θ)
γ̈(θ + u)− γ̈(θ + ũ)

γ̈(θ + u)
u.

Now, since 4Ht = h(Xt−1), it is easy to see that the first condition in (II)
implies (S1) in Lemma 1 and the second condition in (II) implies (L1) in
Proposition 2. Therefore, (S1) holds.

To verify (S2), consider the process Es(θ) defined in (S2). Using (24) and
(25), it is easy to see that

Es(θ) =
(

1− γ̈(θ)
γ̈(θ + ∆s−1)

)
(m(Xs, Xs−1)− γ̇(θ)h(Xs−1))
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=
γ̈(θ + ∆s−1)− γ̈(θ)

γ̈(θ + ∆s−1)
ls(θ). (26)

This shows that (I) implies (S2). ♦
Proof of Proposition 8 Since, by (iii), γ̈(·) is obviously a continuous func-
tion, condition (M2) of Proposition 4.1 in Sharia (2007b) holds. Also, (M1)
in the same proposition obviously follows from (i). So, it follows that all the
conditions of Proposition 4.1 and Corollary 4.2 in Sharia (2007b) are satis-
fied implying that Hδ

t (θ̂t − θ) → 0 (P θ-a.s.). Also, by (i), 4Ht/Ht−1 =
h(Xt−1)/Ht−1 → 0 implying that Ht/Ht−1 = 1 +4Ht/Ht−1 → 1. So,

Hδ
t ∆t−1 = Hδ

t (θ̂t−1 − θ) → 0. (27)

To establish asymptotic linearity let us verify the conditions of Corollary 9.
Since ∆s−1 = θ̂s−1 − θ → 0 (P θ-a.s.) and |∆̃s−1| ≤ |∆s−1|, by (iii) we obtain
that |γ̈(θ + ∆s−1)− γ̈(θ + ∆̃s−1)| ≤ 2Kθ|∆s−1|εθ eventually. So,

|H
1
2
s Cs(θ)| = H

1
2
s
|γ̈(θ + ∆s−1)− γ̈(θ + ∆̃s−1)||∆s−1|

γ̈(θ + ∆s−1)
≤ 2KθH

1
2
s |∆s−1|1+εθ

γ̈(θ + ∆s−1)

eventually. Now,

H
1
2
s |∆s−1|1+εθ = |H

1
2(1+εθ)
s (θ̂s−1 − θ)|1+εθ → 0,

by (27) since 1
2(1+εθ) < 1

2 . So, since the function γ̈(·) is continuous, we obtain

that |H
1
2
s Cs(θ)| → 0. Therefore, by the Toeplits Lemma, the second condition

of (II) holds.
Now, since Es(θ) is a martingale-difference, to verify (I), it is sufficient to

show that (see e.g., Shiryayev (1984), Ch.VII, §5, Theorem 4),
∞∑

s=1

Eθ

{E2
s (θ) | Fs−1

}

Hs
< ∞.

Since Eθ{l2s(θ) | Fs−1} = γ̈(θ)h(Xs−1) = γ̈(θ)4Hs, the above series can be
rewritten as

∞∑
s=1

4Hs

Hs
γ̈(θ)

(
γ̈(θ + ∆s−1)− γ̈(θ)

γ̈(θ + ∆s−1)

)2

= γ̈(θ)
∞∑

s=1

4Hs

H
1+εθ/2
s

rs

where, by (iii),

rs =
(γ̈(θ + ∆s−1)− γ̈(θ))2 H

εθ/2
s

γ̈2(θ + ∆s−1)
≤ K2

θ

|∆s−1|2εθH
εθ/2
s

γ̈2(θ + ∆s−1)
= K2

θ

(|∆s−1|H1/4
s )2εθ

γ̈2(θ + ∆s−1)
.

Now, using (27) and continuity of γ̈(·) we deduce that rs → 0. Also,
∞∑

s=1

4Hs

H
1+εθ/2
s

< ∞

(see Sharia (2007b), Appendix A, Proposition A2), implying that the above
series converge which completes the proof. ♦



Recursive Estimation: Asymptotic expansion 19

Acknowledgements I am grateful to the referee for constructive and helpful comments
and suggestions.

References

Barndorff-Nielsen, O.E., Sorensen, M. (1994). A review of some aspects of asymptotic like-
lihood theory for stochastic processes. International Statistical Review. 62, 1, 133-165.

Basawa, I.V., Scott, D.J. (1983). Asymptotic Optimal Inference for Non-ergodic Models.
Springer-Verlag, New York.

Fabian, V. (1978). On asymptotically efficient recursive estimation. Annals of Statistics. 6,
854-867.

Feigin, P.D. (1981). Conditional exponential families and a representation theorem for
asymptotic inference. Annals of Statistics. 9, 597-603.

Feigin, P.D. (1985). Stable convergence for semimartingales. Stochastic Processes and Their
Applications. 19, 125–134.

Hall, P., Heyde, C.C. (1980). Martingale Limit Theory and Its Application. Academic Press,
New York.

Heyde, C.C. (1997). Quasi-Likelihood and Its Application: A General Approach to Optimal
Parameter estimation. Springer-Verlag, New York.

Hutton, J.E., Nelson, P.I. (1986). Quasi-likelihood estimation for semimartingales. Stochastic
Processes and Their Applications. 22, 245–257.

Jacod, J., Shiryayev, A.N. (1987). Limit Theorems for Stochastic Processes. Heidelberg,
Springer.

Khas’minskii, R.Z., Nevelson, M.B. (1972). Stochastic Approximation and Recursive Esti-
mation. Nauka, Moscow.

Liptser, R.Sh., Shiryayev, A.N. (1989). Theory of Martingales. Kluwer, Dordrecht.
Prakasa Rao, B.L.S. (1999). Semimartingales and their Statistical Inference. Chapman &

Hall, New York.
Sharia, T. (2007a). Recursive parameter estimation: Convergence. Statistical Inference for

Stochastic Processes (in press). DOI: 10.1007/s11203-007-9008-x
Sharia, T. (2007b). Rate of convergence in recursive parameter estima-

tion procedures. Georgian mathematical Journal (in press) (see also
http://personal.rhul.ac.uk/UkAH/113/GmjA.pdf).

Shiryayev, A.N. (1984). Probability. Springer-Verlag, New York.


