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Abstract

Using the reference probability method, a recursive equation is obtained for the unnormalized
joint conditional density of a noisily observed Markov chain, and parameters which determine
the transition densities and coefficients in the observations.

1 Introduction

By adapting the techniques of our paper, [2], the problem of parameter estimation and filtering for

a noisily observed finite state, discrete time Markov chain is considered. Recursive estimates are

given for the conditional unnormalized distribution of the chain and parameters. The parameters

are treated as additional (constant) signal variables. The case of time varying parameters is covered

by the result of [2]. Although the parameters are constant their conditional expectations, given

the observations, are random variables and so have conditional, unnormalized distributions. The

technique is to introduce an equivalent probability measure, the ‘reference probability’, under which

the signal and observation processes are independent. That is, we consider the discrete time version

of the Zakai equation. A related recursive equation can be found in the notes of Br6maud and van

Schuppen [1]. However, the existence of equivalent probability measured is a hypothesis in [1], as is

the existence of certain transition kernels. Our change of measure is very natural and is described

explicitly. A related idea, not involving dependence on parameters, can be found in Kumar and

Varaiya [4].

A recent paper by Krishnamurthy and Moore, [3], obtains locally asymptotic optimal estimates,

which are globally optimal in the Gaussian case. These have been implemented in practice; work

is currently under way to implement the optimal estimates of the present paper.

2 Dynamics

All processes will be defined on a complete probability space (Q, F, F’). The discrete time parameter

1 will take values in Z+ = 1,2, . . .. Suppose {Xt}, / E Z is a finite state, time homogeneous

Markov chain representing the signal process. Without loss of generality, the state space of X can

be identified with the set of unit vectors S = {el, ez, . . . ,e~}, e~ = (O, . . . ,0,1,0, . . . ,0)’ E RN, for

a suitable integer N. We assume that X. is given, or its distribution is known.

We shall suppose the transition probabilities of X depend on a parameter 61 which takes values

in a measure space (@l, /31, Al). The value of 01 is unknown and, in this paper, we suppose it is

constant. That is, for 1 < i,j < N,

p2j(01)= P(X. = ez [ Xn-I = ej)

= P(XI =ez [XO =ej).

Write .P(O1) for the IV x IV matrix (pij(dl)), 1 < i,j < N. Also, {FL, 1 ~ Z+} will denote the
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complete filtration generated by X, that is, for any n ~ Z+, Fn is the complete a- field generated

by Xe, / < n, and 0.

Lemma 2.1 The state equation is

x. = Pxn-l + ??zn

where mn is a (P, Fn) martingale increment.

Proof.

E[mn

We suppose the chain X is not L

(2.1)

l?n_l] = E[xn – Pxn_~ I xn_~]

– Pxn_l – Pxn-l = o.—

u

bserved directly; rather there is an observation process (~1),

/ 6 Z+, which, for simplicity, we suppose is real valued. The extension to vector observations is

straightforward. The real observations process y has the form

w = go2(X.) + bn. (2.2)

Here 02 is a second, constant, unknown parameter taking values in a measure space (f12, /32, A2),

and the bl, ./ E Z+, are real, i.i,d. random variables with a non-zero (positive) density ~. The

extension to the situation where the bt, / E Z+, are independent but have possibly different non-

zero density functions @t, is immediate. Because Xn is always one of the unit vectors li, 1 < i < N,
for any 02 G @2 the function go’(. ) is determined by a vector:

g(e2) =

and

(91(02),92(82)> . . . ,9N(e2)) E RN

ge’(xn) = (g(e2), xn)

where ( , ) denotes there inner product in RN.

Notation 2.2 With G; = O{ XO, X1, . . . ,Xt, yl, . . . ~Yt–l}~ then {GL}~ ~ E z+ ~ will denote the
complete filtration generated by G~; {~t},./ ~ Z+, will denote the complete filtration generated by

Y~ where Y; = cT{yo, yI,. ... Yt}.

3 Changes of Measure

On (!2, F, P) our observation process, therefore, has the form

Yn = (g(02), Xn) + L

where the bn are i.i.d. with density ~(b) >0, V b E R.
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We now wish to define a new probability measure P by introducing on the ‘nth factor’, i.e. on the
probability space of bn, a density

%(xn,bn) :==@((g(~2)’xn)+bn)@(bn)

Write

An= fiyt
e=l

and define a new probability measure P on (Q, Uy=l Gl) by setting the restriction of the Radon-

Nikodym derivative d~/dP to G. equal to A..

The existence of ~ follows from the theorem of Kolmogorov.

Theorem 3.1 Under P the terms of the sequence oj random variables {yt}, 1 E Z+, are
i.i. d. with density function ~.

Proof. Applying Bayes’ formula, and with 1(. ) denoting the indicator function,

Now

-E[~n] G.] = /
cu q!((g(@2),x~) + bn)@(b)clb

#(b~)
n n

—w

=
J

_~ @((g(e2), Xn) + ~n)d~n

= 1,

so

= P(yn < t).

That is, under ~ the ye are i.i,d. with density ~. 9

Remarks 3.2 Conversely, what we wish to do is to suppose we start with a probability
measure P on (Q, u~=l Gl) such that under ~:
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1) {XL}, 1 G Z+, is a Markov chain with a transition matrix P(Ol), for some 61601, so
that

Xn= P(ol)xn.l+‘mn
where

E[mn I F.-1] = o,
and

2) {yL}, / c Z+, is a sequence of i.i.d. real random variables with density ~, ~(b) >0.

Note, in particular, that under P(O1 ) the yl are independent of X.

We wish to construct a probability P such that under P

is a sequence of i.i.d. random variables with density #. That is, under P the signal and
observation process are related as in Section 2. To construct P starting from P we must
proceed in an inverse fashion, first defining

%(Z,Y7L) = %
n

P is defined by putting the restriction to G. of the Radon-Nikodym derivative dP/d~ equal
to

dP
~ l~n= An.

A calculation similar to Theorem 3.1 then shows that

P(bn < t I Gn) = P(bn < t)

= ~m~(bn)dbn

4 The Recursive Densities

We shall work under probability measure ~, so that {yt}, / c Z+, is a sequence of i.i.d.
random variables with density #, #(y) > 0, and {X~}, 1 ~ Z+, is an independent Markov
chain.

Notation 4.1 If @t, 1 E Z+, is any measurable sequence we shall write
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Then aL(#t) is an unnormalized conditional expectation of #1 given ~L. By a version of
Bayes’ theorem:

(4.1)

Equation (4.1) indicates why the unnormalized form O1(@l) is investigated. In our model,
however, not only ~istobe estimated but also theparameterst?l and 02.

Notation 4.2 Write q~(Ol, 02), neZ+, fortheunnormalized conditional density such that

E[finI(Xn = e~)I(O1 E CJ31)I(02G d(?2)I~n]= q~((?l,02)d01d32,

The existence of q~(~l, 62) will be discussed below,

Our main result follows. This provides a recursive, closed form update for q~(dl, 02). As in
(4.1), the normalized conditional density

is given by :

Theorem 4.3

Proof. Suppose f (31 x @2 + R is any measurable function. Then

~[.f(~1,e2)(xn,e2)&I3“7L]
= 12[.f(01,02)(Xn,ei)Ll@(Yn- (9(62),Xn)) I Yn]@(Yn)-l

= ~[.f(@,~2)(~(e1)xn-1 + %, ei)i-lf$(3k - (9(@2), ei)) I Yn]#(%-’
= E[f(61, 82)( P(0’)Xn-1, ez)~~-lq$(yn - g~(02)) I Y.]@(gn)-l

= ~ ~[j(@,62)(x~-1, ej)pzj(~l)&-~#(y~ - gi(d2)) I Yn-I]#(3k-1
j=l

Therefore,

(4.2)
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m
Remarks 4.4 Suppose m=(7ri,. . . ,TN),~i = P(XO = ei), is the initial distribution for X.
and h(~l, }2), (possibly of the form hl(~l)h2(A2)), is the prior density for (01, 62). Then

and the up-dated estimates are obtained by substituting in (4.2) for n 2 1.

If the prior estimates are delta functions, (unit masses at particular values of ei, 01 and 02),
~(~1, A2) and higher unnormalized conditional distributions can be calculated by a formula
analogous to (4.2). However, because no noise or dynamics enters into 01 and 02, if delta
functions are taken as the prior distributions for 01 and 02 no up-dating takes place; (this
is not the case with the distribution for X). This is to be expected because in the filtering
procedure the prior does not represent an initial guess for 02 given no information, but the
best estimate for the distribution of 0’ given the initial information. Care must, therefore,
be taken with the choice of the prior for 191and 02 and, unless there is reason to choose
otherwise, priors should be taken so that they have support on the whole range of (91and 132.

5 Multidimensional Observations

Again, suppose the Markov chain has state space {el,. . . . eN} and

X. = P(81)X..1 + mm, n ~ Z+,

for some (unknown) 191E ~1.

Consider now the case where the observation process is k dimensional with components:

Y; = (gl(@,xJ + b:

Y: = (92(@, xl) + ~;

.—..—.

Y: = (9k(%), x~) + b:, n e Z+.

Here, for 1< j < k, g~(6~) = (~(0~),. . . ,g~(~~)’ c RN, where (O~,@j,.. . ,f3~) c ~~ x @ x

. . . x @~, and each ~~ is a measurable space. Further, the b~, 1 < ~ < N,/ E Z+, are a family

of independent random variables with non-zero densities @j(b;).

The same techniques then establish the following result:

Theorem 5.1 lVrite q~(61, @~,O;, . . . . O;), n G 2+, for the unnormalized conditional density
such that
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Then

6 Conclusion

Using a change of measure, a recursive expression has been derived for an unnormalized, joint
conditional distribution of the state of a partially observed Markov chain, together with
the unknown parameters of the transition matrix and observation process. The recursive
expression is in fact linear in the unnormalized distribution.
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